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ABSTRACT 
In a stratified random sampling design involving 
multiple response variables, convex programming 
optimizes sample allocation in the sense that the 
preassigned upper bounds to the sampling errors of 
the estimates are satisfied while minimizing the 
cost. Its use, however, is limited to moderately 
sized problems only. The other optimality criterion 
is not addressed either, namely, if the cost is 
preassigned, how to determine the allocation that 
will minimize, in some sense, the sampling errors 
of all the estimates. Based on a distance function, 
measuring aggregate variabilities of the estimates, 
we provide a solution either when the cost is 
preassigned or an upper bound to the aggregate 
measure is preassigned. It is shown that the 
Neyman Allocation is a special case to our 
extended formula for multiple variables. We also 
investigate a simple alternative to convex program- 
ming under which, when large number of response 
variables are involved, not all, but a good majority 
of the sampling error constraints are likely to be 
satisfied. Results of the investigation, using actual 
Statistics Canada data are presented. 

1. INTRODUCTION 

For the purpose of estimating averages or totals of 
the values of multiple response variables, some- 
times a simple stratified random sampling design 
is preferred. In that case, following univariate 
analogy, sample allocation to different strata can 
be qualified as optimum in two senses. First: If the 
cost of the survey is preassigned, the allocation 
should minimize, in some sense, the sampling 
errors of all the estimates. Second: If upper 
bounds to the sampling errors of the estimates are 
preassigned, the allocation should minimize the 
cost. In fact, there is no exact solution to this 
problem, although in the latter case optimization is 
possible by an iterative procedure, namely, convex 
programming. Recently, Bethel (1989) has pro- 

vided an improved algorithm for the purpose but 
points out a number of practical difficulties (p. 47, 
53). First" "The convex programming approach 
gives the optimal solution to the defined problem 
but the resulting cost may not be acceptable so a 
further search is usually required for an optimal 
s o l u t i o n . . . " .  And this has to be done obviously 
- by increasing the upper bounds to the variance 
constraints that we had originally set. Second" 
"The algorithm converges quickly for most mode- 
rately sized problems" and the "run times vary 
considerably depending on the magnitude of the 
p r o b l e m . . . " .  Third: " . . .  labour involved in 
creating files and other preparatory tasks "is of 
much greater concern than merely the run times". 
A further point to be noted is the fact that in prac- 
tice, usually the cost of the survey is preassigned. 
And in that case the optimality criterion has not 
been addressed, namely, how to determine the 
allocation that will minimize, in some sense, the 
sampling errors of all the estimates. 

The problem is further aggravated by the fact that 
in actual surveys quite a large number of response 
variables are involved. A case, for example, is the 
annual sample survey of manufacturing establish- 
ments by Statistics Canada, for the purpose of 
estimating thousands of commodity outputs. In 
such cases, convex programming is impractical. 
One option to resolve this problem is to define 
optimum allocation in terms of some aggregate 
measure of variabilities of all the estimators. 

In this paper we propose a distance function, 
measuring aggregate variabilities of the estimates 
and provide solutions, either in the case when cost 
is preassigned or in the case when an upper bound 
to the aggregate measure is preassigned. Under 
this formulation, the Neyman allocation is shown 
to be a special case to our extended formula for 
multiple response variables. 

We also investigate another possibility, namely, 
with very large number of response variables we 
may not be overconcerned to ensure that every 
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individual variance constraint is satisfied. For the 
sake of simplicity we may rather accept a sample 
allocation procedure under which, if not all, a 
good majority of the variance constraints are 
satisfied. Such a procedure is illustrated using 
actual census data on clothing industry from 
Statistics Canada. The result appears to be satisfac- 
tory for all practical purposes. 

