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1. I n t r o d u c t i o n  

Variance estimation is an important part of 
sample survey theory. The balanced repeated 
replication (BRR) method, together with the 
jackknife and the linearization methods, are the 
most popular methods used in sample surveys. 
The purpose of this article is to study asymp- 
totic properties of the BRR method. 

We start with an introduction of the adopted 
sampling design. Nowadays, sample surveys of- 
ten use a stratified multistage sampling (Kish 
and Frankel, 1974; Krewski and Rao, 1981). 
The population under consideration has been 
stratified into L strata with N h  clusters in the 
hth stratum. Within the ith cluster in stratum 
h, there are second, third,..., stage units, and 
N h i  ultimate units. Associated with the j th  ul- 
timate unit in the ith cluster of stratum h is a 
vector of characteristics ghi j ,  j = 1 , . . . ,  Nhi ,  i = 

1, . . . , N h ,  h = 1, . . . , L .  The finite population 
distribution function is then given by 

1 L Nh Nhi 

h - 1  i - 1  j - 1  

where N - ~~L_.. 1 ~-~iNhl Nhi is the total number 
of ultimate units in the population and 5x is the 
distribution function degenerated at x. 

For each h ,  nh _> 2 clusters are selected 
from stratum h using probability sampling with 
replacement, independently across the strata. 
Within the (h, i)th first-stage cluster, nh i  ulti- 
mate units are sampled according to some mul- 
tistage sampling methods, i - 1 , . . . , nh ,  h - 

1 , . . , , L .  Let { Y h i j , j  = 1 , . . . , n h i ,  i = 1 , . . . , n h ,  

h = 1 , . . . ,  L} be the observations from the sam- 
pled ultimate units and Whij  be survey weights 
associated with the Yhij. We assume that the 
survey weights are constructed so that 

1 L nh nhi 

h = l  i=1 j = l  

is unbiased for the population distribution F. 
However, H may not be a distribution function 
since H(oc) is not necessarily equal to one. Fur- 
thermore, in many cases N is unknown. Thus, 
w e  estimate N by ]V -- ~ L = I  ~i=lnh X",nhi Whij Z- , j= l  
and obtain a distribution estimator 

L nh r~hi 

N h=l i=l j=l 

In most survey problems, the parameter of 
interest 0 is a known functional of N and F and 
a survey estimate of 0 is obtained by replacing 
N and F with N and /~, respectively. In most 
cases, the resulting 0 can be written as 

L nh nhi 

-- T ( Z ) ,  2 -- E E E WhijZhij, (1.1) 
h=l i=-1 j=l 

with a known functional T, where Zhij  is an 
appropriately defined vector of data from the 
(h, i , j ) th  ultimate sample unit. For example, 
T -  g Zhij  -- (1 ' )' , , Yhij and 0 g(Z) gives es- 
timates for ratios, correlation coefficients, and 
regression coefficients; Zhij  -- ( 1 ,  5yh,~ ) ' ,  T (  2 )  - 

( Z 2 / Z 1 ) - I ( p ) ,  where Z1 and Z2 are the first 
and second components of Z, and t~ - T(2) - 
/~-l(p) is the survey estimator of 8 - F - l ( p ) .  

When 0 - g(Z), the linearization method 
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produces the following variance estimator (Rao, 
1988): 

L 

vL - E 1---Vg(Z)'S2hVg(2) ' (1.2) 
h - 1  n h  

1 Einh= (Zhi Zh )(Zhi Zh )' where s~ - n h - - 1  1 - -  - -  , 

nhi 1 n h  

Zhi -- Y ~ n h W h i j Z h i j ,  and 2h -- - -  E Zhi. 
j=l  nh i - -1 

(1.3) 
The linearization method provides a consistent 
estimator of the asymptotic variance of 0 - 
g(Z) (Krewski and Rao, 1981; Bickel and Freed- 
man, 1984). But it requires a separate deriva- 
tion of the derivatives for each g. 

When t~ is a sample quantile, the lineariza- 
tion is not applicable for deriving a variance es- 
t imator.  Rao and Wu (1987) obtained a vari- 
ance estimator by equating Woodruff's interval 
to a normal theory interval. 

