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1 I N T R O D U C T I O N  

The National Health and Nutrition Examination 
Survey (NHANES), conducted by the National 
Center for Health Statistics (NCHS), collects im- 
portant nutritional and health-related data on the 
civilian noninstitutionalized U.S. population and 
important subgroups. The ongoing NHANES III 
consists of two national samples collected over a six- 
year period (1988-94) with a total sample size of ap- 
proximately 40,000 persons. High rates of unit non- 
response in NHANES, together with some residual 
item nonresponse, lead to high rates of missingness 
on key survey variables. In previous NHANES sur- 
veys, unit nonresponse was handled by weighting- 
class adjustments, with little or no compensation 
made for item nonresponse. Similar weighting-class 
adjustments were also planned for NHANES III 
(Ezzati and Khare, 1992). 

In 1992, NCHS initiated a project to investigate 
alternatives to the current NHANES nonresponse 
adjustment methodology. One of these alternatives 
was multiple imputation (MI) (Rubin 1987). In this 
paper, we describe our preliminary efforts to mul- 
tiply impute a portion of the data from NHANES 
III, Phase 1 (1988-91). A data file consisting of 27 
key variables for 12,392 sampled adults was multi- 
ply imputed for both item and unit nonresponse us- 
ing techniques of iterative Bayesian simulation via 
Markov chains described by Schafer (1991). Ex- 
ploratory analysis of the imputed values suggests 
that both the marginal distributions of variables 
and important relationships between them were ac- 
curately preserved. MI interval estimates for scalar 
quantities of interest (means, subdomain means, 
etc.) were, in some cases, dramatically wider than 
corresponding intervals that ignored the missing- 
data uncertainty. This project represents the first 
successful implementation of proper MI methodol- 
ogy in a large multivariate survey, and consequently 
gives useful insight into the feasibility of multiply 
imputing NHANES and other large multipurpose 
sample surveys on an ongoing basis. 

*Meena Khare, National Center for Health Statistics. 
Roderick J. A. Little, University of Michigan. Donald B. 
Rubin, Harvard University. Joseph L. Schafer, Pennsylvania 
State University. 

2 N O N R E S P O N S E  IN N H A N E S  I I I  

Patterns of nonresponse in NHANES III are heavily 
influenced by the process of data collection, which 
occurred primarily in three stages" 

1. Household screening. When a household was 
selected into the NHANES III sample, a brief 
screening interview was conducted to deter- 
mine household size and the age, sex, and race 
of every household member. This information 
was required for the final stage of sampling in 
which individuals were selected within house- 
holds. As a byproduct of this screening proce- 
dure, the basic demographic characteristics-- 
age, sex, and race--are known for each sampled 
person; no data are missing for these iterrs. 

2. Personal interview. After the household 
screening and final stage of sampling, in-depth 
interviews were conducted. In Phase 1 of 
NHANES III, 14% of the sampled persons 
could not be interviewed at all. Among those 
that were interviewed, refusal or inability to 
answer specific interview questions led to some 
additional item nonresponse at typical rates of 
1-5% per item. 

3. MEG ezamination. Upon completion of the 
personal interview, sampled persons were re- 
quested to report to the MEC for the physical 
examination. Among interviewed persons in 
Phase 1, 9% did not report to the subsequent 
physical examination, resulting in an overall 
examination rate among sampled persons of 
78%. In the examinations, not all items were 
successfully recorded for all examinees. Data 
recording errors and other mistakes by person- 
nel also caused single items or groups of items 
to be missing. Among examinees, nonresponse 
rates for individual MEC items were on the or- 
der of 5-8%. 

At the end of this data collection process, many key 
variables from the MEC examination were missing 
at rates relative to the entire sample of 30% or more. 

