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Before I begin discussing the individual 
papers, I want to congratulate our session chair and 
her employer, NCHS, for sponsoring this important 
work. As you have seen, the presenters and their 
collaborators took on a large scale, real world, test 
of their methods and achieved satisfying results. 
The multiple imputation application is particularly 
impressive. While I personally prefer solutions 
that have more of a nonparametric flavor, I am not 
aware of any alternative strategies that attempt as 
comprehensive a solution. 

Turning to the papers presented today, I 
am going to concentrate my comments on the first 
three. The fourth paper by Clifford Johnson and 
his colleagues at NCHS begins to delve into the 
thorny issue of how to disseminate multiply 
imputed data sets. More work clearly needs to be 
done in that area. 

Focusing on the Fahimi and Judkin paper, 
my reaction to their sequential approach is one of 
considerable sympathy. I would have probably 
taken a similar tack. Of the two altemative 
methods contrasted, I also favor their regression 
mean modeling and "hot deck" residual imputation 
approach. I prefer this scheme to the predictive 
mean matching method because the regression 
mean and residual imputation lends itself directly 
to linearization variance estimation. To facilitate 
this linearization approach to proper variance 
estimation, one requires a probability sampling 
scheme for selecting and assigning residuals. An 
algorithm like Brenda Cox's "weighted sequential 
hot-deck" can be adapted nicely for this purpose. 
Yes, in spite of claims to the contrary, randomized 
single imputations combined with proper 
linearizations can yield valid total variance 
estimators. Admittedly, this design-based approach 
is not as easy on data users as multiple 
imputations. 

One thing I do find troubling about 
regressions mean and residual imputation 
approaches, is their potential for biasing tail 
probability estimates when the model R 2 is low. 
The serum cholesterol models reported here all 
suffer from this weakness. Faced with the task of 
estimating the fraction of various subpopulations 

that exceeded a particular high serum cholesterol 
value, I would prefer a two-stage imputation 
scheme that first predicted the likelihood of falling 
into a particular interval. For this purpose, one 
could use a polytemous logistic regression model 
given the other continuous and categorical 
predictors from the questionnaire and exam. 

This also brings up a concern I have with 
the multiple imputation model. I was intrigued by 
the joint categorical and continuous data 
distribution used in the multiple imputation 
solution. Shafer and company fit the marginal 
distribution of the categorical data and the 
conditional distribution of the continuous data 
given the categories. This formulation achieves a 
relatively economical form for the categorical 
distributions given the continuous data. In practice 
though, even this relatively economical model 
quickly becomes impractical as the number of 
polytemous variables multiplies. I believe this 
difficulty constitutes a serious limitation to the 
simultaneous imputation approach when most of 
the important survey variables are polytemous. To 
overcome this difficulty, in their NHANES 
application, Shafer and colleagues stoop to treating 
categorical variables as continuous normal variates. 
If these categorical questionnaire variables were 
important survey outcomes, this fix would be less 
tolerable. The problem with too many categorical 
variables was exacerbated by including the PSU's 
or STANDS as fixed effects in the categorical 
model. I believe this approach to capturing design 
complexity in terms of fixed effects for the 44 
primary sampling units is ill conceived. Primary 
sampling unit effects are inherently random effects. 
If one can deal with this source or variation by 
including STAND among the categorical 
predictors, what about the second stage sampling 
units? I believe NHANES uses census block 
groups as second stage sampling units. These units 
exert stronger neighborhood effects than the 
county-level primary units. There are clearly too 
many block groups in the NHANES sample to 
treat these second stage sampling units as fixed 
effects. Naturally, I believe that sample design- 
based variance estimation is the most practical way 
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to incorporate these clustering effects into the 
analysis. Otherwise, I believe that pure model- 
based solutions will be forced ultimately to 
entertain hierarchical or random effects models. 
This is still a fairly onerous computational chore. 
An intermediate approach is to obtaining more 
matched census variables at the county and block 
group level. This matching also gives one more 
auxiliary variables that are useful for missing data 
prediction. 

One final question I had regarding the 
multiple imputation paper has to do with the 
degrees-of-freedom, formula. My question is, 
"How can the combined imputation and sampling 
variance have considerably more degrees-of- 
freedom than the dominant sampling variance 
contribution? "The SUDAAN sampling variance 
for NHANES is based, I believe, on a between 
PSU within stratum mean square that has at most 
22 degrees-of-freedom. Am I correct in assuming 
that the df formula presented by Shafer and his 
coauthors views all design-based variance 
estimators as having infinite degrees-of-freedom. 
Given the design variance instabilities alluded to in 
the paper, I was surprised at the inference drawn 
regarding these degree-of-freedom values. The 
authors claim that their large df number is an 
indication of good quality estimation for the 
between imputation variance component. My 
interpretation of their big df values is that the 
erroneous assumption of infinite df for the 
sampling term combined with a small relative 
contribution by the between imputation component 
leads to a gross overestimate of total degrees-of- 
freedom. 