We now describe the BRR method which 
was first proposed by McCarthy (1969) for the 
case where nh =-- 2. A set of R replicates (sub- 
sets of first-stage sample clusters) is formed in 
a bManced manner. For the hth stratum, let 
Srh C {1,.. . ,nh} be the indices of the first- 
stage sample clusters in the r th replicate, where 
the size of S~h is mh.  When L is large and 
all nh are small, a simple and effective choice 
of m h  i s  m h  - -  1 for all h. The set {S~h : 
r = 1 , . . . , R , h  = 1 , . . . , L }  constitutes a BRR 
if for fixed h and h ~, the number of elements in 
{ r  : i 6 Srh, i t 6 Srh} does not depend on i 
and i ~ (i # i'); and the number of elements in 
{r  : i E S r h , i  t E Srh'}  does not depend on i 
and i ~. A trivial BRR is {all possible subsets of 
{ 1 , . . . , n h }  of size mh,  h = 1 , . . . , L } ,  in which 

~ h  • case R -  HL_l(mh) 
In the simple case where nh = 2 and mh - 1 

for all h, the B RR can be constructed using 
Hadamard matrices and a BRR variance esti- 
mator  is (McCarthy, 1969) 

1 ~ (  1 R )2 
= 0 u )  _ - , 

r : l  R r : l  

where 0(~) - T(2(~)), Z(~) - ~hL=l 21 ~), 21 T) = 

~ i e s  zhi and Zhi is as given in (1.3) (also, 
m h  r h  

see (1.1)). In general, if we define the BRR 
variance estimator using (1.4), then in the case 
of 0 - g ( Z ) w i t h  linear g ( x ) -  c 'x,  the BRR 
variance estimator is 

R R r--1 r--1 h-1 m h n h  

(by the balance property of the BRR), which 
does not agree with the unbiased and consis- 
tent variance estimator v L in (1.2), unless mh = 
n h / 2  for all h. Hence, some modification has to 
be made. Wu (1991) considered a rescMing ad- 
justment and derived a BRR variance estimator 

V"RR : R R , (1.5) 
r - -1  r - -1  

where 0(~) - T(,~(~)), r - 1 , . . . ,  R, and 

L 
mh mh 

h--1 
(1.6) 

The adjustment in (1.6)ensures that  in the case 
of 0 -  c'Z, vB~ R in (1.5)reduces to v L. 

For the case of 0 - /~-1 (p), the coefficients 

in front of 2(h ~) and 2h in formula (1.6) must be 
nonnegative in order for F(~) (the adjusted esti- 
mator of the population distribution function) 
being a proper distribution function. This re- 
quires 

mh <_ n h / 2  for all h. (1.7) 

It is easy to see that the estimator in (1.4) is 
a special case of that  in (1.5) when nh - -  2 and 
mh "- 1 for all h. In fact, as long as mh -- n h / 2 ,  

Z(r) and/~(r)  are the same as the adjusted Z(~) 
and/v(~), respectively. 

A convenient way of computing t}(~) is to use 
the formula for the original estimator 0 with the 
weights Whij changing to 

o r  

~(~) ( 1 +  / ~ - m ~ )  hij -- V mh Whi j if i 6 S~h 

mh, ) ~hij" ( ~ ) -  1--%/~h_mh Wmj i f i ~ s ~ h  
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Condition (1 .7)ensures  that  the new weights 

a~(~) > 0 When nh - -  2 and mh - -  1 for all h, h i j  - -  • 

w(r) _ 2Whij or 0 
h i j  

Asymptot ic  properties of the BRR variance 
est imators are studied in the next section. In 
particular,  the BRR variance estimators are con- 
sistent for both smooth estimators 0 - g(2) 
and nonsmooth est imators such as sample quan- 
tiles. This is an advantage of the BRR over the 
jackknife or the linearization method, when one 
prefers to use a single method for both cases of 
smooth and nonsmooth 0. 