It is common practice to compensate for unit non- 
response by weighting-class adjustments. Respon- 
dents and nonrespondents are grouped together into 
a relatively small number of classes or cells. The 
nonrespondents are assigned survey weights of zero, 
and the weights of the remaining respondents are 
proportionately inflated so that the total weight 
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of the units within cells is preserved. In previ- 
ous NHANES surveys, survey weights for examinees 
were inflated up to the level of the full sample within 
broad classes defined by geography, demographic 
variables, and family income. After reweighting, 
little or no imputation was used to compensate for 
the remaining item nonresponse; missing items were 
left blank and omitted from further analyses. 

One disadvantage of this weighting-class ap- 
proach is that very little information obtained from 
the personal interview was used in the nonresponse 
adjustment for the non-examined. With the excep- 
tion of income, none of the interview information 
was used in the formation of weighting classes. Yet, 
the personal interview provided many variables that 
are potentially powerful predictors for some of the 
MEC examination items. There seem to be signifi- 
cant potential gains, both in reducing nonresponse 
bias and increasing precision, from including more 
of the interview variables in the nonresponse ad- 
justment. 

Imputation, although typically more difficult to 
carry out in practice than weighting-class adjust- 
ments, offers some potentially important advan- 
tages including the reduction of variance and the 
opportunity to use more covariate information. 
Moreover, through the technique of multiple impu- 
tation (Rubin, 1987), it is possible to assess the im- 
pact of missing-data uncertainty on the variances of 
estimators and revise variance estimates to reflect 
this additional uncertainty. Applications of multi- 
ple imputation to large surveys such as NHANES 
have been previously hampered by the difficulty of 
generating proper multiple imputations in multi- 
variate settings. Recent advances in techniques of 
Bayesian computation, however, now make it possi- 
ble to generate proper multiple imputations in mul- 
tivariate settings under a variety of useful models 
for both continuous and categorical data (Schafer, 
1991). Multiple imputations can now be routinely 
generated using iterative simulation schemes based 
on Markov chains, including the Gibbs sampler 
and the Metropolis algorithm (Geman and Geman, 
1984; Gelfand and Smith, 1990). 

3 T H E  M I  DATA F I L E  

To test the applicability of MI methodology to 
NHANES, a data file was prepared consisting of 
approximately 30 key variables from the screener 
questionnaire, personal interview, and MEC exam- 
ination in Phase 1 of NHANES III. Major attention 
focused on just twelve variables from three MEC 
components--body measurements, blood pressure, 

Table 1: MEC variables in the NttANES III multi- 
ple imputation data file. 

Name J~ missis# Description 
Body measurements 

H T  31.5 height 
W T  33.2 weight 
WST 32.9 waist circumference 
BUT 32.8 but tocks  circumference 

Blood pre$$ur~  
BP1K1D 33.2 t i n t  systolic pressure 
BP1K5D 33.3 first diastolic pressure 
BP2K1D 33.4 second systolic pressure 
BP2K5D 33.5 second diastolic pressure 
BP3K1D 33.4 third systolic pressure 
BP3K5D 33.6 third diastolic pressure 

Lipids 
TCRES 33.3 total serum cholesterol 
HDRES 33.9 HDL cholesterol 

and lipids. Because the personal interview and ex- 
amination procedures were substantially different 
for adults and children, this study was restricted 
to the 12,391 adults (age 17 years and older) in 
the Phase 1 sample. Of these, 72.5% completed 
both the interview and the examination, 12.8% 
were interviewed but not examined, and 14.9% were 
neither interviewed nor examined. Everyone who 
missed the interview also missed the examination. 
The twelve MEC variables with their overall rates 
of missingness reflecting both unit and item nonre- 
sponse are listed in Table 1. 