2. THE P R O B L E M  

In a stratified random sampling design, le t2j  
denote the estimate of the total value x.i of a 

variable x j  ; j = 1 ,  2 , . . .  , p ;  and s ~  the 
variance of x j ;  in stratum h ; h = 1 , 2 ,  . . . ,  L. 
Sample and population sizes are n = Z2n h and 

h 

2 2 N 2 N = ]}2N h respectively. Writing a j h  = N ~  Sgh  / 
h 

as the weighted stratum variance, we can write the 
variances of the estimates and the cost function as 

h ~ ; (2.1) 

j = 1,2, ... ,p 

c = )2nhc h (2.2) 
h 

where c a is the cost of enumeration per unit in 
stratum h .  For any single variable x~ the op- 
timum allocation (Neyman 1934, Tschuprow 1923) 
can be written in equivalent form as 

( Co a h) / 
nh = ~arhV ~h " (2 3) 

h 

h = 1,2, ... ,L 

for a preassigned cost c = Co, and 

I-1 h = 
2 

( v r / n ~ ) + E ( arh / Nh) (2.4) 
h 

h = 1,2, ... ,L 

for a preassigned upper bound to the sampling 

error of the estimate v ()?~) = v ~. It is obvious 
from (2.3) and (2.4) that in either case what is 
optimum allocation for x~, will not be optimum 
for x k simply because a~h,  a ~  ; k ~ r  = 1,2,.. . ,p. 

One option to resolve this problem is to define a 
distance function of the sampling errors of the esti- 
mates. In actual surveys the sampling error is 
usually expressed in terms of the coefficient of 
variation c v .  We therefore choose a distance 
function D of the form 

D : W l CV 2 (XI) + W~. CV 2 (X9) + 

+ cv 2 (2p) 
(2.5) 

where w~ is a weight reflecting the importance of 
the variable x_i. Note that it makes sense to use 
D as an aggregate measure of the variabilities of 

all the estimators 2 . ~ ; j  -- 1 , 2 , . . . , p .  We 
thus consider optimizing the sample allocation in 
terms of this aggregate measure D. 

3. SOLUTION 

3.1 W H E N  COST IS PREASSIGNED 

From (2.1) we can write cv 2 ( 2 5 )  as 

j = 1 , 2 , . . . , p  

Substituting these in (2.5) we get 

2 2 
D = EE WsAjh - EE W~A~h (3.2) 

j h n h j h N h 

where we write A j h  : ( N a j h )  / X j .  Our objective 
now is to minimize D subject to the condition 
c = F, n h c  h = c o . This is equivalent to mini- 

h 
mizing the function F where 

F- EE wjA \ _ EE WsAj% 
j h n h j h N h (3.3) 

+ I, (~nhCh-Co) 
h 

and ~. is the Lagrange multiplier. Differentiating 
F with respect to n h ; h  = X , 2 ,  . . . , L ;  and 
k and equating to zero we have 

_ -E + ;tch : 0; 
6n a h n~ (3.4) 

h = 1,2, ... ,L 
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5 F  
= E ~ C h - c o  = 0 (3.5) ~-X 

h 

Solving these equations we get 

~ . =  ( ~ t ~ c h W ~ A ~ h } / c o  and substituting this 

value of k in (3.4) the desired allocation for 
multiple variables is obtained as 

n h = 

j = 1,2 ..... p 

h = 1,2, ... ,L 

In the case of any single variable x~, since 
Arh = N a r h /  X r ,  the above reduces to 

( Co a rh) / V~h 

n h = ~arla~hh ; 
h 

h = 1,2, ... ,L 

(3.7) 

which is same as the Neyman Allocation in (2.3). 

If c h = c i.e., per unit cost is same in all strata 
then we have a~h = (N h S~h) / N. Also we have 
c o = ~ n  a c  a = n c .  Hence, (3.7) can also be 

written as 

NhS~h 
n h = XNhSrh * n; 

h (3.8) 

h = 1,2, ... ,L 

which is the more familiar form of Neyman 
Allocation when n is known. Thus Neyman 
Allocation is a special case to our extended for- 
mula (3.6) for multiple variables. 

