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Abstract We give a brief review of the definitions of certain 
measures of income inequality:, ordinates of the Lorenz curve, 
income shares, the family of Gini coefficients, and a low income 
measure. We summarize some salient aspects of the theory of 
estimation for finite populations. In particular, we discuss the 
problem of estimation of means and totals and extend this theory 
to estimating functions. We then apply this estimating function 
framework to the problem of estimating complex statistics, such as 
measures of income inequality and their mean squared errors, for 
a wide class of survey designs used in practice. 

1. Introduction In general, a population distribution can be 

described by its cumulative distribution function, F(y) = Pr(Y~y}, 
where Y is the random variable corresponding to selecting one 
population unit at random. Throughout this paper, we assume 

that Y is non-negative. If Y represents income then we are 
interested in the properties of an income distribution, such as 
income concentration, income shares for different population 
segments, low income proportions, etc. We may be interested in 

the quantile function ~(p) = F-~(p)= inf{y IF(y)>_p}, as well. 

The Lorenz curve, for example, depicts the cumulative income 
against the population share. The formal definition of the ordinate 

of the Lorenz curve corresponding to the 100p-th  percentile of 
the population is 

1 L(p) = I_-PydF(y), 
Py J o  

where f°'dF(y) = p, and f 'ydFty) = Pr" (1.1) 
¢ o  

The income (quantile) share is defined as the percentage of total 
income shared by the population allocated to a quantile interval 

[ ~ ,  ~p2). It is equal to the difference of Lorenz curve ordinates 

qq', ,P2) = Lq'2) - / ~ 0 -  

The formal definition of the Gini coefficient is 

1 f : [2F(y)  - 1]y dF(y) 

_ 1 fofo Ix - y l dF(x)dF(y). 2~ 

We see from this expression that the Gini coefficient is related to 
the mean absolute difference between two units selected 
independently at random from the population. 

A more general family of Gini coefficients, given in Nygfird and 
Sandstr6m (1981) is 

(1.2) 

For the usual Gini coefficient, J(p) = 2p- 1. 

Another measure of income inequality is the Low Income Measure 
used by some economists. It is defined as the proportion of the 
population units whose income is less than half the median income 
for the population. Formally, this is 

0 = f y d F ( y ) ,  (1.3a) 

where M is the median defined by 

1 (1.3b) f f  aF(r) - ~ .  

For all these measures, we can write the parameter of interest, 0o, 
as the solution to 

f uty,O.)dFty) = O, 

where u(y,O) is the kernel of the estimating equation. This 
estimating equation formulation will be discussed in Section 2. In 
Sections 3, 4, and 5 we give the estimating equations for the above 
measures along with the approximation of their mean squared 
error estimates. In Section 6 we present estimators of these 
measures based on the complex sample design. Section 7 contains 
an illustration based on the Canadian Survey of Consumer Finance 
data. 

2. Use of Estimating Equations for Finite Populations The theory 
for estimating means and totals from finite populations is now well 
established in the statistical literature. A formulation which 
encompasses most estimators used in practice is given in Siirndal, 
Swennson, and Wretman (1992). We extend this slightly by 
incorporating the theory given in Rao (1979). In this section, we 
briefly review this theory and show how it can be applied to more 
complex statistics through the use of estimating equations, as 
described by Binder (1991). 

Let the population total, Y, be defined as 

Y = NfydF(y).  

Note here that F0') is a step function corresponding to the 
distribution function for the finite population. We consider 
estimators of the form: 

/q 

i ~  1=1 
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where w~($) is zero whenever the i - t h  unit is not in the sample. 

