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1. Introduction

The Current Population Survey (CPS), conducted by
the Burean of the Census for the Bureau of Labor
Statistics (BLS), provides official labor force estimates
for the nation as a whole, 11 selected states, New York
City, and Los Angeles. - For the less populous states
and substate arcas, the CPS samples are not large
enough to provide reliable monthly estimates.

The time series approach to survey data has been
proposed as a way to improve on the survey estimator
(Bell and Hillmer 1990; Pfeffermann 1992; Scott and
Smith 1974). This approach treats periodically
generated sample data as a time series of
stochastically-varying population values obscured by
sampling error. Given a model of the population
values and sampling error covariances, signal-
extraction techniques are used to estimate the
population values. In 1989, BLS adopted a time series
approach to labor force estimation in 39 states and the
District of Columbia (hereafter referred to as 40 states).
In this initial implementation, not enough information
was available to directly model the sampling error
effects (Tiller 1989). This paper extends that work by
developing signal-extraction estimates of employment-
to-population ratios from joint stochastic models of the
true population values and the sampling error.

This paper is organized as follows: section 2
discusses the state CPS sample design relevant to time
series modeling; section 3 describes the time series
component models; section 4 explains the estimation
process; section 5 presents the results for the 40
employment models; and section 6 provides the
conclusions.

2. CPS Sample

Two important features of the CPS samples that
must be controlled for in the modeling process include
the changing reliability of the CPS estimator and the
strong autocorrelation in the sampling error.

The reliability of the state CPS estimator changes
over time due to sample redesigns, sample size
changes, and variations in the labor force. The strong
autocorrelation in the sampling error arises from the
use of a 4-8-4 rotating panel (Census 1978) which
generates complex patterns of sample overlaps over
time. In addition, when a cluster of housing units is
permanently dropped from the sample, it is replaced by
nearby units, resulting in correlations between non-
identical households in the same rotation panel (Train,
Cahoon, and Makens 1978).
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Failure to account for the strong autocorrelation in
the sampling error and the changing reliability in the
CPS estimator may result in improper identification of
the signal from the noise. Thus, it is important to
directly control for these characteristics.

3. Time Series Component Modeling

For each state, a model for the employment-to-
population ratio is developed. This section describes
the basic model structure.

The observed sample estimate at time f, y(t), is
represented as the sum of two independent processes

W1)=0(1) +e(t)
where

0(¢)= the population value
e(t) = sampling error.

The time series of population values is represented by a
structural or unobserved variance component model
(Harvey 1989) with explanatory variables

0 =X@OPBEY+T @+ SO +I(1)+0(r)

where X(t) is a I x k vector of known explanatory
variables with a & x / random coefficient vector, B(z);
T{t) is a trend component; S(¢) is a periodic or seasonal
component; I(¢) is an irregular component; and O(t) is
an outlier component. Each of these components
include one or more normally distributed, mutually
independent white noise disturbances. The variances
of these disturbances determine the stochastic
properties of the components.

It is useful to group these components into either a
signal, I'(z), or noise, N(¢), component

L) =XOBO)+T)+8@)
Ny =e(@)+I1(t)+0()

The signal component represents all of the variation in
the sample values related to systematic movements in
the true values. The noise component consists of
sampling error, error that arises from sampling only a
portion of the total population, plus purely random
variation unaccounted for by other components plus
unusually large transitory fluctuations or outliers.
While sampling error is the most important component
of the noise, the two other components represent
variation that should be removed from the signal.

The regression coefficients are specified to follow a
random walk process,



B() = B(t— D) +05 ()
E[vg (1)vg ()] = Diag(c? .....68.).

The trend component is represented by a locally
smooth linear trend with a random level, T(¢), and
slope, R(t).

TO)=T@-D+R(t-1)+v;(r)
R(#)=R(t—-1)+v,(1)

The seasonal component is the sum of up to six
stochastic trigonometric terms associated with the 12-
month frequency and its five harmonics

St =55,(1)
j=1

where each frequency component is represented by a
pair of variables, each containing white noise
disturbances.

S{ty=cos(® )St-1)+sin(®;)S" (-1)+v,,

S™1)=-sin(® ;)S{1-1)+cos(w )™ f1-1)+v,.