3.2 WHEN AN UPPER BOUND TO THE 
A G G R E G A T E  M E A S U R E  OF T H E  
SAMPLING ERRORS IS PREASSIGNED 

Let the individual sampling error constraints be 

written a s  c v  ( . ~ )  ~ ~tj ; j = 1 ,  2 , . . . , p .  If 
large numbers of variables are involved, it is 
assumed that we are concerned only with an upper 
bound to the aggregate measure of the sampling 

2 errors which, in this case, is D O = ~_,Wjl . t  j . .  
3 

Hence, our problem is to minimize the cost 
C = ~ n  n c n subject to the condition 

h 

D = ~w~cv 2 ( 2 j )  <_ Do . 
3 

This is equivalent to minimizing the funct ionF 
where 

F = En hc h + i E E W3 Ajh 
h h n h 

E Z w~Ajl _ Do] 
3 h N h ] 

(3.9) 

and ~. is the Lagrange multiplier. Differentiating F 
with respect to n h ; h = 1 , 2 ,  . . . , L ;  and 

and equating to zero we have 

2 

6F = Ch _ I E WjAjh = 0; 

6 n h Y n~ (3. I 0) 

h = 1,2...,L 

2 
6F = E E  WjAjh 

61 3h nh 

XX: wj&i _ D o  = o 
5h Nh 

(3.11) 

Solving these equations we get 

. . . .  

[,,o+ 
and substituting this value of ,% in (3.10) the 
desired allocation for multiple variables is obtained 
a s  

n h = 
D O + ] ~ E  (WsA}h) / N h (3.12) 

j h  

h = 1 , 2 ,  . . .  , r .  

In the case of a single variable x~ - noting that 

A~h - Na~h / X~ and D O reduces to w~ i~2 _ 

W~, v r / X2 where v (2~) = v ~ is the preassigned 

upper bound in terms of the variance - the above 
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reduces to 

(arh/~h)~h arh~h 
n h = 

( v ~ / N  ~) + ~ ( e l / N n )  (3.13) 

h = 1,2, ... ,L 

which is same as the Neyman Allocation in (2.4). 
Thus, the Neyman Allocation in the case of a 
preassigned upper bound to the sampling error of 
the estimate, is also a special case to our extended 
formula (3.12) for multiple variables. 

4. E M P I R I C A L  STUDY 

In this section we present the results of a very 
simple allocation procedure which may be useful 
when number of variables are large, no distinction 
is made about their relative importance, and we 
are not overconcerned that each individual sam- 
piing error constraint must be satisfied. 

Using Neyman Allocation for single variables we 
can get the allocation for each of the p variables 
in stratum h as na. h , n2h, . . . , n p h .  Let us 
order them and denote the maximum one i.e., the 
100-th percentile value as nhtzoo). We may 
take 
n h t a . o o  ) ; ]2 = 1 ,  2 , . . . , L as the required 
allocation for which, obviously, all the p con- 

straints c v ( . P , ~ )  < l . t j  ; j = 1 , 2 ,  . . . , t 9  will 
be satisfied. But the total sample size 
n = ]Enn(~oo)would be very large and therefore 

h 
the cost would be prohibitive. 

We can reduce the cost i.e., total sample sizen 

by select ing another  al locat ion nh(p); 
h = 1 , 2 , . . . ,  L with some p < 10 0. But then all 

of~heco~cv(2 5) ~ ~j ; j = 1, 2, . . . ,p 

would not be satisfied. Hence, the crucial ques- 
tion is, can we choose a suitable/9 such that only 
a small number of constraints are not satisfied and 
at the same time the cost is acceptable? If so, then 
it makes sense - jus t  for the sake of simplicity - to 

conduct the survey based on the allocationn h (p) ; 

h=l,2 ..... L. 

It is this question we investigated relating to 14 
commodity outputs of the clothing industry during 
the year 1986 for which complete census data 
were available from Statistics Canada. The popula- 
tion consisted of N = 2256 manufacturing establish- 
ments. There were 39 strata based on combination 
of Province and revenue class. We set the upper 
bounds to the sampling error of estimates of each 
of the 14 

commodities at 10 %, i.e., we targeted c v ( ,~j ) ~ 1 o % 

where 2~ represents the estimate of the j-th com- 
modity output; j = 1 , 2 , . . . ,  1 4 .  Using three 
different allocations for P = 100, 75, 50 (i.e., 
maximum , 7Y h percentile, and median) the 
sampling errors of estimates and also the total 
sample size n ,  required under each allocation 
were found to be as shown in Table 1. 

TABLE 1" Values of the coefficient of variation of 
each of the 14 commodity output estimates along 
with the total sample size n under three different 

p = 1 0 0 p = 7 5  p = 5 0  
allocations. 