If there exist constants, c t ..... cN, such that MSE(~ = E(I~-y)2 

becomes zero when y~ ,, ct, then denoting Yi = Ys/%, Rao (1979) 
has shown that 

g/ 1 MSe(Ir) = - -~ E E Aq(#,-~l)2, 
1,1 

id=l 

(2.1) 

where A e = 2c~c;E ([wi(s) - l][wj(s)- 11}. A non-negative unbiased 

quadratic estimator of, MSE(Y) is necessarily of the form 

1 rose(It) = - ~ E  ]~] A0(s)~,-)~) 2, (2.2) 
tq 

where ~ p(s)7~o(s ) = Aq, 
a :~td 

function for the sample s .  

i<j, and p(s) is the probability 

We now review how this theory can be extended to estimating 
equations, as described by Binder (1991). An estimator for the 
distribution function is given by 

where 

N F(y) = ~ ,  w,(s)l{y,~y), 

J 1 if yi~y, 
l (yi<y) [ 0 if yi>y. 

We note that F(y) is unbiased for F(y), but it is not necessarily a 
true distribution function, unless 

~ w,(s) "- N. 
los 

Suppose parameter  0.  is defined as the solution to 

f u(y, Oo)dF(y) = o .  

We define the estimating equation for 0.  as that value of 0 for 
which 

fars, O>aP<r) = o, (2.3) 

where d(y,0) is an estimate of u(y,O). 

We can rewrite (2.3) as 

o =  fa(y,d)dP(y) 

= ft~(y,O)-u(y, Oo)]dF(y)+fu(y, Oo)dP(y)+ R, 
(2.4) 

where 

s = f[a~y,6)-~Cy, O o)][dPCy)-dF~y)]. 

The decomposition in (2.4) is the basic starting point for all the 
derivations of variance in the remainder of this paper. We will be 

assuming throughout that the remainder term, R, is asymptotically 
negligible. 

Binder (1983) considered the case where fl(y,0)= u(y,O) and 
where, for large samples, 

f[u(y,6) - u(y,O.)]dF(y) = (0 - OJ 

Using these approximations, we have 

aE (u(y,o)) I 

I 00 
Q 

0=0, 

where 

0-0.] 

= f , ' e ) e : o )  

u "(y) = - as  ~0~,°~ [ I-' ,,~y,O.). 
o=e.J 

Once we have obtained the expression for u *(y), the derivation of 

the variance of 6 becomes straight-forward.  Since we have 

approximated f i - 0 .  as an estimator of a population total of 

u *(y)'s, we can use the mean squared error calculations given by 
(2.1) and (2.2) above. 

For example, for population quantiles, we have 

u = l{y~0} - p, 

u" --- --~l.[l(y~0} - p], 
ytv) 

(2.5) 

which is an extension of the Bahadur representation for sample 
quantiles, as described by Francisco and Fuller (1991). Result 
(2.5) will be used for the ordinates of the Lorenz curve and for the 
Low Income Measure, which are discussed in Sections 4 and 5. 

3. Gini Family Coefficient For the Gini family coefficient, given 
by (1.2), we can use 

u(y,Gj) = J[ F(y)]y - Gj y. 

Ignoring the remainder term in (2.4), we have the following 
approximation: 

= f{4PCy)]-4F(y)]}ydF~y)-f~,-G)fydF(y) 

+ f{~F(y)ly-Gjy)dP(r). 

Letting 

551 



and 

f (  J[F(y)] -J[FO')]) y dF(y) 

fP(y)J't~'cY)]y aF(y) = ff~J'tr(y)~y UP(~)~F(y) 

= 

we have that 

~,-o,= fu..)d:<y). 

where 

- ~. 

+ .~'(r)]y - Gj y - ~ {eCyp"tF(r)]r } ] 

(3.1) 

For the case of independent and identically distributed 
observations, this yields the same variance result as described by 
Glasser (1962) and Sendler (1979). To estimate the variance, it 

is necessary to use estimates for I.tr, F(y), and Gj in the 

expression for u*. 

4. Lorenz Curve Ordinate and Quantile Share The ordinate of 
the Lorenz curve was defined in (1.1). In terms of estimating 
equations, the following two equations are required: 

u l ( y ~ ) )  : I {y<l~p}y-L(p)y, 

uz(y) = I {y<{p}-p. 

