ESTIMATION AND ANALYSIS OF DESIRED FAMILY SIZE WITH WFS DATA Cam-Loi Huynh
 Department of Psychology, University of Manitoba, Winnipeg, MB, Canda R3T 2N2

KEY WORDS: Desired family size, Fertility, Synthetic Cohort, World Fertility Survey preference implementation index.

The population means of X, Y and the conditional mean of Y given $\mathrm{X}, \mu_{\mathrm{YX}}$, are denoted as μ_{X}, μ_{Y} and $\mu_{Y X}$; and their estimates as $\mu_{\mathrm{X}}, \mu_{\mathrm{Y}}, \mu_{\mathrm{YX}} ;$ respectively. The estimates of K and ε are denoted as k and ε, respectively.

Statistics:

$\mathrm{n}=$ Total number of women
$n_{i}=$ Number of women of parity i
$l_{i}=$ Number of women of parity i who wanted their last child
$m_{i}=$ Number of women of parity i who want more children

Initial constraints:

$$
\begin{align*}
& \mathrm{n}=\sum^{\mathrm{k}+1}{ }_{\mathrm{i}=0} \mathrm{n}_{\mathrm{i}} \tag{2.1}\\
& \mathrm{l}_{0}=\mathrm{n}_{0} \tag{2.2}\\
& \mathrm{~m}_{\mathrm{k}}=0 \tag{2.3}\\
& \mathrm{n}_{\mathrm{i}} \geq \mathrm{l}_{\mathrm{i}} \geq \mathrm{mi} \tag{2.4}\\
& 0 \leq \mathrm{X} \leq \mathrm{k} \text { and } 0 \leq \mathrm{Y} \leq \mathrm{k} \tag{2.5}
\end{align*}
$$

2.2. Basic Assumptions

(A1) The distribution of $\mathrm{Y}, \mathrm{P}(\mathrm{Y}=\mathrm{i})$, is representative of the ith desired family size of the synthetic population. At each parity level, the desired family size (Y) is not dependent of ε, the implementation index.
(A2) The same implementation index (ε) applies to all members of the synthetic population. The actual family size (X) at each parity level is dependent on ε.
(A3) The parity levels ($i=0,1, \ldots, K$) represent K equal time intervals between births. (A4) Values of n_{i}, m_{i} and l_{i} are reported accurately.
(A5) The maximum number of family size (K) is finite.

3. THE RELATIONSHIP BETWEEN ACTUAL FAMILY SIZE (X) AND DESIRED FAMILY SIZE (Y)

In Nour (1983), the number of women having i children (n_{i}) is a sum of three subgroups that can be summarized succinctly as:
$\mathrm{n}_{\mathrm{i}}=\mathrm{n}(1-\hat{\varepsilon})+\mathrm{n} \hat{\varepsilon} \cdot \mathrm{p}(\mathrm{Y}>\mathrm{i})+\mathrm{n} \hat{\varepsilon}(\mathrm{k}+1-\mathrm{i}) \mathrm{p}(\mathrm{Y}=\mathrm{i})$.
In the first group, there are $n(1-\hat{\varepsilon})$ women, out of n_{i}, who do not implement the assumed fertility preference and move on to the next parity level. In the second group, there are $\mathrm{n} \hat{\varepsilon}-\mathrm{p}(\mathrm{Y}>\mathrm{i})$ women who have not fully implemented their fertility preference and also move on. Finally, the are $n \hat{\varepsilon}(k+1-i) \cdot p(Y=i)$ women in the third group who have obtained their desired family size and stay at the ith parity level. In Panel a of Figure 1, the components of these subgroups are used to count, at the ith parity level, the number of women who liked their last child $\left(l_{i}\right)$ and the number of those who want more children $\left(m_{j}\right)$. Once the observed values of 1_{i} and m_{i} have been collected, they are in turn used to determine $\mathrm{p}(\mathrm{Y}=\mathrm{i})$.

Insert Figure 1 about here

In the present paper, the estimation procedure is constructed on the partition of the total fertile population into subgroups basing on the relative comparison of actual family size (X) against desired family size (Y) as depicted in Panel b of Figure 1. The formulation under this framework is explained below.

3.1. Grouping of women in the joint X and Y Space

The entire fertile population can be partitioned into three subgroups depending on the relative magnitudes of X and Y as follows:

Group 1 (X< Y): with the probability of membership equal to $\pi_{1}=\mathrm{P}(\mathrm{X}<\mathrm{Y} \mid \varepsilon)$
Group 2 ($\mathrm{X}=\mathrm{Y}$): with the probability of membership equal to $\pi_{2}=\mathrm{P}(\mathrm{X}=\mathrm{Y} \mid \varepsilon)$

Group 3 ($\mathrm{X}>\mathrm{Y}$): with the probability of membership equal to $\pi_{3}=\mathrm{P}(\mathrm{X}>\mathrm{Y} \mid \varepsilon)$.

