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I.  INTRODUCTION 
Statistical bureaus are oRen required to provide reliable 

estimators for small area means. Tim problem with the 
production of such estimators is that the sample sizes within 
those areas are usually too small to allow the use of direct 
survey estimators. Hence, new estimators have been 
proposed in recent years which combine auxiliary information 
representing individual or small area characteristics with the 
data observed for the response variable in all the small areas. 
Unlike direct survey estimators, these small area estimators 
"borrow strength" from other small areas. See Ghosh and 
Rao (1994) for a recent review and discussion of the major 
developments in small area estimation over the last two 
decades. 

A general class of models giving rise to this kind of 
estimators arc the mixed linear models. A special, yet quite 
general member of this class, often analyzed in the literature 
and underlying our study is the nested error regression model 
defined as 

y# =x~ +~, +e#; / =I, .... k;jffi I .... ,m, (1.1) 

where y.  is the value of the response variable for the j - t h  ,j 
unit sampled within the i- th small area, x~ is the 
corresponding vector of auxiliary variables values (including 
a possible intercept term), tl is a vector of feted regression 
coefficients and v, and e.. arc independent white noise 
random variables such that ~ e  v, have mean 0 and common 
variance kt, and the e# have mean 0 and common variance 
k 2. Here the ~, represent the joint effects of small area 
characteristics not included in the measurements x#. The 
true small area means are defnjed under the model as 
- -  - - !  - -  I - -  

~=X~ #+,,+e,  where X~ and ¢,~ are the 
population means of ~ e  x .  and e.. for small area i .  

. q , J  . 

Assummg, however, that the small area population sizes are 
sufficiently large, then e,~) - 0 and so we can take the true 
small area means to be 

- '  (1.2) 

Further, assuming that the sampling fractions within the small 
areas are sufficiently small, then any reasonable.predictor for 
0, should also be an appropriate predictor for ~. ). The 0, 
include fixed and random effects and so both frequentist and 
Bayesian approaches arise naturally for estimating these 
quantities. In fact, if the variance components inherent in the 
models are known, then the frequentist-based best linear 
unbiased predictor (BLUP) of #, and its associated mean 
squared error (MSE) coincide respectively with the Bayesian 
posterior mean and variance of 0,, assuming normality of the 
J,, and e.q and assuming a noninformative prior on/3. 

When the variance components arc unknown, it is 
common practice to substitute suitable consistent estimates for 
them in the expressions for the BLUP or the posterior mean. 
Under the frequentist approach, this gives rise to what is 
known as the "empirical BLUP" (EBLUP), while the use of 
estimated parameters under the Bayesian framework gives rise 
to "parametric empirical Bayes" (PEB) estimators. It is 

interesting to note that under a hierarchical Bayes framework, 
the PEB estimator can also be obtained as an approximation 
to the posterior mean, irrespective of the prior distribution on 
the variance components k I = (k t, Xz), when the number of 
small areas is l a r g e -  for example, see Kass and Steffey 
(1989). 

The use of the EBLUP, or equivalently the PEB 
estimator, raises the question of how to assess the prediction 
errors under the two approaches. The work of Kackar and 
Harville (1984), (henceforth K-H), and prasad and Rao 
(1990), (henceforth P-R), under the frequentist framework, 
and Morris (1983) and Kass and Steffey (1989), (henceforth 
K-S) under the Bayesian framework indicates that a naive 
replacement of the unknown variance components by their 
estimates in the theoretical expressions for the MSE or the 
posterior variance may result in severe underestimation. This 
is ~ u s e  the resultant estimators fail to account for the 
additional uncertainty arising from the estimation of the 
unknown variance components in the expressions for the 
small area predictors. In the studies cited above, the authors 
propose modifications to account for this extra variability. 