The second equation defines the 100p-th  percentile of the 
distribution; whereas the first equation defines the ordinate of the 

Lorenz curve in terms of the 100p-th  percentile. Ignoring the 
remainder term in (2.4), we have the following approximation: 

o= fv (y,~/-t,o,)]~,a:(y> 

= (~ 'y  dF(y)- t£ f~)-L(~) l fydFfy)  J~t, 

+ f[l {y</~p}-L(p)ly d#(y) 

The first term of this expression can be further approximated as 

f~l,y dp(y) = (~,- {p{/({,) , 

and from (9~.5) we see that 

e.- ~. -- -f~--~p tl ( y_< ~/-p] a:(y), (4.1) 

so that 

(~,- {p~:{p= - f{,ti (y~{,~-e]d:~). 

Therefore, to estimate the variance of the ordinate of the Lorenz 
curve, the appropriate linearization is given by using 

u'(y) = 1 [(,y_l~t)I {y<{p}+p~p_yl.~)]. 
Pr 

This yields the same result as described by Beach and Davidson 
(1983) for variances and covariances of ordinates of the Lorenz 
curve in the case of independent and identically distributed random 

variables. To estimate the variance it is necessary to use ~p and 

£(p) in the expression for u*0,). 

To estimate the quantile share Q(Pl,P2) we need three equations 

ul(,y,Q(ppp ~) = I { ~p <y<l~p2)y -Q(pt,p2) y, 

u2(y) = I {y<l:,pl)-pp 

u3(,y ) = I (yg{t,2}-P2" 

Using the same arguments as before, we arrive to 

u'(y) = 1  [(y-{p,)t (y< {p2)-(y- {p,)t {y~ {p,) 
lar 

+& ~p~-Pt ~p,- YQ(&,&)] 

5. Low Income Measure The Low Income Measure was defined 
in (1.3). In terms of estimating equations, the following two 
equations are required: 

M 
ul(Y,0) = I {y<-~- }-O, 

u2(y) I (y <M) 1 ---- - m  

2 

The second equation defines the median of the distribution; 
whereas the first equation defines the Low Income Measure in 
terms of the median. Ignoring the remainder term in (2.4), we 
have the following approximation: 

Using result (4.1) to substitute for M-M, and solving for 8-0, 
we obtain 

where 

8-o~ f.,'<y)dP<y>. 

u* = - 2f(M) <-~- }-0. (5.1) 
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The problem with applying this result to estimate the variance of 
the estimated Low Income Measure is that it is necessary to 

estimate f(M) and f(M/2). To accomplish this, we could use 

1 ( 0  = 
h 

for some suitably small h. Alternatively, we could perform the 
following calculations, as suggested by Francisco and Fuller (1991) 
for another problem. For a given value of p, we estimate the 

corresponding percentile, ~. We then construct the Woodruff 
interval for that percentile. This is determined by first solving for 

h t and h 2 in 

fit <y, { -h,> - t,ldP~y) ] 
inf < 

', ,J p+t] 

11 

where zt_.~ is the 100(1-a /2) - th  percentile from the standard 
normal distribution. Then we compute 

( s .2 )  
hi +h2 

This calculation uses the asymptotic equivalence of ~ -  ~ and the 

estimated sum of the u *(y)'s given by (2.5). 

We see that the estimated variance for the Low Income Measure 
may be somewhat complex to compute. The estimating function 
framework has provided us with the appropriate formulae. 

6. Estimation with a Complex Survey Let us assume a stratified 
multistage design with a considerably large number of strata, H, 

with a few primary sampling units (clusters), n h (>_2), sampled 

from each stratum. Let wha be the normalized weight attached to 
the i - th  ultimate unit in the c - th  cluster of the h - th  stratum. The 
appropriate estimator of the population mean and the consistent 
estimator of its mean squared error are 

= E s w ~ . y h a  

nh 
rose( fa ) = ~h n-~ ~ (u *~ - ~)2 (6.1) 

where u*hc E ,  Wha(Yha-~)  and u*h = 1]~]  u h~ * .  We use 

~], = ]~]h ]~]c ~], to denote summation over all ultimate units in 

the sample incorporating all stages of sampling. We assumed that 
PSU's are selected with replacement. 