In addition to these twelve MEC variables, we 
included in the data file a number of additional 
variables from the screening and personal inter- 
views. These pre-MEC variables were judged to 
contain potentially valuable information for imput- 
ing the missing MEC items. Imputation methods 
that condition on auxiliary variables have some well 
known benefits, including the reduction of nonre- 
sponse bias and sampling variance. For reducing 
mean squared error of prediction, it is usually ben- 
eficial to make maximal use of whatever covariate 
information is available. Another important, but 
less well known, benefit of including auxiliary vari- 
ables arises when attempting to reflect missing-data 
uncertainty. MI will provide valid inferences only if 
the imputations exhibit enough variability to rep- 
resent our true state of knowledge about the miss- 
ing values in a conditional or a pos t e r io r i  Bayesian 
sense. Omitting an auxiliary variable from the im- 
putation procedure is equivalent to specifying, say, 
a regression model in which the coefficient of the 
auxiliary variable is set to zero a pr ior i .  Fixing 
parameters of the imputation model to zero, when 
the data do not provide strong evidence that they 
are truly zero, will tend to produce MIs having too 
little variability. 
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One set of auxiliary variables that  requires care- 
ful consideration is the set that  conveys infor- 
mation about the sample design. Surveys with 
complex sampling plans have important  features--  
unequal probabilities of selection, stratification, and 
cluster ing-- that  distinguish them from simple ran- 
dom samples. The observational units in complex 
surveys are typically not exchangeable and cannot 
be appropriately described by simple probability 
models that  assume units are independent and iden- 
tically distributed. In order to guarantee that  MI 
inferences are valid, essential information about the 
sample design must be included in the analysis. 

Finally, apart  from considerations of mean 
squared error and variance estimation, we also felt 
it was essential to include auxiliary variables to 
preserve important  statistical relationships in the 
dataset, especially those relationships that  may be 
of interest to potential secondary users of the data. 

All of the above arguments tend to favor large 
imputat ion models over small ones, encouraging us 
to include as many auxiliary variables as possible. 
Balanced against these considerations were compu- 
tational limitations that  prevented us from fitting 
a model as large as we would have liked. Starting 
with about twenty candidate auxiliary variables, we 
reduced the list, on the basis of exploratory regres- 
sion analyses (described below) and a pr ior i  con- 
siderations, to the fifteen variables shown in Table 
2. Information on the stratified cluster design of 
NHANES was reflected in STAND, a 44-level cate- 
gorical variable indicating the mobile examination 
location or primary sampling unit (PSU) to which a 
person belonged. Further information pertinent to 
the final stage of sampling was contained in the de- 
mographic variables AGE, SEX, and RACE. Eleven 
variables from the personal interview were included 
because they were found to have statistically signif- 
icant and scientifically important  relationships to 
one or more of the twelve MEC items. 

4 T H E  I M P U T A T I O N  M O D E L  

The most straightforward way to generate proper 
multiple imputations in a multivariate setting is to 
specify a parametric model for the complete data 
along with a prior distribution for the parameters, 
and then simulate values from the conditional dis- 
tribution of the missing data given the observed 
data. We chose to work with a special case of the 
model for mixed continuous and categorical mul- 
tivariate data introduced for discriminant analysis 
by Krzanowski (1982) and applied to incomplete 
multivariate data by Little and Schluchter (1985). 

Table 2: Pre-MEC auxiliary variables in 
NHANES III multiple imputat ion data file. 

Name J~ missing Description 
PSU identifier 

STAND 0.0 exam location (1-44) 
Demographics 

AGE 0.0 17-39, 40-59, 60+ 
SEX 0.0 male, female 
RACE 0.0 Black, Mex-Amer, Other 

the 

Interview 
ACTV 20.6 activity status 
AD1 18.5 diabetes diagnosed? 
AE2 19.3 hypertension diagnosed? 
AE7 62.4 high cholesterol diagnosed? 
AF10 20.6 heart attack diagnosed? 
AR3 18.3 smoke cigarettes now? 
ALCO 18.6 beer/wine/liquor? 
AHT 22.7 self-reported height 
AWT 21.6 self-reported weight 
ASYS 21.9 interview systolic b.p. 
ADIAS 21.9 interview diastolic b.p. 