This brings up the issue of the instability 
of NHANES design-based variance estimates or 
associated design effects. The authors 
acknowledge that this may be due to the small 
number of NHANES PSUs. This should not be 
taken as a general indictment of design-based 
variance estimators. There is a need for a robust 
degrees-of-freedom estimator for design-based 
variance approximations. When the degrees-of- 
freedom estimate is too small for acceptable 
inference, some combination of modeling design 
effects and smoothing over variables in needed. 
Often, in area household samples, I f'md that one 
can fall back to more stable variance estimates that 

account for second and subsequent stages of 
clustering without suffering much if any downward 
bias. 

My final comments relate to the Ezzati- 
Rice, et.al recommendation regarding alternative 
weight adjustments for questionnaire nonresponse. 
Expanding on this recommendation, I think further 
consideration should be given to making response 
propensity weight adjustments for complete 
examination (unit) nonresponse. Most of the 
missing exam data is completely missing and 
therefore the exam data imputations seldom benefit 
from any within exam predictors. Inverse response 
propensity weights utilizing all the pre-exam 
questionnaire variables should achieve most of the 
bias and variance reduction benefits of imputing 
selected MEC variables. Simultaneous imputation 
of missing exam and questionnaire items could still 
be beneficial. 

I have recently been working on 
generalized raking solutions for response 
propensities in the context of unit and item 
nonresponse adjustments. This approach has 
interesting nonresponse bias reduction features 
when the data imputation model is faulty. I have 
also discovered some simple linearization variance 
estimators for response propensity weighted 
statistics. In short, I think that unit nonresponse 
adjustment for completely missing exams deserves 
further consideration. 

In the time remaining, I will outline some 
of my generalized raking results. 

A Generalized Raking Solution for the 
Questionnaire (Unit) Response Propensity 

Definitions: 

S --  A sample of n units with sampling 
w e i g h t s  W i 

X i  ~ (1, xi) with X i a p element vector 
of questionnaire response 
predictors 

r i = A one-zero questionnaire response 
indicator 
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Yi - 

Pi --- 

A vector of questionnaire 
outcomes "observed" when r i = 1. 

Prob [r i = 1 ] X i ,  Yi ] 

I have shown (Folsom, 1991) that 

=Yr Yr,p +t (3) 

[ 1 + exp (-X i [3 )] -l, assumed 
independent of Yi given X i. 

GeneralizedRaking Solution for 13 

The 13 vector solution equations have 

the generalized raking form 

Us1 - ~  WtX, r[ (ri ÷P,) - I I = 
t,, -p+1(1) 

= ~  W~Xir[r,&,-(1 -r , ) ]  =dp 
i e s  "p+l 

with 

tii - [ ( 1 -15,) + 15,1 =exp( - X  i ~ ) 

The associated mean estimator for 

element of Yi is 

Yr+p - - [ ~  W~(r, + ~,)y,] +lfl 
ie$ 

with 

I¢1 -- E Wt -- [ ~ Wg( r, ÷ ~,) ] 
tes ies 

Ya ' an 

The Associated Imputation Estimator 

Y",+t, = ~ Wttr, Yt, +( 1 -r,)XiCfr.] +lfl 
ies 

where the "~ru coefficients satisfy 

Us2 =- ~ Wi(r,&~)X,r(Y,-Xi'~r.):dP 
ie$ -p+l 

(2) 

m u 

The Delta Linearization for Y r , p  = Y,.L 

If we define 

y .  =- [r~y. +(I -r~)Xj'~r.] 

and 

then the linearized variate is 

Z,  - [ (£a - Yr. p ) + (rt - P t) e,t] + ill 

=[(Ya- f ,  +L) + (rt al)e,t] -/q 

where 

e'tt =- (Y. - X/~t. ) 

The associate linearization variance estimator has, 
for simple random sampling, a form reminiscent of 
the double sampling regression variance estimator. 
When the squared coefficient of variation in the 

(1 ÷ ibt) weight adjustments is small, Yr.p achieves 
variance reduction roughly equivelant to the SRS 
double sampling regression estimator. Deville and 
S~imdal (1992) present similar results in the 
context of post-stratification type generalized 
raking adjustments for sampling error reduction. 
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