Lemma 1. The probabilities of group memberships in the (X, Y)-space are specified as:
$\pi_{1}=\mu_{\mathrm{Y}} /(\mathrm{K}+1)$
$\pi_{2}=\{1 /(\mathrm{K}+1)\}\left\{\left(\mathrm{K}-\mu_{\mathrm{Y}}\right) \varepsilon+1\right\}$
$\pi_{3}=\left(K-\mu_{Y}\right)(1-\varepsilon) /(K+1)$
Proof. Basing on the relationship between Y and X specified by Eq. (20) in Nour (1983), and due to the constraint of $\Sigma \pi_{\mathrm{i}}=1$, the following results can be obtained:

$$
\begin{aligned}
\pi_{1} & =\Sigma^{\mathrm{K}=0} \mathrm{P} \mathrm{P}(\mathrm{X}<\mathrm{Y} \mid \mathrm{Y}=\mathrm{i}, \varepsilon) \cdot \mathrm{P}(\mathrm{Y}=\mathrm{i}) \\
& =\Sigma^{\mathrm{K}}{ }_{\mathrm{i}=0}\{\mathrm{i} /(\mathrm{K}+1)\} \cdot \mathrm{P}(\mathrm{Y}=\mathrm{i}) \\
\pi_{2} & =\Sigma^{\mathrm{K}}{ }_{\mathrm{i}=0} \mathrm{P}(\mathrm{X}=\mathrm{Y} \mid \mathrm{Y}=\mathrm{i}, \varepsilon) \cdot \mathrm{P}(\mathrm{Y}=\mathrm{i}) \\
& =\Sigma^{\mathrm{K}}{ }_{\mathrm{i}=0}\{\varepsilon(1-\mathrm{i} /(\mathrm{K}+1))+(1-\varepsilon) /(\mathrm{K}+1)\} \cdot \mathrm{P}(\mathrm{Y}=\mathrm{i}) \\
\pi_{3} & =\Sigma^{\mathrm{K}}{ }_{\mathrm{i}=0} \mathrm{P}(\mathrm{X}>\mathrm{Y} \mid \mathrm{Y}=\mathrm{i}, \varepsilon) \cdot \mathrm{P}(\mathrm{Y}=\mathrm{i}) \\
& \left.=\Sigma_{\mathrm{i}=0}^{\mathrm{K}}(\mathrm{~K}-\mathrm{i})(1-\varepsilon) /(\mathrm{K}+1)\right) \cdot \mathrm{P}(\mathrm{Y}=\mathrm{i})
\end{aligned}
$$

Upon simplifying the above equations, the expressions (3.2) to (3.4) hold.[
(See Panel b, Figure 1). As an outcome of this grouping, the following result can be obtained.

Lemma 3. The methods of moment and maximum likelihood estimation
yield the same estimates for $\pi_{i},\{i=1,2,3\}$, that can be specified as:
$\hat{\pi}_{1}=\Sigma^{\mathrm{K}}{ }_{\mathrm{i}=0} \mathrm{~m}_{\mathrm{i}} / \Sigma^{\mathrm{K}}{ }_{\mathrm{i}=0} \mathrm{n}_{\mathrm{i}}$,
$\hat{\pi}_{2}=\Sigma^{\mathrm{K}}{ }_{\mathrm{i}=0}\left(\mathrm{l}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}}\right) / \Sigma^{\mathrm{K}}{ }_{\mathrm{i}=0} \mathrm{n}_{\mathrm{i}}$, and
$\hat{\pi}_{3}=\Sigma^{\mathrm{K}}{ }_{\mathrm{i}=0}\left(\mathrm{n}_{\mathrm{i}}-\mathrm{l}_{\mathrm{i}}\right) / \Sigma_{\mathrm{i}=0}^{\mathrm{K}} \mathrm{n}_{\mathrm{i}}$.
Proof. From the partitioning of the (X, Y)-space, we have $\pi_{1}=\mathrm{E}\left[\Sigma^{\mathrm{K}} \mathrm{i}_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}\right] / \mathrm{n}, \pi_{2}=\mathrm{E}\left[\Sigma^{\mathrm{K}} \mathrm{i}_{0}\left(\mathrm{I}_{\mathrm{i}}-\right.\right.$ $\left.\left.\mathrm{m}_{\mathrm{i}}\right)\right] / \mathrm{n}$ and $\Sigma_{\mathrm{i}=0}^{\mathrm{K}} \pi_{\mathrm{i}}=1$. Therefore, the moment estimates of
$\pi_{\mathrm{i}},\{\mathrm{i}=1,2,3\}$, are derived as given in (3.6) to (3.8), respectively.

