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1. I N T R O D U C T I O N .  In an earlier paper  [1] 
the authors  observed tha t  a poststratif ied mean 
is often superior to the regular mean as an es- 
t imator  of populat ion mean if conditional vari- 
ance or conditional mean square error is used 
for comparing est imators  and the condition is 
the sample configuration actually obtained.  

The conditional variance has a computat ion-  
al advantage since one heed not es t imate  the 
expected value of 1__ where ni is the number  

n i  

of units in the i- th s t r a tum of the sample, but  
it also has theoretical  advantages noted in [1] 
and elsewhere (see [2] and [3]). Not only do 
the conditional measures give satisfactory con- 
fidence intervals and error bars, but  they permit  
one to distinguish which e s t i m a t o r -  the regular 
mean or the poststrat if ied mean - is preferable 
for a par t icular  configuration. The information 
extracted from the sample is thereby enhanced. 

Indeed, the following rules of thumb,  based 
on the sample configuration actually achieved, 
can be applied: 

i) if large variance s t ra ta  are somewhat  over- 
represented in the sample and small vari- 
ance s t ra ta  somewhat  underrepresented,  
the poststrat if ied mean is preferable; 

ii) if the configuration is near op t imum,  for 
example,  in termediate  between proport ional  
and pseudoproport ional  (ni c( N~S~, 
0 < k < 2), the poststrat if ied mean is 
preferable; 

iii) if the sample size is sufficiently small and 
the s t r a tum with the largest variance has 
sufficiently large variance and all other 
s t ra ta  are overrepresented in the sample, 
the regular mean is preferable. 

In this note we state and prove theorems 
that  support  these assertions. 

2. NOTATION.  A finite populat ion is di- 
vided into k s t ra ta  of known sizes N1, N2, ..., 
Nk, with N - )~'~i Ni. A variable X is defined 
on the units of the population.  Its mean and 
variance over the whole populat ion are X and 
S 2, and over the i-th s t r a tum Xi  and S~ for 
i - 1, .., k. A random sample of size n is drawn 
from the populat ion,  yielding nl ,  n 2 ,  . . . ,  nk 

units in the respective s t rata ,  with )-'~i ni - n, 
and the values of X are determined on the units 
of the sample. To es t imate  the populat ion mean 
X,  two est imators  are available: 

the regular sample mean 

and 

the poststrat if ied sample mean 

N x,, 
i 

where 5~ is the mean of X on the units of the 
sample tha t  belong to the i-th s t ra tum.  

All samples are assumed to be of known size 
n. In addition,  we consider two conditions: 

{hi > 1} • the sample size in each 
s t r a tum is > 1 

and 

{ni} • the sample size in each stra- 
t um is known. 

When means,  variances, etc. are calculated 
with respect to arbi t rary  samples of size n, one 
commonly calls them "uncondit ional" means, 
variances, etc. The condition {hi _ 1} is im- 
posed in order tha t  ~pst be defined. We as- 
sume tha t  n > k so tha t  this condition can 
be achieved. The second condition {hi} asserts 
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that  the sample configuration, i. e., the k-tuple 
( n l ,  n2 , . . . ,  nk ) ,  is known. When the configura- 
tion is known, we assume that  it satisfies ni >_ 1 
for each i. 

The estimator ~ satisfies" 

- -  n S 2 
E ( ~ ) -  X and V ( ~ ) -  (1 - ~ )  • - ~ ,  

while the other estimator ~p~t satisfies: 

>_ 1 ) ) -  X 

and 

V(~p,t/{n~ > 1})- 
~ ( N i  )2 -N- 1 1 ) .  • S 2 .  (Z(n--~s/{ni > 1 } )  - 

N ~  i 

Both estimators are unbiased estimators of 
the true mean X,  but with regard to different 
sets of samples. In general, ~ is biased when 
the condition {hi _> 1} is imposed. Likewise, if 
the estimator ~pst is extended to all samples of 
size n (e.g. by setting xi - 0 whenever ni - 0), 
this estimator in general is also biased. These 
biases were overlooked in [1] as well as in other 
studies. 

When we pass to a given sample configura- 
tion, the two estimators behave as follows- 

E(-~/{ni})- ~ n i x i  
n 

i 

and 

E ( ~ p s t / { n i } )  - X - 
N i  m -yx,, 

i 

so that  the first est imator is in general condi- 
tionally biased while the second is not. The 
conditional mean square error of the first esti- 
mator  ~ is: 

M S E ( - ~ / { n i } )  - 

E ( ~ - ~ ) 2 ( 1 -  ~ / ) - - {  - ( ) x i  (2.1) 
i ni . n N ' 

where the first term is the conditional variance 
and the second the conditional bias squared. 
The conditional variance of the second estima- 
tor X-pst is" 

N i . 2  ni  S~ 
V(~p:tl{n~}) - ~( - - f f  ) (1-  -~) n---(" 

i 
(2.2) 

3. THEOREMS.  Given the sample config- 
uration {ni}, a natural  way to choose between 

amd 5p~t is to estimate the mean square er- 
ror and variance in equations (2.1) and (2.2), 
and - provided one is comfortable with one's es- 
timates of these quantities - use the estimator 
that  gives the lower value. The theorems below 
indicate some situations that  can arise. In all 
cases the measure of precision is the conditional 
mean square error (MSE) or conditional vari- 
ance, relative to the condition that  the sample 
configuration is given. 