An estimator of the finite population distribution function is 

F(y)  : ~_~ Wh~il {Yh~i<--Y } 

The consistent estimator of the approximation of the mean squared 
error of the distribution function estimated in y takes the form 

(6.1) where u*hc = ~-,i Wha[l{Yha <-y} -F(Y)] and u* h = ~..~h~]c u .he . 1  

The usual estimate of the finite population quantile is a sample 
quantile 

~, : i n f  {Yha: /~'(Yha) >--P} 
ha'Es 

which is indeed the solution of the estimation equation 

~_,~ wha Il{y~<_~e } - p ]  : 0 

Accordingly, using result (2.5), the mean squared error of the 
quantile has form (6.1) with 

u ~ : , w~[1{y~___ , , }  - p l .  

If the expression (5.2) is used for the estimation of the density 

function f (~) ,  the MSE of the quantile ~e is estimated as 

2 

m s e ( ~ e )  = D'~(~e) (6.2) 
Zt -oo'2 

l (ht+h2 ) = 1 where D(~e) = ~ ~(~V-~L) is the half length of the 

100(1-c~)% confidence interval for the ~p and h~ and h 2 are 
obtained as solutions for 

~L = ~e-h t  = inf  {/~(y~.)>_p-z1_,: 2 Cruse {F(~p) } 
Y~ 

v = ~e + h2 = inf  { P(Yha) >- P + zt-oe2 Crnse { F(~ p) } 
Yha 

The estimator (6.2) was also used by Francisco and Fuller (1991). 
Generally speaking the motivation for (5.2) and consequently for 
(6.2) comes from Woodruff's (1952) confidence interval for 
individual quantiles. Francisco and Fuller (1986) and Rao and Wu 
(1987) used these intervals to derive variance estimators. Though 
the estimator depends on the confidence coefficient, they showed 

that it is asymptotically consistent for any significance level cz. 
Rao and Wu (1987) studied the standard errors of quantiles for 
the cluster samples estimated in this manner. Their Monte Carlo 
results suggest that 95% confidence interval works well as a basis 
for extracting the standard error. Binder (1991) obtained a 
similar form of the variance estimator by using the estimating 
equations approach. 

The estimate of the usual Gini coefficient is the solution of the 
following estimation equation 

~], Wha { [2 F(Yha ) - 1 ]Yha - G  Yha } = 0 

and takes the form 

-~ ~_,~ P(Yha)whaYh~ - 1 
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where /~ = ]~,  wh~yha. 

The estimate of the MSE of the Gini coefficient can be computed 

using expression (6.1) by substituting u ~ ,  originally defined by 
(3.1), with the complex survey form obtained as 

u h~ = -~ ~,i  wha [A(Yha)Yha+B(Yha ) - ( ~ +  1)l  

where 

ACY) = .&(y) - ~ + 1 
2 

and 

B(y) = ~_,, whayhal {yha>_y }. 

The Lorenz curve ordinates could be obtained by solving a system 
of estimating equations 

~_,, w~[ l{y~<_~e}y~-L(p)y~]  = 0 

~, ,  Wha[l{yha<~,} -p]  = 0 

The resulting estimate is 

1 
L(p) = ~ ~_,, w~.yhal{yha<~e} 

To estimate the mean squared error of the Lorenz curve ordinates 

we simply use the values of u ~ defined by (6.3) in (6.1) 

. 1 
u h~ = _~2., Wh.[(yha_~e) l{Yh <~,}+p~ (6.3) 