To compute the BRR variance estimator,  it 
is desired to find a BRR with R as small as 

possible. In the general case of nh ~_ 2 ,  how- 
ever, the construction of a BRR with a feasi- 
ble R is much more difficult than in the case of 
nh = 2 per s t ra tum.  In the case of nh = p > 2 
clusters per s t ra tum for p prime or power of 
prime, a BRR can be obtained by using orthog- 
onal arrays of strength two (Gurney and Jewett ,  
1975), where each balanced sample is obtained 
by selecting one first-stage sample cluster from 
each s t ra tum.  Gupta  and Nigam (1987) and 
Wu (1991) obtained BRR with mh = 1 in the 
case of unequal nh, using mixed level orthogo- 
hal arrays of strength two to construct balanced 

replicates. More methods for constructing BRR 
can be found in Sitter (1993). In Section 3 we 
consider some approximated BRR which can be 
easily obtained when an exact BRR is difficult 
to construct.  

2. A s y m p t o t i c  P r o p e r t i e s  o f  t h e  B R R  

An asymptot ic  framework is provided by as- 
suming that  the finite population under study 
is a member of a sequence of finite populations 
indexed by k = 1 , 2 , . . .  Thus, the quantities L, 

N ,  Nh, Nhi, Yhij, F,  O, nh, nhi, Yhij, Whij, ~-~, O, 
VL, VSRR, etc., depend on the population index 
k, but,  for simplicity of notation,  k will be sup- 
pressed in what follows. All limiting process, 
however, will be understood to be as k ~ c~. 
Note that  the parameter  of interest 0 is not 

fixed as k increases; but we always assume that  
{0, k = 1 ,2 , . . . }  is a bounded set. 

Let n be the number  of first-stage sampled 

clusters. It is assumed tha t  n ~ c~ as k ---, oe. 
Also, without loss of generality, we assume tha t  
for each k, there is a set ?-/k C { 1 , . . . ,  L} (note 
that  L depends on k) such that  

sup nh < c¢; min nh ~ c ¢ .  (2.1) 
h E T / k ,  k = l , 2 . . ,  h ~ T / k  

Note that  (2.1) includes the following two com- 
mon situations in surveys: (1) all the nh are 
small (bounded by a constant) ,  in which case 
?-/k = { 1 , . . . , L } ;  (2) all the nh are large, in 
which case ~k  = ~. 

It is assumed that  no survey weight is dis- 
proportionately large, i.e., 

max nhiWhi j /N  - O(rt -1). (2.2) 
h , i , j  

Under this assumption, F is consistent for F 
and is asymptotically normal. 

To make the asymptotic  t rea tment  simpler, 
we redefine 2 and Zhi as follows" 2 and Zhi are 
still as defined in (1.1) and (1.3), respectively, 
but with Whij replaced by W h i j / N .  This change 

of notat ion does not have any effect when 0 - 
T(/~) or 0 - 9 (2)  is proportional to g ( N Z )  

(e.g., 9 ( 2 ) -  c 'Z). With these redefined 2 and 
Zhi, we assume that  

0 < C 1 _~ nvar(Z)  _< c2 < c~ (2.3) 

for all n, where C 1 and c2 are some constants.  
We also assume that  the size of the BRR satis- 
fies R / n  2 ~ 0 and that  0 < e0 < ~ < 1 for all 

- -  n h - -  
h. 

When 0 - g(Z),  the consistency of VBR R was 
established by Krewski and Rao (1981). The 
following theorem extends the result in Rao and 
Wu (1985). 