To obtain the maximum likelihood estimates, consider the following likelihood function:

$$
\left(\Sigma_{\mathrm{i}=0}^{\mathrm{K}} \mathrm{n}_{\mathrm{i}}\right)!\left\{\pi_{1}^{\Sigma \mathrm{mi}} \pi_{2}^{\Sigma \mathrm{li}-\mathrm{m} \mathrm{i}} \pi_{3}^{\sum \mathrm{n}-\mathrm{li}}\right.
$$

$\boldsymbol{s} \mathbf{e}\left(\mathrm{l}_{\mathrm{i}}, \mathrm{m}_{\mathrm{i}}, \mathrm{n}_{\mathrm{i}}\right)=$
$\left(\overline{\left.\Sigma^{K}{ }_{i=0} m_{i}\right)!\left\{\Sigma^{K}{ }_{i=0}\left(l_{i}-m_{i}\right)\right\}!\left\{\Sigma^{\mathrm{K}}{ }_{\mathrm{i}=0}\left(\mathrm{n}_{\mathrm{i}} \mathrm{l}_{\mathrm{i}}\right)\right.}\right.$)!
The maximum likelihood estimates for π_{1} and π_{3} can be obtained, as given in (3.6) and (3.7), by solving the derivatives of the corresponding log-likelihood equations simultaneously for them:

$$
\begin{aligned}
& \frac{\Sigma_{i=0}^{K} m_{i}}{\pi_{1}}-\frac{\Sigma_{i=0}^{K}\left(n_{i}-l_{i}\right)}{1-\pi_{1}-\pi_{2}}=0 \\
& \frac{\Sigma^{\mathrm{K}}{ }_{\mathrm{i}=0}\left(\mathrm{l}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}}\right)}{\pi_{1}}-\frac{\Sigma^{\mathrm{K}}\left(\mathrm{n}_{\mathrm{i}=0}-\mathrm{l}_{\mathrm{i}}\right)}{1-\pi_{1}-\pi_{2}}=0 .
\end{aligned}
$$

The maximum likelihood estimate of π_{3} can be specified as in (3.8) since $\pi_{1}+\pi_{2}+\pi_{3}=1$.

4. ESTIMATING μ_{Y} AND ε

Basing on the grouping of women in the joint (X,Y)-space discussed above, new estimates for μ_{Y} and ε are derived such that their limiting distributions can be developed.

Theorem 1. The estimates of μ_{Y} and ε, by both methods of moment and maximum likelihood estimation, are:

$$
\begin{align*}
& \hat{\mu}_{Y}=\frac{\Sigma^{K}{ }_{i=0} m_{i}}{\sum^{K}{ }_{i=0} n_{i}}(k+1), \tag{4.1}\\
& \hat{\varepsilon}=\frac{\left.\Sigma^{K}{ }_{i=0} 1_{i}-m_{i}\right)-(1 /[k+1])\left(\Sigma^{K}{ }_{i=0} n_{i}\right)}{\Sigma^{K}{ }_{i=0} n_{i}[1-\{1 /(k+1)\}]-\Sigma^{K}{ }_{i=0} m_{i}}, \tag{4.2}
\end{align*}
$$

respectively.
Proof. The expressions for μ_{Y} and ε can be
obtained from (3.2) and (3.4), respectively, as:
$\mu_{Y}=\pi_{1}(\mathrm{~K}+1)$, and $\varepsilon=1-\left\{(\mathrm{K}+1) /\left(\mathrm{K}-\mu_{\mathrm{Y}}\right)\right\} \pi_{3}$.
From the above results, upon substituting K by k, π_{1} by $\hat{\pi}_{1}$ in (3.6) and π_{3} by $\hat{\pi}_{3}$ in (3.8), the moment estimates of μ_{Y} and ε given in (4.1) and (4.2), respectively, hold.

In the proposed procedure, values of μ_{Y} and ε can be obtained without the computation of $p(Y$ $=\mathrm{i})$. Moreover, the estimate of ε as given in (4.2) is an improvement from the work of Nour (1983) since it is given as a simple, closed-form expression that is the same in both moment and maximum likelihood estimation methods. Moreover, its upper bound is always at most equal to one. The last property is explained in Appendix II.

5. LIMITING DISTRIBUTIONS OF $\hat{\mu}_{\mathrm{Y}}$ and $\hat{\varepsilon}$

In most cross-national surveys, the sample sizes (n) are very large. Therefore, for statistical testing purposes, it is necessary to derive the asymptotic distributions of estimates of μ_{Y} and ε.