Similarly, the MSE of the quantile share 

1 
Q-.(P,,P2) : ~ ~_.. whaYh~l {~p,<Yha<~p:} 

is approximated by (6.1) using 

. 1 
u h~ = 72_,iWha[(Yh~--~p) l{Yh~<~e2}--(Yha--~p)l{Yha<--~e,} 

T"~ [ 

+ p2 ~p -p, ~p, - y~.Q.(p,,p2) ] 

The Low Income Measure defined by (1.3) is estimated as 

= F(il)//2) = ~ ,  w~.I{y~.<if4/2} 

The mean squared error of the low income measure can be 
estimated approximately by the expression (6.1), where, (from the 
equation (5.1)) 

+ ~ Wha[l{Yh.<2f'l/2} -0 ] 

7. Illustration The methodology above is illustrated with an 
application to the family income data collected in the Canadian 

Survey of Consumer Finance in 1988 (SCF-88) .  We use the file 
on the Disposable Income of Economic Families obtained for the 
province Ontario. The disposable income is defined as the total 
income reduced by the tax reported in the survey. The SCF uses 
framework of the Canadian Labour Force Survey which is based on 
a stratified, multistage design. The Ontario sample contains 7474 
households, situated in 525 clusters (PSU's),  allocated in 91 strata. 
For more details on the sample design see Methodology of the 
Canadian Labour Force Survey, Catalogue 71 -526 ,  Statistics 
Canada. To each record a survey weight which is an adjusted 
sample weight is attached. We estimated the median M, the Gini 

coefficient G, the Low Income Measure 0, and the quintile shares. 

Their standard errors are obtained using the proposed 
methodology and the jackknife ' de le te -one  cluster' method. 

It is known that the jackknife variance estimator performs poorly 
for quantiles due to its inconsistency (Kovar, Rao and Wu, 1988). 
There are some recent results (Shao and Wu, 1989, Rao and Yue 
1992) suggesting that the 'delete d' jackknifing and 'delete one 
cluster', under certain conditions may have desirable asymptotic 
properties for the variance estimation of non- smoo th  statistics like 
quantiles or low income measure. On the other side for statistics 
like Gini family coefficient, Lorenz curve ordinates and quantile 
shares, the jackknife estimator of the asymptotic variance is 
consistent (Shao 1992). 

Unlike the jackknifing, the estimating equation approach is not 
computationally intensive. It provides formulas for asymptotic 
variance which are easy to programming despite their complicated 
look. 

With a single sample there is no way of serious comparison of the 
applied methods for the variance estimation. Therefore, the 
purpose of the example is to point out the differences in standard 
errors and coefficients of variation obtained by the estimating 
equation approach and a computationally intensive method like the 
jackknifing. Results are summarized in Table below. 

8. Summary The problem of estimating the variance of complex 
statistics such as measures of income inequality, have eluded 
statisticians for years. Replication methods such as the jackknife 
are often suggested for estimation. The advantage of the 
linearization approach is that it can be used under a wide class of 
sampling designs and does not suffer from the need for intensive 
computations, which methods such as the bootstrap entail. 
Through the method of estimating functions and the decomposition 
given in (2.4), we find that some difficult problems can be solved 
more easily. Of course, we have ignored here the conditions under 
which asymptotic normality is achieved. These must be established 
before the results given here should be used. 
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Measures of Income Inequality and Their Standard Errors 

Measure 

Median 

Gini 

Low Income 
Measure 

Quintile 
Shares 
Q(0, 0.2) 
Q(0.2, 0.4) 
Q(0.4, 0.6) 
Q(0.6, 0.8) 
Q(O.8, I.O) 

Estimate 

31705 

0.3482 

19.804 

5.608 
11.858 
17.752 
24.607 
40.174 

Standard Error 

Estimating 
Equation 
Approach 

303.3 

0.005 

0.586 

0.123 
0.126 
0.136 
0.119 
0.393 

Jackknifing 
'Delete one 
Cluster' 

569.8 

0.005 

0.613 

0.167 
0.221 
0.282 
0.337 
0.451 
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