T h e o r e m  1. A s s u m e  the condit ions previously 

stated and 

~-] ~-'~ E Zhi -- Ezhi 4 1 
- O  (24)  

h--1 i=l nh - ~  " " 

Suppose fur ther  that the func t ion  g is twice con- 

t inuously differentiable with nonzero V g in a 
compact set containing {#, k = 1, 2 , . . . } ,  where 

# - E 2 .  Then VBRR/V L -- 1 + Op(n-1/2) .  
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Proof .  Under condition (2.3), it suffices to 
show that vBrtr t - v L - Op(n-3/2). From the 
second order differentiability of g, 

~(~) - ~ + l (~) + q(~) 

with l(~) - and q(~) - l ( 2 (~ ) -  

- 2). Using condition (2.4), 
the balance property of the replicates and the 
fact that max~=l,...,n 112 (~) -#11 ~p  0, we obtain 
that 

2 R 
- + + 

r = l  

Then the result follows from 

1 R 

~ lff)q(~) - Op(n-3/2). 
r--1 

[3 

In the case where ~ - f - - l (p) ,  a sample 
quantile, some "differentiability" condition on 
the population distribution function F is re- 
quired. Although F is not differentiable for each 
fixed k, we may assume that F is differentiable 
in the following limiting sense: there exists a 
sequence of functions {fk('), k = 1, 2 , . . .}  such 
that 0 < infk f(O) < suPk f(O) < c~ and 

lim [F(O + 0 ( n - 1 / 2 ) ) -  F(O) ] 
k---~ O(~Z-1/2)  - -  f(O) - O, 

Note that the population index k for F,  0 and 
f(O) is suppressed. 

Let a 2 - a~ be the asymptotic variance of 
I F ( 0 ) -  P(O)]/f(O). It can be shown (Francisco 
and Fuller, 1991; Shao, 1994) that (~- O)/a is 
asymptotically N(0, 1). 

It is known in this case that the jackknife 
variance estimator is inconsistent. The BRR 
variance estimator is still consistent. The fol- 
lowing result was shown in Shao and Rao (1993). 

T h e o r e m  2. Assume the conditions previously 
stated and that 

L 

h=l  

for a constant c > O. Then VBRR/a 2 --,p 1. 

For/~ - /~[1/~-1(1)] ,  the sample low income 
proportion, Shao and Rao (1993) showed that 
the BRR variance estimator is also consistent. 

3. A p p r o x i m a t i o n s  

Despite of the existence of several elegant 
methods of forming balanced replicates, the enu- 
meration of the balanced replicates may require 
a separate software or involve nontrivial mathe- 
matical developments. A feasible BRR may not 
always exist for arbitrary nh. 

One easy but inefficient alternative is to ran- 
domly divide the nh clusters in stratum h into 
two groups and then apply the BRR method 
by treating the two groups as two "clusters". 
This method, called the grouped BRR, requires 
R repeated computations of the point estimator 
with L _< R _< L + 4. When L is large, it pro- 
vides a consistent variance estimator, although 
the efficiency of the grouped BRR variance esti- 
mator can be quite low if L is much smaller than 
u (see, e.g., Krewski, 1978). When L is small 
and nh are large, however, the grouped BRR 
variance estimator may be inconsistent (Rao 
and Shao, 1993). 

To increase the efficiency of the grouped 
BRR variance estimator, we may independently 
repeat the grouping G times and take the aver- 
age of the G grouped BRR variance estimators. 
The resulting variance estimator is called the re- 
peatedly grouped BRR and denoted by V~sBRr~ 
(Rao and Shao, 1993). It requires GR repeated 
computations of the point estimator, vrtGB~r t is 
quite efficient if G and R are chosen so that  GR 
is comparable with n. Since R has the same 
order as L, one must choose a large G if L is 
small. On the other hand, one may simply set 
G -  1 when L is large. 

T h e o r e m  3. Assume the conditions in Theo- 
rem 1 (or Theorem 2) and that 

max ~ --. 0 and G__RR __+ 0 (3 1) 
h = l , . . . , L  n G  n 2 " " 

Then VaGBRR/a 2 ---*p 1, where a 2 is the asymp- 

totic variance of 0 -  g(Z)  (or 0 - p - l ( p ) ) .  

Shao and Wu (1992) introduced a random 
subsampling method. Let Sh denote a subset of 
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{1 , . . . ,  n h }  of size mh and S be the collection 
of all possible elements of the form ( S l , . . . ,  SL). 
Suppose that S - Sa U $2 U. • • U Su, where Sj are 
disjoint subsets of S of g elements. Let {S~, j - 
1 , . . . , u }  be a simple random sample of size u 
(with or without replacement)from {Sj, j  - 
1 , . . . ,  U} (u is usually much smaller than U). 