©;=p?, p={12,643.242)

The white noise disturbances are assumed to have a
common variance, so that the change in the seasonal
pattern depends upon a single parameter.

The irregular component is specified as consisting of
a single white noise disturbance,

1()y=v,()

A zero variance for this component means that the
irregular is identically zero and can be dropped from
the model.

Sampling error is the difference between the
population value, 6(z), and the estimate, y(t), drawn
from the design distribution of the sample estimator
with mean 9(7)

e(t)=0(1)— y(t)

where e(t) has the following properties:
E[e(1)] =0, Var[e(1)] =62,
p,(1)=E(e(t)e(t—1)) o).

To capture the autocorrelated and heteroscedastic
structure of e(t), we express it in multiplicative form as

e(t)=vy(t)e" (1)

with y(r) representing the heteroscedastic part of the
CPS,

-1
Y()=0, ce(,),

and ¢*(1) representing the autocorrelated part of the
CPS, which is approximated by an ARMA process,

e* (1)~ ARMA(9,0),

where the 0 and ¢ parameters are derived from the
sampling error lag correlations.

An outlier represent a transitory shift in the level of
the observed series,

0(t)=zxjwj(t)
7

where w(t)=1 at time t=t, zero otherwise and the
coefficient, Kj, is the change in the level of the series at
time L
4. Estimation

The parameters of the noise component are derived
directly from design based variance-covariance
information. The state CPS variance estimates are
obtained through the method of generalized variance
functions (Census 1978). State level autocorrelations
of the sampling error are based on research conducted
by Dempster and Hwang (1990) that used a variance
component model to compute autocorrelations for the
sampling error. After the unobserved signal anu noise
components are put into the state space form, the
unknown parameters of the variance components of the
signal are estimated by maximum likelihood using the
Kalman filter algorithm (Harvey 1989). Given these
parameter values, the filter calculates the expected
value of the signal and the noise components at each
point of time conditional on the observed data up to the
given time point. As more data become available,
previous estimates are updated by a process called
smoothing (Maybeck 1979). For more details, consult
Tiller (1989).

5. Results

Using the basic model structure described above,
employment models are developed for each of the 40
states for the period covering January 1976 10
December 1991, The Current Employment Statistics
(CES) survey employment (CESEM), available by
state, and intercensal population estimated by the
Bureau of the Census are used in the regression
component: The general form for the model is

CPSEP(t)=a(t)CESEP(t)+Trend(t)+Seasonal(t)+Noise(t)
where

CESEP=100(CESEM/Pop)
Pop=noninstitutional civilian 16+ population.

Once estimated, these models were subjected to
diagnostic testing. In a well-specified model, the
standardized one-step-ahead prediction errors should
behave approximately as white noise, i.e., be
uncorrelated with a zero mean and fixed variance. To
be acceptable, the final model was required to show no
serious departures from the white noise properties.
Once satisfactory results were obtained, further
decisions were based on goodness of fit (likelihood
function and AIC) and on subject matter knowledge.
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Often, one or more of these components could be
simplified. For the signal, CESEP was able to explain
a substantial amount of variation in the observed series
with fixed coefficients, the trend slope could often be
dropped, and the number of seasonal frequencies
reduced. For the noise component, the sampling error
component was held fixed, but the other components
were tailored to the data. In many cases, the estimated
variance of the irregular was close to zero, allowing it
to be dropped from the model. Outliers were initially
identified based on normalized one-step-ahead
prediction errors that exceeded, in absolute value, three
times their standard error.

Regression

Table 5.1 presents the specifications for each of the
employment models. First consider the behavior of the
regression coefficient for the CESEP variable. The
standard deviations of the white noise disturbances to
the coefficients (column two of Table 5.1) are small,
resulting in either fixed or nearly fixed values for all of
the models.

Trend component

The trend consists of only the level component in 27
states; in 6 of these states, the trend reduces to a fixed
level; in the remaining states, the trend is very smooth,
showing little variability. The stability in the trend is
not surprising since the CESEP variable accounts for
most of the long-run variation in the signal (see
below).