In the present paper we study the performance of the 
above modifications and propose some alternative methods, 
aimed to measure the uncertainty in small area estimation. 
Specifically, we address the following issues: 
A. Following the frequentist approach, P-R correct the bias 
in the estimator of the MSE of the EBLUP proposed by K-H, 
so that the neglex.Xed terms are of order o(k -t ). K-S develop 
two analagous approximations to the posterior variance 
associated with the PEB estimator under an asymptotic 
hierarchical Bayesian framework; the fwst, denoted KS-I, has 
neglected terms of order O(k-~), while the second, denoted 
KS-II, has neglected terms of order O(k-Z). We offer an 
alternative to KS-H (denoted KS-IF), which is simpler than 
KS-II and allows for a term by term comparison with P-R, 
unlike KS-II. 
B. The modification proposed by P-R is based on the /~ 
(linearization) method, which requires first order partial 
derivatives of the EBLUP with respect to the variance 
components. These derivativ~ can be cumbersome to derive 
under more general models and hence we explore the use of 
Monte Carlo Integration (MCI) approximations to the P-R 
approximation (which are of the same order as the P-R 
approximations). 
C. Hamilton (1986) proposes an MCI procedure for assessing 
the posterior variance of unobservable components in state- 
space time series models. We borrow his idea and apply it in 
a different context, that is, as an alternative method for 
approximating the posterior variance associated with the PEB 
estimator. We also propose a modified version of Hamilton's 
approximation whose neglected terms are of order o(k-t) ,  
and which can be considered an MCI analogue to KS-II'. 
D. The aforementioned bias modifications arc asymptotically 
correct; that is, they arc based on the number of small areas 
increasing to infinity. We are interested in modifications to 
the approximations to the MSE or posterior variance from 
two separate standpoints" i) We prefer small overestimation 
to any underestimation which may arise in the approximations 
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to the MSE or posterior variance, since conservative 
approximations are always desirable. That is, we prefer a 
small positive bias to a negative one, and ii) We are interested 
in a reduction in the absolute bias of the approximations 
insomuch as it does not cause a corresponding increase in the 
MSE (of the approximations to the MSE or posterior 
variance). We perform a Monte Carlo simulation study 
which explores these two issues u they relate to the various 
approximations discussed in A-C above. 

The Monte Carlo study explores the frequentist 
properties of all of the approximations even though the 
approximations to the posterior variance are motivated by 
Bayesian theory considerations. As illustrated by Hulting and 
Harville (1991), there are some theoretical results suggesting 
that the use of Bayesian predictors and their associated 
posterior variances may be appropriate for use in a frequentist 
context. For example, a 100(1-¢x)% posterior credible 
interval based on a Jeffrey's prior may have a frequentist 
coverageofapproximately 100(1-~x)%. Similarly, K-S argue 
that the variance approximations derived in their study can 
"also be justified as variance estimates in non-Bayesian 
theory". 

The organization of this paper is as follows. In section 
2 we review the frequentist approximations to measures of 
uncertainty as proposed by K-H and P-R, and consider an 
alternative method to the latter, based on MCI methods (see 
B above). In section 3 we discuss Bayesian approximations 
emerging from the work of K-S and Hamilton (1986). These 
approximations have a bias of order O(k -t) and we propose 
bias corrections which reduce the order of the bias to o(k -~) 
(see A and C above). The empirical results obtained from the 
simulation study (see D above) are summarized in section 4. 
In section 5, we close with some concluding remarks. 

2. APPROXIMATIONS UNDER THE FREQUENTIST 
APPROACH: EXISTING AND PROPOSED METHODS 

In the following discussion, we u s u m e  the underlying 
model to be defined by (1.1), and the parameter of interest, 
0~, to be defined by (1.2). To simplify the discussion, we 
assume that k 2 = Var(e.e). is known, but in the empirical study 
we consider the more general case where k 2 is unknown as 
well. Let X' = (h t, X2) and y = 0'~,.). 
2.1 Existing Methods 

Case 1: IJ and )t are Known 
The BLUP of 0~ is given by 

- '  - (2.1) ~,~y, x , a )  = xi~ a + % 6,  - x/,, a ) 

Vi' X'~l = ~ ' "  (Y#' xq) /m, are the sample means of 
the Y,jij and x¢ over small, area. i and Yi = )h (hi + k2 mft) -t is 
the "shrinkage factor . Notice that E[O~ (y, X,/3 ) - 0.,] = 0. 
The corresponding MSE is given by 

,, ,, , , ) -o,] '  , , , , ( 2 . 2 )  

= x, x~ m; ~ (x, + ~ m;~) -~ . s,,(x) • 
Case 2: X Known and # Unknown 

The BLUP of ~ has the same form as in (2.1), except 
that 0is now replaced by the weighted (Aitken) least squares 
estimator 

= (X v V "~ X) X '  V-ty (2.3) 

where X and V are defined in the usual manner. The BLUP 
of 0~ and its corresponding MSE are therefore given by: 

a n d  

- - !  (2.4) 

MSE [~,(y, k)] 

+ )' (X'  V-I  X)-t  (X,~ - ~, ,~,~)  =g.(X) (X,~-%x,~ 

m eli (X) +g2i (X) (2.5) 

where gu (k) is defined by (2.2). 
Case 3: X and ~ Both Unknown 

This case ar is~ most often in practice. As discussed in 
the introduction, it is common to replace the unknown 
elements of k by consistent sample estimates ~ in the 
expression ~i (Y, X). The resulting predictor, ~i (Y, ~), is 
referred to in the literature as the "empirical BLUP" 
(EBLUP). It is interest~g to note that the EBLUP remains 
unbiased provided that X is an even, translation invariant 
function of y ,  and the distributions of v~ and % are both 
symmetric. 