Let Y denote the matr ix  of complete data, which 
can be partitioned as Y = (W, Z), where W is an 
n×p matrix of categorical variables and Z is an n×q 
matrix of continuous variables. Let W1, W2, • •., Wp 
and Z1, Z 2 , . . . ,  Zq denote the variables in W and Z, 
respectively. Suppose that  the categorical variable 
l/V/ takes dj possible levels, so that  each row of W 
can be classified into a cell of a p-dimensional con- 
tingency table with total number of cells equal to 
D - 1-I~=1 dJ" Let {Xijk. . . t}  denote the cell counts of 
this contingency table, where xijk. . . t  is the number 
of rows of W for which W1 - i, W2 - j ,  . . . , Wp - t. 
It is notationally convenient to index the cells of the 
contingency table by the single subscript d, ranging 
from 1 to D, so that  the cell frequencies may be 
written as {:ca}. 

The multivariate distribution for Y is most eas- 
ily described in terms of the marginal distribution 
of W and the conditional distribution of Z given 
W. We assume that  the marginal distribution of 
W is multinomial on the cell counts {z i jk . . . t } ,  with 
cell probabilities denoted by 7r = {Trijk...t} = {~rd}. 
Conditionally upon W, the rows of Z are assumed 
to be multivariate normal with means that  vary be- 
tween cells of the contingency table, but with a 
common covariance structure for all cells. Given 
that  an individual's categorical variables determine 
that  he should be placed into cell d, then his val- 
ues of (Z1,  Z 2 , . . . ,  Zq) are assumed to be N ( ~ d ,  E)  
independently of all other individuals. Letting t t -  
( /~ l ,P2 , . . . ,PD)  T denote the D x q  matr ix  of condi- 
tional means, we can write the unknown parameters 
~ 0 = ( ~ , ~ , x ; ) .  

As the number p of categorical variables grows, 
the contingency table typically becomes too sparse 
to estimate the probabilities 7rd for the individual 
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cells, much less the mean vectors pd within cells. 
For this reason, we reduce the dimensionality of the 
parameter by allowing loglinear constraints on the 
cell probabilities r ,  and/or  ANOVA-like constraints 
on the cell means p. Loglinear constraints are a well 
known device for fitting parsimonious models to 
contingency tables (e.g., Bishop Fienberg, and Hol- 
land, 1975) and will not be described here. Let A 
be a D×r design matrix that relates the within-cell 
means p to an r× q matrix of regression coefficients 
fl in the manner p-Af t ,  where r a n k ( A ) - r  < D. In 
other words, we allow the means Pd to vary from 
cell to cell, but require that each column of p lie 
in the r-dimensional linear space spanned by the 
columns of A. 

Among the 27 variables listed in Tables 1 and 2, 
sixteen are continuous while the remaining eleven 
consist of ordered or unordered categories. At- 
tempts to fit a model with eleven categorical vari- 
ables proved futile, because the contingency table 
became much too sparse to allow for stable esti- 
mation of the within-cell means unless undesirably 
strong restrictions were introduced on p through 
the design matrix A. Further elimination of cate- 
gorical variables to reduce the dimensionality of the 
contingency table was undesirable, because we con- 
sidered all eleven to be important. In particular, 
retention of the 44-level classification by STAND, 
even though this variable was one of the main causes 
of sparseness, was considered essential to ensure 
that sample-design information was properly re- 
flected in the MIs. 