Taken together, the regression coefficients and the
trend reflect long-run differences in the behavior of the
CPS and CES that arise from fundamentally different
ways in which the two surveys measure employment.
The CPS target population is the number of persons
with one or more jobs, while the CES population is the
number of payroll jobs. Since multiple-job holding
tends to be procyclical—increasing during economic
expansions and decreasing during contractions—the
CES tends to grow at a different rate from the CPS. In
those states with variable trends, the trend component
tends to vary procyclically with multiple job holding.
Also, the coefficient of the CESEP variable is almost
always less than one, a reflection of the differential in
growth rates.

Seasonal component

In 18 states, the variance of the seasonal component
is effectively zero, resulting in a fixed seasonal pattern.
The remaining states have some variation in their
seasonal patterns over time. Table 5.1 shows the
frequency composition of the seasonal component
under the column labeled seasonal frequencies. Rarely
was it necessary to include all of the 6 frequencies.

It is important to keep in mind that the seasonal
component does not account for all of the seasonal
variation in the signal, since the CPSEP is itself highly
seasonal. Like the trend, the seasonal component
reflects measurement differences between the CPS and
CES that cause their seasonal patterns to diverge. In

360

the summer months this divergence is particularly
apparent in most states. Workers on vacation are
counted as employed by the CPS, but are not counted
by the CES unless they are paid while on vacation.
CPS employment expands in July and remains high in
August due to the entry of students into the labor force
for summer employment, and then declines in
September with the start of the new school year. In
contrast, the CES tends to decline in July due to unpaid
vacations and then increase in September as workers
return from vacation.  Therefore, the seasonal
component has relatively large positive values in July
and August and negative or zero values in September.

Irregular component

The variance of the irregular component is zero in
22 of the states: thus, the irregular component is
identically zero and can be dropped from the model.
The remaining 18 states have significant random
variation present which is not accounted for by the
other components.

Outliers

The outliers identified in each model are shown in
the last column. They correspond to unusually large
one-time deviations of the CPS from its usual range of
fluctuation. We have not been able to associate any of
these outliers with unusual economic events.
Therefore, they have been treated as part of the noise.
The maximum number of outliers identified per state
never exceeds four. Out of 192 observations, this does
not appear to be an excessive number.

Relative importance of components

To measure the empirical importance of each of the
components, we decompose the sum of squares of the
change in the sample estimates into its component
parts, where change is computed by taking 1-, 3-, and
12-month differences. These differences play an
important role in data analysis. Month-to-month
change in a reported labor force statistic receives
considerable public attention as an indicator of current
labor market conditions, as does over-the-year change
as an indicator of long-run developments. Also, it is
common to report over the quarter change.

In Table 5.2, each component sum of squares is
expressed in relative form by dividing by the total sum
of squares. The table entries show the proportion of
the sum of squares of the sample estimates over various
time spans which can be attributed to changes in its
signal and noise. components. The proportional
contributions in the table sum to 100, except for
rounding error. The column headed SIG refers to the
sum of the regression (REG), trend (TRD), and
seasonal (SEA) components. The CPS column label
refers to sampling error, and the IRR column refers to
the irregular component.

First, consider the importance of sampling error. On
average, it accounts for 57% of the month-to-month
variation in the CPSEP, which is not surprising given
the standard deviation of the sampling error is large



relative to the average change in the sample estimate.
However, the sampling error also accounts for the same
amount of relative variation over a 12-month span,
illustrating the importance of the strong
autocorrelation induced by the sample design.

Next, we examine the relative importance of the
regression, trend, and seasonal components in
explaining the total variation in the signal. Over the 2-
and 3-month spans, the seasonal component accounts
for more of the variation in the signal than does the
regression component, a reflection of major seasonal
differences between the CPS and CES referred to
above. Over the 12-month span the CESEP variable
accounts for most of the variation in the signal, on
average 89%, compared to 11% for the trend. On
average, the irregular component accounts for about
3% of the month-to-month variation in the CPS;
therefore, its removal results in some further
smoothing.

Efficiency gains

To obtain a reliability measure for the models, we
use the error covariance matrices obtained from the
Kalman Filter (KF) and Kalman Smoother (KS).
These error measures represent uncertainty resulting
from stochastic variation in the population and the
inability to observe the state variables directly. These
measures do not account for uncertainty in estimating
the variance parameters of the signal and the
parameters of the sampling error model. Therefore,
the model reliability measures must be considered
experimental.