Now an exact expression for the MSE of the EBLUP is 
intractable for most models. A first attempt at an estimate 
may lead one to simply subsitute ~. for k into (2.5), but this 
estimator seriously underestimates the MSE of the EBLUP; 
the underestimation arises due to the fact that this estimator, 
commonly known as the "Naive Estimator", ignores the 
uncertainty in estimating k. 

K-H show that when ~ is translation invariant and the 
errors v~ and e# are normal, 

MSE [~, (y, ~)1 = MSE [~, (y, X) ] (2.6) 
+ E[~, 0,, £) - ~,0,, X) ] 2. 

Using the 6 -method, K-H approximate the second term on the 
fight hand side of (2.6) correct to order of o(k "l) as 
E [d (k) ~ (J[ - X) 12 where d(k) = i9 ~ (y, X) / 0 k. They further 
simplify the approximation astr {A (k) E [ (J[ - ),) ( ~ - ~)/] } 
where A (),) is the covariance matrix of d (k),  using heuristic 
arguments for approximate independenccof X and d(k).  For 
the special case where only k t is unknown, the K-H 
approximation to the MSE of the EBLUP simplifies to 

MSExn [~ , (Y ,  ~t, ~)1 ffi gu (k) (2.7) 
+ g n ( X )  + E [ d 2  ( h i ) ]  Var(~, l) +o(k-l). 

P-R simplify E[d~(k~)l by noting (implicitly) that in 
calculating d(X t), 8 can be regarded as fixed for the order 
of approximation under consideration. Thus, the P-R 
approximation to the last term of (2.7) is given by 

E(a[~,6,-x-~.~)]/a X, I x,.~,}~Var(~,t) 
-2 

=ms X~(X t * )~m,') -3 Var(~ t) 
so that 

MSE m [~,(Y, ~,, k2)] 
= St,  (X) + g2, (X) + g3,(X) + o(k -t) 

(2.8) 

where g,,(X) =m;2k,~(ht +h.zm;') -3 Vor(~,t) +o(k-'). An 
expression for Var(kt) can easily be derived assuming 
normality of the random errors, when ~a is the "Method of 
Fitting Constants" or MFC estimator of )h ; this expression is 
again a function of k I . 

Now the approximation (2.8) is still a function of the 
unknown variance component X l and thus can be estimated 
by substituting ~,  for k I . However the resulting estimator, 
gt~(~, k2) + g2~(~'t , k2) + g3~(~'t , k2) has a bias of order 
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O(k ' t )  since E[gt,(~,t, k~) - gt,(X t , k~)] = O(k't). In order 
to reduce the order of the bias, P-R proceed as follows: they 
consider the Taylor expansion of gti(~a, k2) about kt: 

gti(~l , )~z) = gli(k) + )k~ mi-2 (kt + )~2 m~l) -2 (~t - kt)(2.9) 
- x]  m :  ~ (x, + x ~ , , : ' ) - '  (~, - x, )~ + o, ( t - ' ) .  

Applyin~g the e ~ t i o n  operator to both sides and assuming 
that E(X~-  X ~ ) = o ( t  -t) ~nd that E ( o . ( ~ ' ~ ) ) = o ( k " )  (both 
conditions hold when k~ is estimated 6y the MFC), then 

E[gt,(~, ~ ) ]  •gt,(X) -g3,(~.)+o(k"). (2.10) 

The P-R bigs-corrected estimator of MSEva [~, (y, ~h, )%) ] is 
therefore 

IVI~E m [~),(y, ~,,, h~)] (2.11) 

noting that 
E{ M-'SE~[~),(y, ~,1, )h)] 7 MSEra[I~,(Y, ~,  ~ ) ] }  = o(k-º) 
since g2~(Xt, k~) and g~0h, )h) have b~ses oforder o(k-~). 
See P-R for dctaib. 
2.2 Proposed Alternative to the P-R Estimator Based on 
MCI 

We conclude this section by outlining an MCI procedure 
for approximating M.~E,, [I}, (y, ~ ,  k~)]. Tim use of this 
procedure is general and avoids the computation of the 
derivatives d(),) which can be cumbersome under more 
complicated models. 