Theorem 2. As n becomes sufficiently large, the asymptotic distribution of μ_{Y} is obtained as:

$$
\begin{equation*}
1 / 2\left(\hat{\mu}_{\mathrm{Y}}-\mu_{\mathrm{Y}}\right) \sim \mathrm{AN}\left(0,(\mathrm{~K}+1)^{2} \pi_{1}\left(1-\pi_{1}\right)\right) \tag{5.1}
\end{equation*}
$$

Proof. Since $\left\{\mathrm{m}_{\mathrm{i}}, \mathrm{l}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}}, \mathrm{n}_{\mathrm{i}}-\mathrm{l}_{\mathrm{i}}\right\}$ has a multinomial distribution with parameter ($\pi_{1}, \pi_{2}, \pi_{3}$), as n_{\rightarrow} ∞, from a well-known result (Serfling, 1980, Theorem 1.9.1B, p.108), it can be shown that,

$$
\left[\begin{array}{l}
n\left(\pi_{1}-\pi_{1}\right) /\left(n \pi_{1}\right)^{1 / 2} \tag{5.2}\\
n\left(\pi_{2}-\pi_{2}\right) /\left(n \pi_{2}\right)^{1 / 2} \\
n\left(\pi_{3}-\pi_{3}\right) /\left(n \pi_{3}\right)^{1 / 2}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
\left(\pi_{2} \pi_{1}\right)^{1 / 2}, 1-\pi_{2},\left(\pi_{2} \pi_{3}\right)^{1 / 2} \\
{\left[\begin{array}{l}
1-\pi_{1},\left(\pi_{1} \pi_{2}\right)^{1 / 2}, \pi_{1} \pi_{3}^{1 / 2} \\
\left(\pi_{1} \pi_{3}\right)^{1 / 2},\left(\pi_{2} \pi_{3}\right)^{1 / 2}, 1-\pi_{3}
\end{array}\right]}
\end{array}\right]
$$

From (3.6) and (4.1), we have $\mu_{Y}=(k+1) \pi_{1}$, which is a consistent estimate of $\mu_{Y}=(\mathrm{K}+1) \pi_{1}$. Therefore, due to (5.2) and Theorem A (Serfling, 1980, p. 118), the result (5.1) holds

Theorem 3. The asymptotic distribution of ε is specified as:
$\mathrm{n}^{1 / 2}(\hat{\varepsilon}-\varepsilon) \sim \mathrm{AN}\left(0, \sigma_{\varepsilon}^{2}\right)$
where

$$
\begin{align*}
\sigma_{\varepsilon}^{2}= & \left\{\left[(\mathrm{K}+1) \pi_{2}-1\right]^{2} / \mathrm{A}^{2}\right\}(\mathrm{K}+1)^{2} \pi_{1}\left(1-\pi_{1}\right) \\
& +\left\{(\mathrm{K}+1)^{2} / \mathrm{A}\right] \pi_{2}\left(1-\pi_{2}\right)+ \\
& \left\{2(\mathrm{~K}+1)^{2} / \mathrm{A}\right]\left[(\mathrm{K}+1) \pi_{2}-1\right] \pi_{1} \pi_{2} \tag{5.4}
\end{align*}
$$

and,
$A=\left[K-(K+1) \pi_{1}\right]^{2}$.
Proof. The expression for ε in (4.2) can be rewritten as,
$\grave{\varepsilon}=\frac{(k+1) \pi_{2}-1}{k-(k+1) \pi_{1}}=g\left(\hat{\pi}_{1}, \hat{\pi}_{2}\right)$
Therefore, we have:

$$
\begin{aligned}
\mathrm{n}^{1 / 2}(\hat{\varepsilon}-\varepsilon) & \approx \partial \mathrm{g} /\left.\partial \hat{\pi}_{1}\right|_{(\pi 1, \pi 2)} \mathrm{n}^{1 / 2}\left(\hat{\pi}_{1}-\pi_{1}\right) \\
+ & \partial \mathrm{g} / \partial \hat{\pi}_{l^{\prime}(\pi 1, \pi 2)} \mathrm{n}^{1 / 2}\left(\hat{\pi}_{2}-\pi_{2}\right)
\end{aligned}
$$

which in turn yields the following equation:

$$
\begin{array}{r}
\operatorname{Var}\left\{\mathrm{n}^{1 / 2}(\hat{\varepsilon}-\varepsilon)\right\} \approx\left(\partial \mathrm{g} / \partial \hat{\pi}_{1}\right)^{2} \operatorname{Var}\left[\mathrm{n}^{1 / 2}\left(\hat{\pi}_{1}-\pi_{1}\right)\right] \\
\quad+\left(\partial \mathrm{g} / \partial \hat{\pi}_{2}\right)^{2} \operatorname{Var}\left[\mathrm{n}^{1 / 2}\left(\hat{\pi}_{1}-\pi_{2}\right)\right]+\mathbf{O}\left(\mathrm{n}^{-1 / 2}\right) \\
\quad+2\left[\left(\partial \mathrm{~g} / \partial \hat{\pi}_{1}\right)\left(\partial \mathrm{g} / \partial \hat{\pi}_{2}\right)\right] \operatorname{Cov}\left[\mathrm{n}^{1 / 2}\left(\hat{\pi}_{1}-\pi_{1}\right),\right. \\
\left.\mathrm{n}^{1 / 2}\left(\hat{\pi}_{2}-\pi_{2}\right)\right] . \tag{5.6}
\end{array}
$$