With the above caveats in mind, we turn to the
potential gains from using the model-based
employment estimator over the survey-based estimator.
The efficiency gain is measured as the ratio of the
standard deviation of the estimated signal to the
standard deviation of the CPS, expressed as a
percentage. The median of this ratio for all states was
calculated for the KF and KS estimates for monthly
values over two time periods, 1980-91 and 1991. The
smoother is more efficient than the forward filter,
particularly in the middle of the series. However, the
forward filter represents the most efficient estimator
available at the time the estimates are first made and
reported. We use the period 1980-91, dropping early
years because the large transient induced by the
initialization of the KF results in poor estimates of the
covariance matrices in the early part of the sample.
We select 1991, the last year in our sample as an
indicator of model reliability in real time. The results
are presented in the table below. Clearly, the gains
from modeling are largest in historical time when the
smoother can be used. The ratio of the standard
deviation of the signal to the noise is 67% over the
period 1980 to 1991, an efficiency gain of 33%. For
the latest year, the gains for the KF estimator are
smaller, but still substantial, with a signal-to-noise
ratio of 74%.

Potential Efficiency Gains
from Employment Models

. Median ratio of standard error of

_____________ 1980-91 i 1991
Kalman Filter 719 74.1
Kalman Smoother 67.1 : 71.5

6. Conclusions

Time series models of the CPS employment-to-
population ratio were fit to 40 State series. These
models account for both the dynamics of the true
population values and the sampling error structure.
The models, in general, adequately fit the data and
produce much smoother series than the sample
estimates.
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Table 5.1. Employment Model Specifications

_____________ Standard ]iéviiiﬁons of Disturbances
Regression ......Tremd = Seasomal  Irre gul

AL 1.7E-04% 1.6E-02 1.1E-02 1.9E-03* '3.5E-01

DC 5.0E-03 2.7E-01 2.8E-03 5.6E-04* 12 6 4 3 SEP87 JUN90
GA 7.8E-05* 1.4E-03 2.3E-04 9.4E-03 64 2.4 JUN85 DEC90

o E-05* 23 S oEos v =4

ID 5

CIN 5.9E-03 : 9.7E-05* . 12 6 4 3 AUG90

IA 6.3E-03 3.7E-03% 2.5E-02 12 6 4 3

KS 6.9E-05* 1.9E-01 2.1E-04* 12 6 4 3 JANS2 OCT82

KY

LA 1.78-01 BT : 43 i
ME 1.7E-01 6.1E-04 6.8E-04* 4.3E-01 12 6 4 3 2.4 APR85 JANS7 FEB87 MAY87
MD 1.8E-01 126 4 3 2 NOV90 DEC90 o

_MN e A2 432,40 JANB3 MAYS7 APRS9 FEB9L
MS . . 2 . 3x 64 2.4 JUL83 DECY1

MO 1.4E-04* 1.0E-01 1.6E-02 12 6 4 3

MT 1.6E-04% 2 AB-0L 1.2E-02 I
NE sismlos ilamteas T glamles U gmien T I I DR < TR
NV 4.38-03 3.8E-02* 1.1E-02 4.6E-01 12 6 4 3 2.4 2 B

NH 1.3E-04* 2.4E-01 1.6E-02 12 6 4 3 2.4 DEC90 NOV84 JAN91

NM 6.7E-04" 1-5B-01 1 3B 02 3 e
ND siemtoss T 3lemes Uiamies U ilameea L e e gy
oK 1.4E-03* 2.7E-01 , 4.7E-04* 12 43 ) ‘

OR 5.2E-04* 3.7E-01 1.8E-04* 2.9E-01 12 6 4 2 DEC79 JANBO

RI 3.1E-03* 1.9E-01 ~ 3.5B-04* 4.2E-01 12 6 43 SEP8S DECSL
B 0 T
SD  2.4E-05* 1.5E-02*  1.58-02 2.4E-01 12 6 4 3 DEC85

TN 1.1E-06* 2.6E-03* 12 4 JUN8B8

UT 3.0E-05* '

VT

VA 7.7E-04%

WA 3.7E-03 1.48-02 12 6 4 3 2.4

WY 1.3E-03*% 3.9E-05*

WY 8.3E-05* 1.2E-03* 4.4E-01 12 43 2 Nove3

* zero standard deviation
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