To motivate the idea, note that the second term on the 
fight hand side of (2.6) can be written in general as 

EO,(y , ~, , x~) - ~, ~ ,  x)F 

= E {(~'~-~,~x~o~) / L~ (~,~)-~] +(~,~-7~) (Y~-X~,, ~)}2 
- E [(?, V,) G, - '  12 -') - - - x ~  B )  + o ( k  (2.12) 

= E(~/, ~,)2 EG, - '  -b - - x~/~)2 + o(k 

where ~(~t) is defined as in (2.3) but with ~ substituted for 
X t . The first equality follows directly from (2.4) whereas the 
second equality follows from the results of P-R, where they 
note implicitly that ~ (and hence ~ (~t)) can be regarded as 
fixed for the order of approximation under consideration. 
The third equality assumes an approximate independence 
between .~ and y~, which can be justified heuristically by 
noting that 7i = ~t (~t + X.~ m/-~) -~ is based on the data in all 
the small areas whereas yi depends only on the data from a 
single small area. Also see K-H and P-R. Now the term 
E(-~-%)2 in (2.12) is difficult to evaluate since the 
expectation is taken with respect to y ,  and since "Yi is 
nonlinear in y.  Note that we may alternatively consider the 
expectation as taken with respect to ~t since .~i depends on 
y only through ~,~. 

Thus consider a Taylor expansion of~,/= %(~,~, k~) 

about k t • %(~'t, k2) = %(kt, k2) (2.13) 

+ X 2 m,-' (X t + ~ m,-l)  -2 (~1 - X , )  + Op(k "'). 
To obtain a Taylor approximation to the MSE of'~(~, t , h~) 
as an estimator of %(Xt, h~), one can simply rearrange 
(2.13), square both sides, apply the operator Ex, and then 
substitute ~,~ for the unknown X~, obtaining: 

tx, [.),, (~,, X~) -%(k , ,  ~)]2 (2.14) 
= X2 mZ z (~t +)h mZ') -~ tx, (~, - X,)2 + o, (k-') .  

It can be shown that this is mathematically equivalent to 
reversing the roles of k~ and k t , and taking a Taylor 
expansion of % about ~ ,  proceeding as before, except 

applying the operator F~ (defined below) instead. Thus, we 
obtain: 

E% [~, (k,, k~) - 3', (~'t,)h) 12 (2.15) 
= x~ m; ~ ($,, + X~m;') '4 ,~, (x, - ~,, )~ + o, (k - ' ) .  

To define Ex,, it is sufficient as well as convenient to endow 
k t with a working distribution so that it is normal having 
mean ~'l and variance V'ar(~,t), and we can evaluate the 
expectation on the lctt hand side of (2.15) by MCI. That is, 
we can draw a large number of realizations (say L) of 
~ 1 -  N ( ~ ,  I/ar (~,t)) a n d  t h e n  c o m p u t e  
MS f f i  X~., [%(;k,p )~.z) -'Yi(~l, .)~.z)] 2/L. Thus ,  the MCI 
app~ximation to the MSE of % (~t, kz) is computed as 

~, [% (~, x~) - % (x~, x~) 1~ = MS,.  (2.16) 

Multiplying M$~ by E(y~-x-~,,~)2 =(kt +k2m~-' ) yields an 
MCI approxima6on to g31 (~) (see last expression in (2.12)). 
Note that switching the roles of k t and ~'t and proceeding as 
above does not alter the order of the aproximation. 

Finally to estimate the MSE of the EBLUP correct to 
order o(k-º), one needs to adjust for the bias 
E [ g l i ( : ~ l , ) h ) - g t i ( h l , ~ h ) ]  in a similar vein to P-R (see 
equation 2.10). This can again be implemented by MCI, that 
is, by computing 

F.x, [gt,(~kt , kz) -g~,(kº, ~)1 (2.17) 
= xL,[g,,(~,,x~)-g,,(x,,, X~)]/L .M,. 

Thus, an MCI approximation to the P-R estimator of the MSE 
is given by (compare with (2.11)): 

(2.18) 
+ gz,(~h, k2) +M,+  (~,, + kz mC' ) M S  ' 

where (~t + ~ m ; ' ) =  ~ ( ~ -  ~/(,)/~)2 (see last expression in 
(2.12)). Notice that E [MSEHcao - MSEra] - o(k -l) provided 
that E (~,, - k )  - o(k  "l) ; the latter condition is satisfied when 

is estimated by MFC. 
A possible disadvantage to using (2.18) instead of (2.11) 

is that the bias correction M is not necessarily positive, 
unlike g , / (~ ,k2)  used in (2'.11). An alternative MCI 
approximation to M~iErR (having the same order) which 
ensures a positive bias correction is obtained by replacing 
g3, (~,~, k2) in (2.11) by (~,~ + k 2 m~ -~) MS~ i.e. 

M~E,,~,,, [~, 0', ~,, ~ ) l  =g,,(x,, ~ )  
(2.19) 

+g2,(~,t, X2)+ 2 (~,, + X2m,-')MS. 

Note that the last term of (2.19) mimicks the 2 g3~ (~'t, k2) 
term of (2.11). 