Theorem 3.1" Suppose that  the s t ra ta  and 
the configuration {ni} satisfy, for some real 
numbers M and d with M > d > 0" 

i) (MM+d) ( - - ~ -  ~ -  --~-'~ n, >_ >_ for 

all i such that  S~ >__ M + d; 

ii) m = -~ for all i such that  IS? - MI < d; 
and 

all i such that  S 2 _< M -  d. 

for 

Then V ( ~ p ~ , / { n i } )  <_ 

Before proving Theorem 3.1, let us interpret 
it. Roughly speaking, it is s tatement i) of the 
Introduction: if large variance s t ra ta  are some- 
what overrepresented in the sample and small 
variance s t ra ta  somewhat underrepresented, 
then the variance of the poststratified mean is 
smaller than that  of the regular mean relative to 
the given sample configuration. Since the regu- 
lar mean may also be biased, this conclusion is 
more than sufficient to guarantee that  the post- 
stratified mean is as precise as or more precise 
than the regular mean. 

Theorem 3.1 hypothesizes that  s t ra ta  with 
variances somewhat larger than M are over- 
sampled while s t ra ta  with variances somewhat 
smaller than M are undersampled. Since ~ i  m 

n 
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= 1, not all s trata can be oversampled nor can 
all be undersampled. Thus M must be a num- 
ber intermediate between the smallest and lar- 
gest of the stratum variances. M can be re- 
garded as a kind of average value for S 2, i - 
1, ..., k. 

If all s trata have the same variance, then 
M is this common value and the theorem re- 
quires that the configuration be proportional 
(hi ~x Ni). In the general case, by hypothesis 
ii) s trata having variances within d units from 
M are sampled proportionally. This restriction 
can be rendered vacuous by choosing M and d 
so that  no stratum is eligible. If the strata are 
indexed in order of increasing variance: S 2 < 
$2 2 _< ... _< S~, and if M is chosen intermediate 
between two successive variances: S~ < M < 
S 2 with d -  m i n ( S 2 + l -  M , M -  S~) then i+1~ 
Theorem 3.1 requires that strata i + 1, ...,k be 
oversampled while strata 1,..., i axe undersam- 
pled. 

The remaining restriction is that the over- 
sampling and undersampling not be excessive. 

n? 
If we ignore the terms ~ and ~ by consid- nN~ 
ering a population large in each stratum com- 
pared to the sample size, the theorem requires 
that 1 + h >- > 1 in any oversampled 
stratum, and 1 -  ~/ < ( ~ ) / ( - ~ )  < l in any 
undersampled stratum. To provide maximum 
leeway, one might choose ~ as large as possible 
- say, M - ½. (S 2 + Shl ) and d - ½. ( S h l  - S~) 
where i is an index giving the largest value for 

- - ($2 . i_1  - S )l(S2 + SLI). 

Proof of Theorem 3.1" Let ~1  respectively 
~2  denote sums over indices i satisfying i) re- 
spectively iii). From (2.1)and (2.2)we obtain: 

E+ 

V ( - ~ / { n i } ) -  V ( ~ p , , / { n i } )  - 

~ )  ( N i )2 ) (  1 -  ni $2 > 
_ ( y  y )  .-7, _ 1 rt,- 

E ( n i  Ni ni Ni ni M + d  - - +  )(1 - )( ) 
1 n N ) ( ~ ,  Y -~i ni 

ni Ni ni M - d 
E(2 NiN nin )(-'n + --f-)(1 - -~i )( ni ) 

2d ni 
n n 

Ni 
N ) 

1 ni 
+(M + d ) ~  n--~( 

1 n 

2 Ni Ni ni n i )( 
U U N nNi j 

Ni ni 2 ni)( n i ) 
n N N nNi" - ( M  - d ) ~  n--~( N 

2 

M ni 
- 

n n 

_> __2 dn ~ ( n in Ni 

Ni ni ) 
N ) - - n  N n 

2d x-,( ni Ni 
n n N )>--0"0 

The next theorem indicates what happens 
when the configuration is of the form ni ~ Ni S k. 
This includes several familiar configurations - 
namely proportional (k = 0), optimum (k = 1), 
and pseudoproportional (k = 2). The optimum 
configuration is the configuration that gives the 
smallest conditional variance for the poststrati- 
fled mean, the condition being the given sample 
configuration. However, the optimum configu- 
ration may not be the configuration where the 
poststratified mean gives the greatest improve- 
ment in precision over the regular mean. The 
pseudoproportional configuration is dual to the 
proportional, in the sense that both configura- 
tions give the same conditional variance for the 
poststratified mean. More generally, ni c~ NiS k 
is dual to ni cx NiS~ -k in this sense, and the 
optimum configuration is self-dual. 