After considering several alternatives, we finally 
decided to retain only four variablesmAGE, SEX, 
RACE, and STAND--in the categorical portion of 
the model, treating the other 23 variables as contin- 
uous and conditionally multivariate normal given 
these four. The resulting four-way table had 792 
cells for 12,392 observations. Because of the sam- 
ple design, this table was filled in rather nicely with 
only 157 empty cells. Modeling the six dichoto- 
mous variables AD1, AE2, AE7, AF10, AR3, and 
ALCO, and the three-point ordinal variable ACTV, 
as continuous and conditionally normal was only 
a very rough approximation at best. We consid- 
ered the approximation to be acceptable, however, 
because these seven variables were not among the 
variables of primary interest in our study. The 
variables of greatest interest were the twelve MEC 
variables listed in Table 1, and the pre-MEC vari- 
ables were intended to serve primarily as predictors. 
Moreover, some limited evidence suggests that er- 
roneously modeling the seven discrete variables as 
continuous did not have a strong adverse effect on 

the final imputations; when the continuous imputes 
for these seven were rounded off to the nearest cate- 
gories, the distributions of the imputed values were 
quite reasonable and looked very similar to the dis- 
tributions actually observed in the sample. 

In the final analysis, we modeled the 635 
nonempty cells of the contingency table for AGE × 
SEX × RACE × STAND by a saturated multinomial 
distribution, treating the 157 empty cells as struc- 
tural zeros. (This specification had no effect on 
the distribution of imputed values, because these 
four variables were never missing.) The 23 remain- 
ing "continuous" variables were then modeled as a 
multivariate normal linear regression. To make the 
normality assumption more plausible, body mea- 
surements, lipids, and systolic blood pressures were 
expressed on a log scale. Each of the 23 individual 
regressions included an intercept, 17 dummy indi- 
cators to represent the full AGE × SEX × RACE 
interaction, and 43 dummy indicators to represent 
STAND, for a total of 23(1 + 17 + 43) = 1403 es- 
timated regression coefficients and 23(24)/2 = 276 
residual variances and covariances. The total num- 
ber of unknown free parameters in this model was 
thus ( 6 3 5 -  1 )+  1403 + 276 = 2313. 

5 M O D E L  F I T T I N G  A N D  I M P U T A T I O N  

A full description of the techniques we used to fit 
our model and generate MIs is beyond the scope 
of this article and can be found in Schafer (1991); 
we present only the general strategy. An EM al- 
gorithm for maximum-likelihood (ML) estimation 
with incomplete data under the multivariate model 
described above is given by Little and Schluchter 
(1985). To simulate missing data under an assumed 
value of the parameter such as 0 - 0 (the ML es- 
timate) would be relatively straightforward. Under 
our model, the vector of missing observations for 
each person has, given his or her observed data, 
a multivariate normal distribution with parameters 
that can be calculated by applying a suitable trans- 
formation to 0. Multiple simulated versions of the 
missing data under 0 = 0, however, would not be 
proper MIs because they would ignore uncertainty 
about O" Proper MIs can be most easily conceptu- 
alized as repeated draws from a Bayesian posterior 
predictive distribution for the missing data given 
the observed data. Let Yob, denote the observed 
data and Ym,s the missing data. The posterior pre- 
dictive density of Ymis given Yobs, or P(Y,r, is [Yobs), 
is 

P(Ymis IYobs) -- / I y oh,, o) P(OlYob,) dO, 
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where P(O I Yobs) is the posterior density of the pa- 
rameters given the observed data. This distribution 
P(Yn,~, I Yob,) is the appropriate source of multiple 
imputations under the assumption that the nonre- 
spouse mechanism is ignorable, or that the missing 
data are missing at random, in the sense defined by 
Rubin (1976, 1987). 

Because P(Ymi, I Yob,) has an intractable form, 
we simulated draws from this distribution indirectly 
by constructing a Markov chain for which the lim- 
iting distribution is P(Ym~, I Yob,). This Markov 
chain is defined as follows. Given a current param- 
eter value 0(t), we simulated a value of Y,,,,s condi- 
tionally upon 0 - 0 (t)" 

y(t+l)  0 (t) 1) 4, ~ P(Y,n~ [Yob~, ). ( 

Then we simulated a new parameter value under a 
0+:) 

complete-data posterior assuming Ymss - Y~s  " 

e ('+x) P(elYob,, Y(mti~l)) • (2) 

Performing (1) and (2) alternately beginning from 
some starting value 0(°) defines a Markov chain. 
This algorithm is a special case of the Gibbs sam- 
pler (Geman and Geman, 1984; Gelfand and Smith, 
1990), and it can be shown that under very gen- 
eral conditions the distribution of 0 (t) approaches 
P(O I Yobs ) as t --~ oo. By taking t suitably large, 

y ( t )  becomes essentially a draw from P(Ym,s I Yobs). 
Successive tth iterates Y~)s (2t) (3t) Finis , es- ,Ymis, . . .  are 
sentially proper MIs. 