3. ASYMI~OTIC BAYESIAN APPROXIMATIONS: 
EXISTING METHODS AND MODIFICATIONS 

In this section we consider the PEB approach for the 
small area estimation problem. As in section 2 we 
concentrate primarily on measures of uncertainty (prediction 
errors). To motivate the reasons behind considering the 
Bayesian approach, we begin by discussing commonalities 
between the two approaches (Bayesian and frequentist). 
Case 1: k and ~ are Known 

In this case the posterior mean of 0~ which is the 
Bayesian predictor under a quadratic loss function coincides 
with the BLUP under frequentist theory, defined by (2.1). 
Similarly the posterior variance coincides with the MSE of 
the BLUP, defined by (2.2). 
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~ ¢  2: ~ g~wm amd ~ U ~  
A ~ u m h ~  a mainfornmtive prior distribution for ~, the 

p o t t i e r  mean and vssian~ of 0~ again coincide with the 
correaponding BLUP and MSE obtained under frequentist 
theory ~ defined by (2.4) and (2.5). 
Case 3: ~, and B Both U~k~ow~ 

As discussed in the introduction, a common approach to 
dealing with this case is to substitute a suitable estimate of X 
in the expression for the posterior mean of #~ for the case 
where k is known, thus yielding a PEB estimator, lf X 
defmes the "resUicted maximum likelihood" (REML) 
estimator of X, then it can be shown that for large k 

E(#~ J y) = ~i(y, X) + O(k "~) (3.1) 

regardless of the prior distribution on X. Thus, the 
frequentist and Bayesian approaches give fiae asymptotically 
to the same predictors under a quadratic loss function. Note 
that for the case of B known, the same results apply if g is 
taken to be the usual "maximum likelihood" estimator of k, 
rather than the REML estimator. Thtm it is of interest to 
consider approximations to the corresponding posterior 
variance, V(O, ly). 

From here on in, u in section 2, we consider the case 
where only /~ and k t are unknown; the case where k 2 is 
also unknown is considered in the empirical study. 
Throughout the following discussion, we will assume a 
noninformative prior on /1. 

We began by noting that the posterior variance can be 
decomposed as follows: 

v(O, ly, ~ ffi E~t,[v(O, ly, X)] + v~l,E[O, ly, X] 
ffi Ex, l, [gt, O,) + g2,(k) l  + Vx, l, [~,(y,  ~,)l (3.2) 

where gti (k) and g2,(k) are defined by (2.2) and (2.5) and 
~ (y, X) is defined by (2.4). 
3.1 Existing Methods 
Use of  the ~-method 

First and second order approximations to the posterior 
variance (denoted KS-I and KS-II, respectively) in the context 
of hierarchical Bayes (HB) models have been developed by K- 
S using the/~-method. We briefly describe KS-I: 

K-S show that 

Ex'Iy[gIi(~') + g2i(k)] (3.3) 
- g , , (~ , ,  ~2) + g2, (~t , )k2) + O ( k - t )  

and 
VX, LT[~i('Y' ~')1 -[d" (~t)12 Var(~t) + ° (k - t )  (3.4) 

"g37 (x,, X~) + o(k-')  
where d ' (~ , t ) f (~ , (y ,k ) / / )Xt )  evaluated at k l=~ t and 
Var(~t) is minus the inverse of the second derivative of the 
log likelihood evaluated at h t = kt" Substitution of (3.3) and 
(3.4) into (3.2) yields the K-S first order approximation to the 
posterior variance of Bi" 

~>~,_, (o, l y, x~) (3.5) 
= g,,(~,, x~)+g~,(~,,, x~) ÷g,~ 6,,, x~) +O(k- ' ) .  

In section 3.2, we modify the first order aproximation 
given by (3.5) to make it second order by adding an extra 
term of order O(k -t) to (3.3). The modification (denoted 
KS-II*) is simpler than KS-II, and allows for a term by term 
comparison with the P-R approximation, unlike KS-II. 

Use of MCI 
Hamilton (1986) proposed an MCI approximation to the 

posterior variance of unobservable components of state-space 
time series models. We borrow his idea and apply it to the 
present context. 

Now a general MCI procedure consists of approximating 
the two terms on the right hand side of (3.2) by drawing 
realizations hu, 1 - 1 , . . . ,  L from the posterior distribution 

(kt I,Y). I f  we ~ g,(~ = [g,,(ktt , h2) + g~(k u, h2) ] , 
. =S~(y, ht~, Xa) and e~ = E~.t O~/L,  then, 

Ex, ty[gt,(k) +g2~(k)] -= F.,~.lg,(l)lL (3.6) 

and 
v~j,[},~y,x)] = ~ . ,  (}~,-O,)~/L. 0.7) 

In approximating the posterior variance of unobservablc 
components of state-space time series models, Hamilton 
(1986) approximated the posterior distribution f (k  tlY) as 
multivariate normal with mean and variance given 
respectively by the REML estimator and its corresponding 
inverse information matrix. If we use the same aproximate 
posterior distribution in calculating (3.6) and (3.7), and then 
substitute these equations into (3.2), we obtain a Hamilton 
approximation to the posterior variance in terms of the 
present context. In section 3.2 ahead, we improve this 
approximation by reducing the magnitude of the bias in 
approximating the posterior mean of h 1 . 

