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The four papers presented in this session 
"Estimation problems in complex surveys" 
cover three important  topics in sample sur- 
vey theory and methods. The papers by 
Binder (and Kovacevic) and Shao deal with 
variance estimation for complex statistics, 
while the paper by Singh, Stukel and Pfef- 
fermann studies the problem of measuring 
uncertainty associated with model-based 

unpublished manuscript) for the low income 
measure, the justification for ignoring the 
remainder terms involves non-trivial tech- 
nical arguments, however. 

In their illustration under a stratified 
multistage design, Binder and Kovacevic 
compared the standard errors obtained us- 
ing the proposed linearization method and 
the '~delete-one cluster" jackknife method. 

small area estimators. Godambe and Thomp- The 
son in their paper consider optimal estima- 
tion in a causal framework. 

Binder and Kovacevic consider several 
descriptive measures of income inequality 
including ordinates of the Lorenz curve, in- 
come shares, the family of Gini coe~cients, 
and a low" income measure. A design-based 
estimator, 0, is obtained as the solution of 
an estimating equation of the form 

f a(y, g) d (y) - 0, 

where/7(y) is design-unbiased for the popu- 

lation distribution function F(y) and z)(y, 0) 
is an estimator of u(y,O) that defines the 
population parameter  0 as the solution of 
f u(y, O) dF(y) - O. This class covers mea- 
sures of income inequa.lity as well as cus- 
tomary estimators like ratios, linear regres- 
sion and logistic regression coefficients which 
correspond to the special case ~t(y,O) 
= u(y,O). Binder's (1983) well-known pa- 
per considered the latter special case and 
obtained Taylor linearization variance esti- 
mators. The present paper extends Binder's 
paper to the general case of z)(y, 0), using 
clever techniques but ignoring the remain- 
der terms. As shown in Shao and Rao (1993; 

jackknife variance estimator is 
known to be design-consistent for smooth 
estimators like quintile shares, Gini coef- 
ficients and Lorenz curve ordinates (Shao, 
1992). In a limited simulation study (Rao, 
Wu and Yu, 1992), the delete-cluster jack- 
knife also performed quite well for the me- 
dian, a nonsmooth estimator, although the 
':delete-one element" jackknife variance es- 
t imator is known to be inconsistent for non- 
smooth estimators in the case of simple ran- 
dom sampling. It is somewhat surprising 
that Binder and Kovacevic obtained much 
smaller Taylor s tandard errors compared to 
jackknife s tandard errors for a smooth es- 
t imator like quantile share (e.g., 0.119 vs 
0.0337 for Q(0.6, 0.S)). They also obtained 
much smaller Taylor s tandard errors for non- 
smooth estimators (median and low income 
measure). It would be useful to conduct a 
simulation study to throw light on the two 
methods in the context of stratified multi- 
stage designs, particularly when the contri- 
bution from several of the sample clusters 
is zero. 

Shao gives a.n excellent account of the 
asymptotic properties of balanced repeated 
replication (BRR) variance estimators un- 
der stratified multistage sampling. An ad- 
vantage of BRR is that the variance estima- 
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tors are design-consistent for both smooth 
and nonsmooth statistics. However, the con- 
struction of balanced replicates for arbitrary 
nh is not always easy or the number of repli- 
cates to achieve balance can be large or such 
replicates may not exist as in the case of 
n h  = 6, where n h  is the number of sample 
clusters in s t ra tum h. In view of these dif- 
ficulties, one often uses grouped BRR with 
two random groups of clusters in each stra- 
turn h. This method requires only a 
Hadamard matrix as in the case of n h = 2 ,  

but the resulting variance estimator is very 
unstable, as shown by Krewski (1978). The 
proposed repeatedly grouped B RR 
(RGBRR) method looks promising since it 
is simple to implement and leads to a sta- 
ble variance estimator. When the number 
of strata, L, is small and n h  is large, the 
customary grouped BRR variance estima- 
tor is in fact inconsistent, as shown by Rao 
and Shao (1993; unpublished manuscript). 
On the other hand, R G B R R  variance esti- 
mator performs well even when the number 
of repetitions, G, is as small as 10 or 15. 
By choosing the groups in a balanced man- 
ner, Sitter (1993) overcomes the difficulties 
associated with the BRR, but it is less flex- 
ible compared to R G B R R  in terms of the 
number of replicates although his variance 
estimator is slightly more efficient. 

The proposed B RR variance estimator 
for a total under imputat ion for missing data 
is also useful. It complements the jackknife 
variance estimator of Rao and Shao (1992), 
and both are design-consistent under uni- 
form response within imputat ion classes that 
may cut across sample clusters. 

Model-based estimators for small areas 
have received considerable attention in re- 
cent years. Such estimators "borrow 
strength" from related areas to increase the 
efficiency of estimators. Prasad and Rao 

to obtain an empirical best linear unbiased 
prediction (EBLUP) estimator and a second- 
order approximation (PR) to the estimator 
of its MSE, under some random effect mod- 
els. Kass and Steffey (1989), on the other 
hand, employed a Bayesian framework to 
obtain a first-order approximation (KS-I) 
to the posterior variance, while Hamilton 
(1986) used a Monte Carlo integration 
method (H) of approximating the posterior 
variance. Singh, Stukel and Pfefferman have 
investigated, under a simplified model, some 
frequentist properties of KS-I and H ap- 
proximation. They also suggest modifica- 
tion to improve their accuracy; in particu- 
lar, a simplified version of the second-order 
approximation (KS-II) of Kass and Steffey. 
It would be useful to provide similar im- 
proved approximations for more complex 
random effect models and to study their fre- 
quentist properties. We agree with the au- 
thors that the proposed approximations to 
the posterior variance have the advantage of 
dual interpretation in both frequentist and 
Bayesian contexts, although PR-approxima- 
tion to estimator of MSE performed bet- 
ter with respect to frequentist properties, 
as one would expect. 

Godambe and Thompson define a. finite 
population parameter  A - E ( y i  - y I) /5  ,r 
as a measure of causal effect (difference be- 
tween mean responses under two treatments).  
This parameter  is hypothetical unlike the 
customary finite population parameters  since 
each individual can receive only one of the 
two treatments.  Using an estimating func- 
tions approach, Godambe and Thompson 
obtain an "approximately optimal" estima- 
tor of A, under a semi-parameter superpop- 
ulation model and the assumption P{zi = 

l l ( y i , y } ) }  - c~i, where z i  - 1 if the indi- 
vidual i receives t reatment  1 and z i  - 0 if 
t reatment  2 is assigned. The proposed esti- 
mator  ZX depends on Ct' i which is estimated 

(1990) and others used a frequentist approach using a logistic regression model. 
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It may be more natural  to assume the 
generation of zi  as part  of the design rather 
than as part  of the superpopulat ion model, 
as in the case of nonresponse situations. If 

A 

so, the proposed est imator A may not be 
design-consistent. It would be useful to de- 
velop "model-assisted" estimators that  are 
both design-consistent and (approximately) 
model-unbiased, and compare their perfor- 
mances relative to /~.  Also, it would be use- 
ful to provide suitable variance estimators 
for ~ .  

Finally, I would like to congratulate all 
the authors for their excellent papers. 
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