Theorem 3.2: Let k be a real number in the 
interval [0, 2], and let ni cx NiS. k, for i -  1, ..., k. 
Then Y('Zpst/{ni}) <_ Y ( x / { n i } )  provided the 

n sampling fraction ~ can be ignored. 

Proof: As in the proof of (3.1) 

S~ k 

( Ni)2) ni S? ( n ' )  2 - ( - ~ -  (1 - ) - -  - 

• n- -~i ni 
$ 

N2 Ni 1 -  = 
Ni Ck 
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_1 ?~k+2 Uk?~2-k -- 7~2 
n Uk -N u2k 

where u j -  ~ , i -~  Sj and C k -  Nu--~" Note that 

since ni o( NiSki for all i, ~ - CkS~. 
If we ignore the second term on the right on 

n the assumption that  N is very small, it suffices 
to establish that 

~k+2 ___ (~k)2~2-k, 

or after the application of the logarithm func- 
tion that  

g (k+2)  >_ 2g(k)+g(2-k ) ,  (,) 

where g(x) - log u,  - log E i  ~ S ~  for a real 
number x. But g satisfies g(0) - 0 and g"(x) > 
0 for x _ 0 by the Cauchy-Schwarz inequality 
(we omit details). Hence g is subadditive on the 
nonnegative reals, and ( ,)  holds for 0 < k _< 2. 
rn 

Now we give a result in the opposite direc- 
tion. 

Theorem 3.3" Suppose that  N > 2n, that 
the k-th stratum has the largest variance, and 
with 

Dk - m.ax{[Xi -  Xkl} 
$ 

that 

max ( S  2 + 
i-=l,...,k- 1 

If 

s~ > 

2n Nk - -  2,~ ( ~ - ) D k l X i  - Xklj  .(3.3) 
1 -  N- 

ni > Ni f o r i -  1, ,k 1, 
n - N 

then MSE(~ / {n i } )  < V(~pst/{ni}). 

This theorem says that if some stratum has 
sufficiently large variance and all other strata 
are overrepresented in the sample, then the reg- 
ular mean is more precise than the poststrat- 
ified. The variance of this stratum must be 
larger not only than all other within-stratum 
variances but also larger than each such vari- 
ance plus the sample size times a measure of 

between-strata variability. In fact, the second 
term in inequality (3.3) could be replaced by 

2n Nk)D ~ 
1 _  _~(-~- 

for a somewhat simpler (but less general) the- 
orem. Inequality (3.3) is satisfied if the sample 
size is relatively small and the stratum means 
are close together while one stratum has a large 
variance. But it is also satisfied if the sample 
size is small, the stratum means differ signif- 
icantly, and one stratum has extremely large 
variance. 

Proof of Theorem 3.3" Let 

F(•I,  . . . ,  l'~k_ 1 ) -- V ( x p s t / { n i } ) -  M S E ( - ~ / { n i } )  

be regarded as a function of all s tratum sizes but 
the k-th, with nk = n -  ~ i<k ni as a dependent 
variable. At proportional allocation, from (2.1) 
and (2.2) we obtain: 

F(n(N1 Nk-1 ~ - ) ,  ..., n ( ~ ) ) - 0 ,  

as well as: 

OF 
Oni(nl, ..., nk-1) - 

s~ - s~ + (w~)~S d _ N~ ~S~ 
2 n 2 ~ n~ (-N) n i 

2his 2 2nkS~ 
n2Ni n2Nk 

( ) -  - -2  ~ (  nJ Nj )-~ ( X, - x~ ). 
• n N n 

This expression has six terms in it. If each 
ni, i < k, satisfies ni >_ n(-~) and accordingly 

,~k _ - ( - ~ ) .  t h . .  th. ~.¢o.d ~.a  third term~ 
together equal the nonnegative quantity: 

( ) w~ ~ .S~ - S] N~)~S~ n, N~ 
( ~ - )  + ( ~  -~- ~ • 

n i n~ N k 
% 

Thus the partial derivatives will be nonneg- 
ative provided that for each i < k the first, 
fourth, fifth, and sixth terms combined stay 
nonnegative, that is" 

nk 
S~(1 - 2~-~k ) > 

3 4 4  



ni ( nj 
$2(1-  2~-/)+2n ~ ( n  

3 
N 

The sum in the large parentheses is just the bias, 
and can be rewritten after a bit of algebra as 

~ ( nj Nj )(-~j - -Xk ) 
n N 

j<k 

and thus is dominated by: 

~ (  nj Nj )Dk -- ( Nk nk )Dk. 
j<k n N N n 

If each ni, i < k, is larger than or equal to its 
n proportional allocation value, then ~ > ~ > 

,~__,k and inequality (3 3) suffices for all the par- Nk 
tials to be nonnegative. Since a path from pro- 
portionM allocation to such an allocation can be 
chosen consisting of line segments along which 
only one ni, i < k, increases and the others stay 
constant, F is non-decreasing along the path 
and its value is nonnegative at the endpoint al- 
location. Q 
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