The components of (5.6) can be specified below. As $n \rightarrow \infty$, we have,

$$
\begin{aligned}
& \operatorname{Var}\left\{\mathrm{n}^{1 / 2}\left(\hat{\pi}_{\mathrm{i}}-\pi_{\mathrm{i}}\right)\right\} \rightarrow \pi_{\mathrm{i}}\left(1-\pi_{\mathrm{i}}\right) \\
& \text { for } \mathrm{i}=1,2 \text { (from Eq. (5.2)), }
\end{aligned}
$$

$\operatorname{Cov}\left[\mathrm{n}^{1 / 2}\left(\hat{\pi}_{1}-\pi_{1}\right), \mathrm{n}^{1 / 2}\left(\pi_{2}-\pi_{2}\right)\right\} \rightarrow \pi_{1} \pi_{2}$ (from Eq. (5.2))
$\partial \mathrm{g} / \partial \hat{\pi}_{\mathrm{f}_{(\pi 1, \pi 2)}}=\left\{\left[(\mathrm{k}+1) \pi_{1}-1\right] / \mathrm{A}\right](\mathrm{k}+1)$, and
$\partial \mathrm{g} / \partial \hat{\pi}_{2(\pi 1, n 2)}=(\mathrm{k}+1) / \mathrm{A}$,
where A is defined as in (5.5). By substituting the above expressions into (5.6), the result in (5.4) holds.

Theorem 4. The asymptotic joint distribution of μ_{Y} and ε is of the form:
$\left[\begin{array}{l}n^{1 / 2}\left(\hat{\mu}_{\mathrm{Y}}-\mu_{\mathrm{Y}}\right) \\ \mathrm{n}^{1 / 2}(\hat{\varepsilon}-\varepsilon)\end{array}\right]$ AN $\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\left[\begin{array}{cc}(\mathrm{K}+1)^{2} \pi_{1} \pi_{2} & \mathrm{~B}_{12} \\ \mathrm{~B}_{12} & \sigma_{\varepsilon}^{2} \\ & (5.7)\end{array}\right)\right.$
where

$$
\mathrm{B}_{12}=\left[\left\{(\mathrm{K}+1) \pi_{2}-1\right\} / \mathrm{A}\right](\mathrm{K}+1)^{2} \pi_{1}\left(1-\pi_{1}\right)+[1 /\{\mathrm{K}-
$$

$$
\begin{equation*}
\left.\left.(\mathrm{K}+1) \pi_{1}\right\}\right](\mathrm{K}+1)^{2} \pi_{1} \pi_{2} \tag{5.8}
\end{equation*}
$$

Proof. It only requires to show that B_{12} is the relevant covariance. This is true since

$$
\begin{align*}
& \operatorname{Cov}\left[\mathbf{n}^{1 / 2}\left(\hat{\mu}_{\mathrm{Y}}-\mu_{\mathrm{Y}}\right), \mathrm{n}^{1 / 2}(\hat{\varepsilon}-\varepsilon)\right] \\
&=(\mathrm{K}+1) \partial \mathrm{g} /\left.\partial \hat{\pi}_{1}\right|_{(\pi 1, \pi 2)} \operatorname{Var}\left[\mathrm{n}\left(\hat{\pi}_{1}-\pi_{1}\right)\right] \\
&+(\mathrm{K}+1) \partial \mathrm{g} / \partial \hat{\pi}_{l_{(\pi 1, \pi 2)}} \operatorname{Cov}\left\{\mathrm{n}^{1 / 2}\left(\hat{\pi}_{1}-\pi_{1}\right),\right. \\
&\left.\mathrm{n}^{1 / 2}\left(\hat{\pi}_{2}-\pi_{2}\right)\right\} \tag{5.9}
\end{align*}
$$

Upon simplification, Eq. (5.9) becomes B_{12} as given above.

6. EXAMPLES

The procedures discussed in this paper are applied to a set of hypothetical data as well as to the empirical data of Sri Lanka (Nour, 1983, Table 2, p.320). The hypothetical populations are considered for studying properties of the five existing probability models and the proposed procedure whereas the empirical data are used for illustrating the steps involving in the estimation process.

Let $\mathrm{N}_{\mathrm{i}}, \mathrm{M}_{\mathrm{i}}$ and L_{i} denote the population values of $\mathrm{n}_{\mathrm{i}}, \mathrm{m}_{\mathrm{i}}$ and l_{i}, respectively. Suppose that these population values are given, it is possible to obtain the marginal distributions of $\mathrm{P}(\mathrm{Y}=\mathrm{i})$
according to the five existing models as well as the means, standard deviations, and relevant confidence intervals, for Y and ε under the proposed procedure. In Table 1, five hypothetical populations under consideration are characterized by the values of the preference implementation index $\left(\varepsilon=.00, .25, .50, .75\right.$ and 1.00) and μ_{Y} is set at 1.85 in all configurations.