An attractive feature of the Hamilton procedure is its 
simplicity; without much difficulty, it can be applied to other 
models and/or to different predictors. 
3.2 Proposed Modif'wattions 
The iS Method 

As mentioned earlier (see equation (3.3)), the bias in 
a p.p r o x i m a t i n g Ex iz[gli(k)+g2i(X)] b y 
gli(~l ' ~2) + g2i (~1' ~2) has orde} O(k't).  In order to 
reduce the order of the bias, we propose the following 
procedure: 

Consider the Taylor expansion of gti(k) about gt" This 
is identical to (2.9) except that the roles of k t and k t have 
been reversed. That is, 

g u (,k) - g u (~'t, ~ )  + ;k~ m, -2 (~'t + ~ m i  -I )-2 (k t _ ~t ) 

- X2 2m/'2 (~t + ~ m i  -t )-3 (X t _ ht )2 + o, (k -t ) (3.8) 

where the term op(k "t) is with respect to the posterior 
distribution f ( k t  [Y)" It is known that, 

E0h lY) = kt + O(k-t) (3.9) 

and 
v(X, ly) = V~tr(Xt) + O(k -2) (3.10) 

where Var(~kt) is defined as before. (c.f. equations (3.1) and 
(3.2) and Remark 1 of K-S.) Therefore, when taking 
expectations on both sides of (3.8) with respect to f (h  t 1~), 
the mean E[(k t -~,)2ly] can be approximated byVar(kt) 
with neglected terms of order o(k -t) (using (3.9) and(3.10)), 
but approximating the mean E[(X l - k t) [ y] by k t gives 
neglected terms of order O(k -t) (using (3.9)). Thus, to 
correct the error in estimating E x i~Lg,(k ) + g2i(k)] by the 
approximation given in (3.3), one'needs to approximate the 
bias E[(X t - k t ) l y ] ,  so that the neglected terms have order 
o(k-t) . 

An appropriate approximation is attainable using the 
approach of Tiemey and Kadane (1986) and Tiemcy, Kass 
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and Kadane (1989). Using this approach, the log likelihood 
is modified by adding the term log(k t + C) where C is a 
large Positive constant. The modified likelihood is then 
maximized, resulting in a modified REML estimator kt" of 
k s . An approximation to the posterior mean E(k t lY), with 
the correct order is calculated as 

_- - - . (3 11) E(ktly) ( a ' / a ) e x p { L  (kt ' )-L(~,t)  } ¢ ~ t ,  " 

say, where ./-'(~'t) and L" (kl") are the log likelihood 
evaluated at kt,  and modified log likelihood evaluated at kt" 
respectively, and a and a" are minus the inverse of the 
second derivatives of L and L" with respect to kt evaluated 
at ~'t and ks" respectively. By (3.8), (3.10) and (3.11), 

E~ I, [g" (k)] (3.12) 
=g,,(x,, x2) +g,, (~,,, x2)-g,, (~,,, x2) +o(k-') 

where g,, (k, , ~ ) - ;k] m, -2 (~k, + ~ m~" )'2 ( ~  , _ ~,, ) . 
By (3.2), (3.3), (3.4) and (3.12), the proposed second order 
approximation to the posterior variance of #i is therefore 

¢,,_,,.(0, ly,X~)--g,,(g,, x~) +g2,(X,, x~) (3.13) 
÷g,~ 6,,, x~) +g,,6,,, x~) -s,,6,,, x~). 

The MCI  Method 
The Hamilton procedure, defined in section 3.1 is 

correct to first order. The key to the effective use of this 
procedure is the correct specification of the posterior 
distribution f (h  t [y). It is well known that under mild 
regularity conditions this posterior distribution is 
asymptotically normal, so that the specification of the 
posterior distribution reduces to the specification of the 
Posterior mean and variance. If we use V (k t lY) -- Var (~'l) 
as an approximation to the posterior variance (see equation 
(3.10)), then the neglected terms have order o(k -l),  as 
desired. However, if we use E(kslY)---~'l as an 
approximation to the posterior mean (see equation (3.9)), then 
the neglected terms ar~ not of the corrreet order; if instead, 
we use E(X l [y) = g t (see equation (3.11)), then the 
neglected terms are of order o(k-~), as desired. Thus, a 
modified (second order) Hamilton Rgocedure consists of 
generating observations kst from N [ X  t, Var(~,~)] andthen 
computing (3.6) and (3.7) 