1 0.038 0.103" 0.193" 
2 0.009 0.030 0.047 
3 0.020 0.060 0.085 
4 0.035 0.093 0.131" 
5 0.025 0.068 0.150" 
6 0.015 0.046 0.065 
7 0.020 0.051 0.069 
8 0.053 0.239* 0.338* 
9 0.030 0.073 0.101" 
10 0.026 0.079 0.125" 
11 0.027 0.062 0.086 
12 0.061 0.151" 0.257* 
13 0.029 0.089 0.124" 
14 0.031 0.091 0.145" 

n=1139  n=680  n=570  

* Indicates cv higher than the preassigned value 
10% 

It is found - as it should - that for p = 100 all the 
cvs are less than the preassigned upper bound of 
10% but the total sample size n = 1139 is large for 
a population of N = 2256 units. For p = 50, sample 
size is small but as many as 9 cvs exceed 10%. 
For /9=75,  however, the sample size n = 6 8 0  is 
reasonable and only 2 cvs significantly exceed 
10%. 
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We then investigated that for this n = 6 8 0  (i.e., 
fixed cost) how the minimum average cv attainable 
by using the extended allocation formula (3.6) 
compares with what we obtained based on p =75.  
Table (4.2) below shows the comparative results. 

Table 4.2 Values of the coefficient of variation of 
the estimates under extended Neyman allocation 
and the allocation based on p =75.  

p =75 under extended 
Neyman Allocation 

1 0.103 0.103 
2 0.030 0.029 
3 0.060 0.058 
4 0.093 0.093 
5 0.068 0.079 
6 0.046 0.044 
7 0.051 0.048 
8 0.239 0.201 
9 0.073 0.072 

10 0.079 0.075 
11 0.062 0.060 
12 0.151 0.152 
13 0.089 0.084 
14 0.091 0.089 

Average 0.008 0.085 
cv  

It is found that the average cv 0.088 under the 
allocation based on p =75 came out to be almost 
same as the minimum average cv 0.085 attainable 
for a fixed n =680.  In other words, given the cost 
required for a sample size of 680 we would not 
get any better allocation other than what we got 
for p =  75 from the point of view of minimizing 
the average sampling error. 

In view of the above findings it seems that when 
we are confronted with the task of a large number 
of estimations, and convex programming becomes 
virtually impossible, such a simple allocation pro- 
cedure based on a suitable choice of percentile (p)  
value can be used as a compromise solution. 

5. DISCUSSION AND SUMMARY 

This study addresses the problem of optimum 
allocation of sample sizes to different strata in a 
stratified random sampling design with multiple 
response variables - particularly when the number 
of variables are large. We propose an optimality 
criterion based on a weighted distance functionD 
of the sampling errors of estimates of the totals of 
all the response variables under study. Based on 
this distance function, which is in fact an aggre- 
gate measure of variability of all the estimates, we 
provide a solution either in the case when cost of 
the survey is preassigned or in the case when an 
upper bound to the aggregate measure is 
preassigned. It is shown that the well known 
Neyman allocation in either situation, is a special 
case. It should be noted, however, that the alloca- 
tions - as can be seen from (3.6) and (3.12) - 
depends on a set of weights w 5 ; J = 1 , 2 ,  . . .  , /9 
assigned arbitrarily to reflect the importance of the 
variables x j ;  j = 1 , 2 ,  . . .  , p .  Usually a rare 
or unimportant variable will have larger variability 
in the population. If we are willing to assume that 
the more the variability of a variable x j ;  in the 
population, the less is its importance, then it 

makes sense to choose the weights as wj = 1 / r~(,~.~) 

where x?(,~) is the sample estimate of v(2~)  . 
It has also been pointed out that convex program- 
ming - although mathematically attractive - 
becomes an impractical proposition in actual 
surveys when we have to estimate a large number 
of variable values. This justifies a search for some 
alternative procedure whose simplicity can be 
traded off with the limitation that a few of the 
sampling error constraints need to be violated. 
Such a procedure has been illustrated using census 
data on the clothing industry from Statistics Cana- 
da. The result, admittedly a compromise solution, 
appears to be satisfactory for all practical pur- 
poses. 
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