Insert Table 1 about here

In all cases, the procedures of Nour(1983) and the proposed method successfully reproduce the assumed values of μ_{Y} and ε. Except when $\varepsilon=0$, values of μ_{Y} are under-reported under the first three probability models and over-reported by Model 4 (Rodriguez \& Trussell). The confidence intervals for μ_{Y} in the proposed method contain the true value of μ_{Y} as well as those values obtained under Model 4 (Rodriguez \& Trussell). As another observation, $\operatorname{Cov}\left(\mu_{Y}\right.$, ε)increase with the magnitude of ε.

For the Sri Lanka data set, first of all, an estimate of K has to be selected because values of n_{i}, l_{1} and m_{i} are quite small for large parity levels. Since $p(X=k)=.0137, .0326$ and .0690 for $k=10,9$ and 8 , respectively, the estimate of K can be set at $\mathrm{k}=10$ for $\alpha=.01$ or $\mathrm{k}=8$ for $\alpha=.05$. To illustrate how different values of k can influence the estimates of μ_{Y} and ε, two values of k (14 and 8) have been chosen. For k $=14$, estimates of $\mathrm{P}(\mathrm{Y}=\mathrm{i}), \mu_{\mathrm{Y}}, \sigma_{\mathrm{Y}}, \varepsilon, \sigma_{\varepsilon}$ and the relevant confidence intervals are reported in Table 2.

Insert Table 2 about here

Comparing to the more recent methods, the first three estimation methods (Udry et al., Pullum and Lightbourne) yield smaller values of $\mathrm{p}(\mathrm{Y}=\mathrm{i})$ for $\mathrm{i} \geq 3$ and larger values of $\mathrm{p}(\mathrm{Y}=\mathrm{i})$ for smaller parity levels. The estimates of $\mathrm{P}(\mathrm{Y}=\mathrm{i})$ are virtually equal to zero for $\mathrm{i}>10$ in all cases and for $\mathrm{i}>6$ under the first three estimation models. The estimates derived by Model 4 (Rodriguez \& Trussell) and Model 5 (Nour) are quite similar.

In most cases, they are identical up to two decimal points.

Estimates for the mean and standard deviation of Y are also reported in Table 2. Under the proposed procedure, it is possible to compute the standard deviation for $\hat{\varepsilon}$ (by (5.4)) as well as the confidence intervals for μ_{Y} and ε. As expected, values of $\hat{\mu}_{Y}$ under the first three estimation methods (Udry et al., Pullum and Lightbourne) are biased downwards. Comparing to Nour's (1983) results, the estimates of μ_{Y} and ε under the proposed procedure are larger and the standard deviation for Y is substantially smaller.

In all estimation methods, $\mathrm{p}(\mathrm{Y}=\mathrm{i}) \approx 0$ for $\mathrm{i}>$ 8. Hence, values of $\mathrm{p}(\mathrm{Y}=\mathrm{i})$ are recomputed in Table 3 by setting $k=8+$. This change of parity range does not affect values of $\mathrm{p}(\mathrm{Y}=\mathrm{i})$ and μ_{Y} under the first three estimation models (Udry et al., Pullum and Lightbourne) at all. For other models, there are small changes in all values across parity levels. For $\mathrm{i}>5, \mathrm{p}(\mathrm{Y}=\mathrm{i})$ increases in Model 4 (Rodriguez \& Trussell) and Model 5 (Nour). Values of $\hat{\mu}_{Y}$ and $\hat{\varepsilon}$ under the proposed model are smaller than those under Model 4 (Rodriguez \& Trussell) and Model 5 (Nour). In both Tables 2 and 3, the confidence intervals for μ_{Y} and ε obtained in the proposed model do not contain the relevant estimates derived under the existing estimation models.

Insert Table 3 about here

7. CONCLUSIONS

It has been shown in Theorem 4 that the estimates of μ_{Y} and ε under the proposed procedure are consistent. By means of hypothetical data, both Nour's (1983) and our methods can reproduce the assumed values of μ_{Y} and ε in all configurations under consideration. Whereas sample properties of Nour's (1983) estimates have not been investigated, limiting distributions of our estimates are derived. Since the size of most national surveys is substantially large, the marginal and joint asymptotic distributions of the estimates of μ_{Y} and ε are relevant and practical. These distributions facilitate statistical inferences involving desired family

REFERENCES

Lightbourne, R. (1977). Family size desires and the birth rates they imply. Ph.D. dissertation. University of California at Berkeley.
Nour, E. S. (1983) On the distribution of desired family size for a synthetic cohort. Population Studies, 37:315-322.
Pullum, T. (1979). Adjusting stated fertility preferences for the effect of actual family size with applications to World Fertility Survey data. Presented at the annual meeting of the Population Association of America.
Rodriguez, G. and Trussell, T.J. (1981) A note on synthetic cohort estimates of average desired family size. Population Studies, 35:321-328.
Serfling, R.J. (1980) Approximation Theorems of Mathematical Statistics, John Wiley \& Sons. Udry, J. R., Bauman, K. and Chase, C. (1973) Population growth in perfect contraceptive populations. Population Studies, 27:365-372.