4. MONTE CARLO STUDY 
4.1 Design of the Monte Carlo Study 

A Monte Carlo study was conducted to enable the 
examination of frequentist properties of the approximations to 
the MSE of the EBLUP and posterior variance, from the 
standpoints discussed in i) and ii) of D in the introduction to 
this paper; thus the percent relative errors with respect to the 
true MSE and the root mean squared errors of these 
approximations were examined. The model used for 
simulation purposes was the one-fold nested error regression 
model with one auxiliary variable: 

y# = -16 + .494x# + j,~ + e# (4.1) 

where j,~ and eu were generated according t o e . . -  N(0, 150) 
and J ' i -  N(0 ,Xt ) ,  and where ~h was allo~ed to vary as 
k I = 30, 75, 150,300, giving rise to variance component 
ratios of k l / k  2 ffi .2, .5, 1 ,2 .  Notethat B I ffi(-16, .494) was 
assumed known; thus the formulae used in the simulation 
study differed from those presented in the main text of this 
paper. We took auxiliary data values (x#) from Battese, 
Harter and Fuller (1988), as well as the values for ~ , given 
above. Initially, there was enough data for k=12 small 

areas, but three of these had m~= 1, so they were pooled, 
resulting in k=10 small areas. (m i varied from 2 to 6 
inclusively). We increased the number of small areas from 
k=lO to k=20,  k=4__O, k=lO0 and k=200 successively by 
duplicating (x.., m i, Xi) as many times as was respectively q 

needed. For each of the 16 combinations (k = 20, 40, 100, 
200 × k t / k  2 = .2, .5, 1, 2), we generated 4,000 independent 
sets of {¢e ; i=1  . . . . .  t ; j = l  . . . . .  m~} a n d { v ~ ; i = l  . . . . .  t} 
according ~o the distributions above, and thus generated 4,000 
sets of {Yi; i = 1, . . . ,  t ; j  = 1 . . . . .  mi} under the model (4.1), 
using the': given x.. values. For each set of {y~/}, 1,000 
realizations of ~l v_ (kt, h2 ) were drawn for the Imrpose of 
Monte Carlo integration, for those methods that required them 
(MCI(I), MCI(II), Hamilton and Modified Hamilton). Note 
here that both k I and ~ were assumed to be unknown, 
unlike the simpler ease presented in the main text where only 
X t was assumed to be unknown. For all nine approximations 
considered (Naive, K-H, P-R, MCI(I), MCI(II), KS-l, KS- 
II*, Hamilton and Modified Hamilton) the unknown variance 
components were estimated by MLE (rather than REML, 
since 0 was assumed to be known). Strictly speaking, for the 
frequentist-based approximations, X should have been 
estimated by MFC, or alternatively, by any estimator ~, for 
which E($, - k) = o(k -t) ; although we assumed this condition 
to hold for MLE, this assumption probably needs further 
investigation. 
4.2 Results of the Monte Carlo Study 

In the discussion that follows, we report only limited 
results from the Monte Carlo study since space is restricted; 
more detailed results can be obtained from the authors. The 
results for k =40 small areas are given; at k = 20 small areas, 
the approximations behave somewhat erratically and at 
k = 100 and k = 200 small areas, all approximations behave 
similarly since all are asymptotically unbiased. In addition, 
we only report the results for the variance component ratios 
~ t / ~  = .2, .5 and 2, and for those small areas having sample 
sizes m~ = 2 and 6, representing the extremes. 