In our analysis, we used the improper prior dis- 
tribution p(r ,  ~, 2) oc [ ~ I -(q+~)/2. Under this 
prior, the complete-data posterior distribution be- 
comes the product of a Dirichlet for ~r, an inverted 
Wishart for ~, and a matric-variate normal for 
given ]E, all of which are straightforward to simu- 
late (Schafer, 1991). 

Beginning our simulation at the ML estimate 0, 
we simulated 400 iterations of the Markov chain. 
Every 40th value of Ymi, in the Markov chain was 
taken to be an independent draw from the sta- 
tionary distribution. In this way, ten sets of im- 
putations, which we shall call MI1, MI2 , . . . ,  Mix0, 
were produced. The entire simulation took approx- 
imately 30 hours on a dedicated Sun SPARCsta- 
tion ELC. The sequence MIs, MI2 , . . . ,  MI10 can be 
considered proper MIs only if the Markov chain 
achieves approximate stationarity (independence of 
the starting value) by 40 steps. Convergence to sta- 
tionarity is difficult to assess, especially because of 
the high dimensionality of Ymis and 0, but we in- 
formally monitored convergence by inspecting time- 

series plots of a few selected scalar functions of the 
parameter. 

6 A N A L Y S I S  OF T H E  I M P U T E D  DATA 

A good imputation method should accurately pre- 
serve both the marginal distributions of the vari- 
ables involved and relationships between them. 
Graphical displays (histograms, scatterplots, etc.) 
revealed that the marginal and bivariate distribu- 
tions of the imputed data, for the most part, mim- 
icked the observed data quite well. This was true 
both for the entire sample and within demographic 
subclasses. In some cases, certain non-normal fea- 
tures of the observed data (e.g. skewness and out- 
liers) were not fully reproduced in the imputed val- 
ues. The imputation model relied on assumptions 
of multivariate normality, and even after transfor- 
mation the observed data were not entirely nor- 
mal. For the most part, however, the imputed val- 
ues appeared entirely plausible and consistent with 
the observed data, and secondary users of the data 
would not find gross anomalies that sometimes oc- 
cur when ad hoc imputation schemes (e.g. hot-deck 
methods) are employed. Some of our graphical dis- 
plays are reproduced in Schafer et. al (1993). 

Using techniques described by Rubin (1987) for 
MI inference about scalar estimands, we calculated 
standard errors and interval estimates for a num- 
ber of quantities of interest based on the ten impu- 
tations MI1-MI10. Let Q denote a scalar quantity 
to be estimated. Let (~i and Ui denote a complete- 
data point estimate and variance estimate for Q, re- 
spectively, calculated from the ith imputed dataset, 
i - 1, 2 , . . . ,  m. The point estimate for Q is Qm - 

~ n  m - 1  )"~i=1 (~i, the average of the m complete-data 
point estimates. The variance estimate associ- 
ated with (~m has two components. The within- 
imputation component is /Ira - m -1 ~ j = s  Uj, the 
average of the complete-data variance estimates, 
and the between-imputation component is Bm = 
( m -  1) -x Ejm=l(Oj --Qm) 2, the sample variance 
of the m point estimates. The total variance is 
T m -  Um + (1 + m -  1) Bin. A 100(1 - c~)% interval 

estimate is formed by taking Qm =t=t~(1--C~/2)~.1/2, 
where tu(p) denotes the 100pth percentile of the t 
distribution with v degrees of freedom. An expres- 
sion for v is given by Rubin (1987), along with ex- 
pressions for the relative increase in variance due 
to nonresponse rm and the fraction of missing in- 
formation 7. 