APPENDIX I: UPPER BOUNDS OF ε

In the proposed procedure, the expression of ε in (4.1) can be ewritten as,

$$
\varepsilon=\frac{\Sigma^{K}{ }_{i=0}\left(l_{i}-m_{i}\right)-(1 /(k+1)) \Sigma_{i=0}^{K} n_{i}}{\Sigma_{i=0}^{K}\left(n_{i}-m_{i}\right)-(1 /(k+1)) \Sigma_{i=0}^{K} n_{i}} .
$$

The upper bound of ε is ≤ 1 since $\Sigma_{i=0}^{\mathrm{K}}\left(\mathrm{l}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}}\right) \leq$ $\Sigma^{\mathrm{K}} \mathrm{i}_{0}\left(\mathrm{n}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}}\right)$

Figure 1. Functional Relationships Between X and Y
Panel a. Grouping of Women in the ith Parity Level (X=i) under Model 5 (Nour)

Panel b. Grouping of Women in the Fertile Population under the Proposed Model

Table 1. Predetermined and Derived Parameters of Five Synthetic Fertility Populations (500 Women)

Assu	umed	Pa	ramet				of $\mathrm{P}(\mathrm{Y}$	$\overline{=i)}$	s dete	ined
ε		Y=i)					Pul-	Light urne	Rodr guez	i- Nour
00	0	. 10	100	90	100.0	. 10	. 10	. 10	. 10	. 10
	1	. 20	100	70	90.0	. 27	. 20	. 20	. 20	. 20
	2	. 50	100	20	70.0	. 50	. 50	. 50	. 50	. 50
	3	. 15	100	;	20.0	. 12	. 15	. 15	. 15	. 15
		. 05	100	. 0	5.0	. 01	. 05	. 05	. 05	. 05
Existing procedures:					$\underset{\substack{\mu_{Y} \\ \sigma_{Y}^{2}}}{ }$	1.66	$1.85 \quad 1.85$		1.85	1.85
					. 70	. 93	. 93	. 93	. 93	

Proposed procedure:
$\mu_{Y}=1.85, \sigma_{Y}=0.012, \mathrm{CI}_{.95}$ for $\mu_{Y}=(1.638,2.061)$
$\varepsilon=0.00, \sigma_{\varepsilon}=0.002, \mathrm{CI}_{.95}$ for $\varepsilon=(-0.081,0.081)$
$\mathrm{B}_{12}=0.002, \operatorname{Cov}\left(\mu_{\mathrm{Y}}, \varepsilon\right)=0.0001$

| | Assumed Parameters | Values of $\mathrm{P}(\mathrm{Y}=\mathrm{i})$ as
 determined by the
 probability models of | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ε | i | $\mathrm{P}(\mathrm{Y}=\mathrm{i})$ | N_{i} | M_{i} | L_{i} | Udry Pul- Light- Rodri- Nour
 lum boume guez | |

Proposed procedure:
$\mu_{Y}=1.85, \sigma_{Y}=0.108, \mathrm{CI}_{95}$ for $\mu_{Y}=(1.645,2.070)$
$\varepsilon=0.25, \sigma_{\varepsilon}=0.062, \mathrm{Cl}_{95}$ for $\varepsilon=(0.129,0.371)$
$\mathrm{B}_{12}=0.684, \operatorname{Cov}\left(\mu_{Y}, \varepsilon\right)=0.031$

Proposed procedure:

$$
\begin{aligned}
& \mu_{Y}=1.85, \sigma_{Y}=0.108, \mathrm{CI}_{.95} \text { for } \mu_{Y}=(1.642,2.066) \\
& \varepsilon=0.50, \sigma_{\varepsilon}=0.083, \mathrm{CI}_{.95} \text { for } \varepsilon=(0.338,0.663) \\
& \mathrm{B}_{12}=1.363, \operatorname{Cov}\left(\mu_{\mathrm{Y}}, \varepsilon\right)=0.061
\end{aligned}
$$