Table 1 ahead gives the percent relative error for the 
nine approximations considered. That is, it gives (as a 
percentage) the difference b e ~ e e n  the Monte Carlo 
expectation of the approximations and the true MSE, divided 
by the true MSE. As expected the Naive estimator was 
always negatively biased, the underestimation becoming less 
severe as k t / k  z increased. There was still underestimation 
in the ease of K-H, but it was not as severe as in the ease of 
the Naive estimator. A marked improvement could be 
noticed by using the P-R approximation. Not only did the 
sign of the bias change from negative to positive, making the 
P-R approximation conservative, but the magnitude of the 
bias decreased as well. The two MCI methods did a 
reasonable job of tracking the true MSE, notably, the second 
method when kt/~ % = .2 and the fwst method for the other 
values of k t / ~ .  KS-I behaved much like K-H, both 
underestimating the true MSE, which is not surprising since 
both are missing a term of order O(k-t) .  For Hamilton's 
method, the underestimation was more severe than for KS-I, 
but still not aD bad as for the Naive estimator; again, this is 
not surprising for the same reason as previously stated. The 
modified Hamilton method and KS-II* fared better than their 
unmodified counterparts in the sense that the sign of the bias 
generally turned from negative to positive, although the 
magnitude of the overestimation could be somewhat greater 
than hoped for in certain eases. For all approximations, the 
picture generally improved when m~, the sample size within 
a small area, increased and/or when kl / ~ increased. 
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Table 2 ahead gives the Root Mean Squared Error 
(RMSE) for the nine approximations considered. Keeping in 
mind that MSE can be decomposed into two terms" a squared 
bias term and a variance term, it is of interest to consider the 
RMSE in the sense that any possible reduction in the 
magnitude of the bias from one approximation to another 
should not cause an increase in the corresponding RMSE. In 
perusing Table 2, first consider successively the Naive, K-H 
and P-R approximations, where each was an improvement 
over the last in the sense that they became successively more 
conservative (see Table 1). Fortunately, for the most part, 
there appeared to be successive drops in the RMSE as well. 
The two proposed MCI methods performed similarly, 
although they suffered from a slight increase in the RMSE 
over the P-R approximation. Finally, whereas the Modified 
Hamilton method and KS-II* turned the underestimation in 
their unmodified counterparts into overestimation (see Table 
1), here they both suffered from a slight inflation in the 
RMSE over their unmodified counterparts. Finally, even 
though it is not surprising, it is worth noting that for all 
approximations, there was a rather dramatic drop in the 
RMSE as mi, the sample size within a small area, increased 
from 2 to 6. 

5. SUMMARY AND REMARKS 
Under the model-based framework of small area 

estimation, both existing and proposed asymptotic Bayesian 
and frequentist methods for measuring uncertainty of 
estimators were considered. Frequentist properties of these 
methods were compared by means of a Monte Carlo study. 
It was found that the Prasad-Rao approximation performed 
best overall in terms of being able to reduce the bias without 
increasing the RMSE. The second MCI version of Prasad- 
Rao performed well for small values of the ratio of the 
variance components, whereas the first MCI version fared 
well for large such values. Thus, the proposed MCI versions 
can be useful in practice if the computation of the required 
derivatives is found to be too cumbersome for the application 
in question. The unmodified Bayesian methods of Kass- 
Steffey and Hamilton tended to be biased downward. 
However, the proposed modifications corrected them in the 
right direction and made then generally conservative; both, 
unfortunately, experienceA an increase in RMSE over their 
unmodified counterparts. However, with the proposed 
modifications, one has the advantage of a dual interpretation 
of these approximations in both frequentist and Bayesian 
contexts. 
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Table 1: Percent Relative Error  of the Approximations to 
the MSE of the EBLUP for k=40  Small Areas 

, 

Approximation : kz /~  = .2 k t / k  2 = .5 X , / k  2 = 2 

mi=2 mi=6 mi=2 mi=6 mi=2 mi=6 
Naive -11.63-14.80 -7.46 -6.75 -2.48 -2.37 

K-H -4.50 -5.17 -3.44 -3.19 -1.01 -1.47 

P-R 2.63 5.40 0.58 0.38 0.46 -0.78 

MCI(1) -5.50 -5.62 0.71 2.10 1.86 0.30 

MCI(II) -0.67 0.04 1.52 3.93 2.37 0.83 

KS-I -4.16 -5.86 -3.28 -3.34 -0.98 -1.49 

KS-II" 3.61 -4.69 2.39 0.41 3.36 2.80 

Hamilton -6.19 -10.20 -6.54 -5.27 -1.97 -1.74 

Modified 7.15 -1.46 2.28 0.69 3.41 2.89 
Hamilton 

Table 2: Root Mean Squared Error of the 
Approximations to the MSE of the EBLUP for k=40 
Small Areas 

i ,  

Approximation 

, i i 

Naive 8.58 4.51 

K-H 8.16 3.19 

P-R 8.11 2.67 

MCI(I) 9.76 4.79 

MCI(II) 8.67 3.93 

KS-I 8.53 3.95 

KS-H" 9.12 4.50 

Hamilton 7.35 3.68 

Modified 7.75 3.21 
Hamilton 

h/N-.2 
mi=2 mi=6 mi= 2 mi=6 mi=2 mi=6 

7.59 2.79 7.18 2.95 

7.13 2.51 7.25 3.02 

6.98 2.41 7.35 3.04 

7.56 2.71 7.55 3.10 

7.45 2.77 7.64 3.14 

7.48 2.72 7.36 3.02 

10.34 4.09 10.03 4.12 

7.81 3.01 7.55 3.05 

9.81 3.84 9.99 4.11 
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