Let (s~T),..., s (r)) be the rth element in the col- 
~x lection S~US~U.-.US~, r - 1 , . . . , R  - ug. Then 

the random subsampling BRR variance estima- 
tor, denoted by VRsBRR, is defined by (1.5) with 
0(~) being the estimator based on the first-stage 

sampled clusters indexed by (s~),...,S(L~)). If 
g -- 1, then this method amounts to taking a 
simple random sample of size R - u from S. 
Another special case for n h  --  no  and m h  --  1 

for all h is to define Sj to be a collection of no 
mutually exclusive subsamples, each of which 
contains L first-stage sampled clusters with one 
from each stratum. Then each Sj amounts to 
grouping the noL clusters into no exclusive sub- 
samples; there are n L-1 such groupings to make 
up S with U - n L-1. The random subsampling 
BRR in this special case is also called the re- 
peated random-group method and is studied in 
Kovar, Rao and Wu (1988). 

T h e o r e m  4. A s s u m e  the conditions in Theo- 

rem 3 with condit ion (3.1) replaced by R ~ oo 
and R / n  2 ~ O. T h e n  VRsBp~R/a 2 ---+p 1. 

4. B R R  for I m p u t e d  D a t a  

Most surveys have missing observations and 
use imputation for missing data. That is, if an 
observation Yhij is missing, we replace it by a 
v a l u e  rlhij obtained under a given imputation 
rule. We consider the simple case where Yhij is 
univariate and the units respond independently 
with the same probability. A commonly em- 
ployed imputation rule, called the hot deck im- 
putation (Kalton, 1981; Sedransk, 1985), im- 
putes the missing values with a random sample 
from the respondents, where each respondent 
Yhij is selected with (imputation) probability 
proportional to Whij (Rao and Shao, 1992). Let 
ahij be 1 if Yhij is a respondent and ahij -- 0 
otherwise. Then the imputed estimate of Y is 

YI - ~ Whij[ahijYhij + (1 -- ahij)~?hij], 

where ~ is over all indices (h, i, j )  in tile sample. 
Let E1 be the imputation expectation. Then 

EI(?]hij) -- ~ Whijahi jYhi j /  ~ Whijahij a n d  

YI - ~ Whij ~ WhijahijYhij (4.1) 
Whijahij 

+ y ~  Whij(1 -- ahij)[~Thij -- EI(~?hij)]. 

Let A and B be the first and the second terms 
on the right side of (4.1). Then ( Y I -  Y ) / a  is 
asymptotically N(0, 1), where a 2 is the sum of 
the asymptotic variances of A and B. 

Since VBR R = V L in the linear case and v L is 
inconsistent when the data are imputed (Rao 
and Shao, 1992), we obtain a modified BRR 
variance estimator for ~ / a s  follows. Let 

~/(r) _ E ~hij(r) [ahijYhij + (1 - ahij )r](~ 

~(~) is an adjusted value of ~hij given by w h e r e  'thij 

~,(~) 
~(r) ~ U~hijahijYhij ~ WhijahijYhij 
'thij -- 7]hij + ~ (r) -- ~ Whijahij " 

~hi jahi j  

The modified BRR variance estimator for 121 is 
then 

r = l  r = l  

T h e o r e m  5. A s s u m e  the condit ions previously 
stated. Then ~B~R/a 2 ~ p  1. 

Proof .  It can be shown that 

where 

VBR R --- 
'_ £ + 
R r - 1  

1 R 1 R ( 1  
- E  E R A2 + R B2 + 0 

r--1 r=l 
, (4.2) 

(~) (~) 
A,. - ~ ~hij  ~ WhijahiJYhij _ A 

(~) _ .. 
WhijUhz3 

B,. - y ~  (') 

and A and B are defined by (4.1). The result 
follows from the fact that the first and the sec- 
ond terms on the right side of (4.2) are standard 
BRR variance estimators for A and B, respec- 
tively. 
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