Proposed procedure:
$\mu_{Y}=1.85, \sigma_{Y}=0.108, \mathrm{CI}_{.95}$ for $\mu_{Y}=(1.645,2.070)$
$\varepsilon=0.75, \sigma_{\varepsilon}=0.105, \mathrm{Cl}_{95}$ for $\varepsilon=(0.550,0.963)$
$\mathrm{B}_{12}=2.065, \operatorname{Cov}\left(\mu_{Y}, \varepsilon\right)=0.092$
Assumed Parameters \quad Values of $\mathrm{P}(\overline{\mathrm{Y}}=\mathrm{i})$ as determined by the probability models of
$\varepsilon \quad$ i $P(Y=i) \quad N_{i} \quad M_{i} \quad L_{i}$ Udry Pul- Light- Rodri- Nour lum bourne guez

1.0	0	.10	140	90	140	.36	.36	.36	.10	.10
	1	.20	150	70	150	.34	.34	.18	.20	.20
	2	.50	170	20	170	.26	.26	.35	.50	.50
	3	.15	35	5	35	.03	.03	.10	.15	.15
	4	.05	5	0	5	.00	.00	.02	.05	.05

Existing procedures: p_{Y}	0.98	0.98	1.52	1.85	1.85
σ_{Y}^{2}	.79	.79	1.77	.93	.93

Proposed procedure:
$\mu_{Y}=1.85, \sigma_{Y}=0.108, \mathrm{CI}_{.95}$ for $\mu_{Y}=(1.638,2.062)$
$\varepsilon=1.00, \sigma_{\varepsilon}=0.126, \mathrm{CI}_{.95}$ for $\varepsilon=(0.753,1.247)$
$B_{12}=2.716, \operatorname{Cov}\left(\mu_{Y}, \varepsilon\right)=0.121$

Notes

1. The results for $\varepsilon=0$ and $\varepsilon=1$ are similar to those reported in Rodriguez \& Trussell (1981) whereas the results for other cases are the same as those reported in Nour (1983).
2. Under the five existing models, the mean and standard deviation of Y are computed as $\mu_{Y}=\Sigma i P(Y=i)$ and $\sigma_{Y}^{2}=\sum i^{2} P(Y=i)-\left(\mu_{Y}\right)^{2}$
3. Under the proposed procedure, the estimates are computed according to results of Theorems 2, 3 and 4.

Table 2. Marginal Distribution of Desired Family Size Based on Data for Sri Lanka (15 parity levels)

Proposed procedure:

$$
\begin{aligned}
& \mu_{Y}=5.793, \sigma_{Y}=0.100, \mathrm{CI}_{.95} \text { for } \mu_{Y}=(5.597,5.989) \\
& \varepsilon=0.436, \sigma_{\varepsilon}=0.026, \mathrm{CI}_{.95} \text { for } \varepsilon=(0.385,0.488) \\
& \mathrm{B}_{12}=2.835, \operatorname{Cov}\left(\mu_{Y}, \varepsilon\right)=0.039
\end{aligned}
$$

Source:

Data for $\mathbf{n}_{\mathrm{i}}, \mathbf{1}_{\mathrm{i}}, \mathrm{m}_{\mathrm{i}}$ are reported in Table 2, Nour (1983)

Table 3. Marginal Distribution of Desired Family Size

 Based on Data for Sri Lanka (9 parity levels)$$
\text { Estimates of } \mathrm{P}(\mathrm{Y}=\mathrm{i})
$$

n_{i}
Par- $n_{i} l_{i}$ mi _ Udry Pul- Light- Rodri- Nour ity $\quad n \quad$ lum bourne quez

0	536	536	505	.101	.0578	.0578	.0578	.0195	.0119
1	894	865	724	.168	.1792	.1536	.1324	.0737	.0598
2	883	749	413	.166	.4061	.3538	.3421	.1610	.1579
3	811	594	220	.152	.2601	.2738	.1964	.2162	.1968
4	648	360	87	.122	.0838	.1221	.1370	.1839	.1632
5	535	244	50	.100	.0118	.0309	.0408	.1406	.1343
6	359	133	20	.067	.0011	.0068	.0378	.0975	.0929
7	290	101	14	.054	.0001	.0010	.0074	.0791	.0880
$8+$	196	48	20	.037	.0000	.0001	.0537	.0155	.0381

Existing procedures: $\mu_{\mathrm{Y}} \quad 2.173 \quad 2.375 \quad 2.866$ $\begin{array}{llllll}\sigma_{Y} & 1.050 & 1.069 & 2.290 & 1.863 & 2.079\end{array}$

Proposed procedure:

$$
\begin{aligned}
& \mu_{Y}=3.476, \sigma_{Y}=0.060, C I_{.95} \text { for } \mu_{Y}=(3.358,3.594) \\
& \varepsilon=0.368, \sigma_{\varepsilon}=0.021, C I_{.95} \text { for } \varepsilon=(0.326,0.410) \\
& B_{12}=1.564, \operatorname{Cov}\left(\mu_{Y}, \varepsilon\right)=0.021
\end{aligned}
$$