Results for means of six MEC variables within 
categories of race/ethnicity are summarized in Ta- 
ble 3. The complete-data point estimates Qi were 
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Table 3: MI estimates for means of six MEC vari- 
ables within categories of race/ethnicity. 

Qlo f-f112 7'112 100rio 100"y 
V l  0 - - I 0  

Height (crn) 
W h i t e / o t h e r  
Black 
Mex-Amer  

Weight ([¢g) 

168.25 0.201 0.206 5.7 5.5 
168.22 0.192 0.200 8.2 7.7 
163.04 0.195 0.205 11.0 10.1 

W h i t e / o t h e r  
Black 
Mex-Amer  

Systolic BP 

73.85 0.364 0.380 9.2 8.6 
77.58 0.506 0.542 14.8 13.2 
72.20 0.451 0.465 6.3 5.9 

W h i t e / o t h e r  
Black 
Mex-Arner  

121.46 0.487 0.515 11.8 10.7 
124.18 0.709 0.766 16.6 14.6 
117.94 0.647 0.675 8.8 8.2 

Diastolic BP 
W h i t e / o t h e r  
Black 
Mex-Amer  

Tota l  cholesterol 

72.66 0.395 0.416 10.8 10.0 
74.63 0.473 0.503 13.2 11.9 
71.17 0.519 0.536 6.4 6.1 

W h i t e / o t h e r  206.04 1.036 1.118 16.3 14.4 
Black 201.28 0.960 1.075 25.3 20.9 
Mex-Amer  200.28 2.447 2.490 3.6 3.5 

HDL cholesterol 
W h i t e / o t h e r  51.00 0.388 0.414 14.1 12.7 
Black 55.95 0.462 0.514 23.7 19.8 
Mex-Amer  50.03 0.505 0.524 7.6 7.1 

calculated using basic survey weights (i.e., inverse 
probabilities of selection) without adjustments for 
poststratification. Complete-data variance esti- 
mates Ui were calculated with SUDAAN software 
(Shah et al., 1991) using a linearization method ap- 
propriate for the sample design. The degrees of free- 
dom v (not shown) ranged from 221 to 7526, sug- 
gesting that  the between-imputation components of 
variance tend to be well estimated. In contrast, 
we have good reason to suspect that  the within- 
imputat ion components of variance are estimated 
rather poorly. Design effects (not shown) provided 
by SUDAAN displayed erratic behavior across the 
ten sets of multiple imputations (Little and Ru- 
bin, 1992), suggesting that  the design-based vari- 
ance estimation method is inherently unstable, due 
perhaps to the small number of primary sampling 
units. Keeping this in mind, we interpret the results 
in Table 3 only with caution. 

The fractions of missing information 7 are quite 
small, ranging from 20.9% down to 3.5%, even 
though the MEC variables in this dataset were miss- 
ing at rates in excess of 30%. This suggests that the 
gains in precision from a good imputation model, 
which makes intelligent use of information about 
Ymis available in Yobs, can be substantial. The rel- 
ative increases in variance due to nonresponse rm 
range from 4 to 25%, so the total variances Tm tend 
to be not much larger than the within component 

_ 

Urn. The multiply-imputed interval estimates for 
these quantities, at least, are not much wider than 
single-imputation intervals. Within smaller subdo- 

mains, however, we found that  the values of rm 
could be much higher. For most uses of this dataset 
that  we can imagine, it appears that  m - 10 im- 
putations are more than enough to permit  accurate 
and efficient inferences (Little and Rubin, 1992). 
With most fractions of missing information in the 
range 5-15%, it seems that  m - 5 or even m - 3 
would be adequate. 
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