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ABSTRACT 
Many applications of the FeUegi-Sunter model use simpli- 
fying assumptions and ad hoe modifications to improve 
matching efficacy. Because of model misspecification, 
distinctive approaches developed in one application typi- 
caUy cannot be used in other applications and do not 
always make use of advances in statistical and computa- 
tional theory. This paper gives an Expectation- 
Maximization 0EMH) algorithm that constrains the 
estimates to a convex subregion of the parameter space. 
The EMH algorithm provides probability estimates that 
yield better decision rules than unconstrained estimates. 
The algorithm is related to the Multi-Cycle Expectation- 
Conditional Maximization algorithm (Meng and Rubin 
1993) and is deduced via results of Haberman (1977) that 
hold for large classes of loglinear models. 
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This paper provides a theory for obtaining constrained 
maximum likelihood estimates for latent-class, loglinear 
models on finite state spaces. The work is related to 
Expectation-Maximization (EM) algorithms by Meng and 
Rubin (1993) for obtaining unconstrained maximum like- 
lihood estimates. Meng and Rubin generalized the origi- 
nal ideas of Dempster, Laird, and Rubin (1977), hereafter 
denoted by DLR. The new class of algorithms, denoted 
by EMH, apply results of Haberman (1977) to constrain 
estimates to appropriate subregions of the parameter space 
and assure that the likelihood of successive parameter esti- 
mates is nondecreasing. In a variety of cases including 
the one of this paper, the method of constraining estimates 
can be expressed in closed form. Thus, constraining esti- 
mates need not necessitate iterative fitting methods such 
as Newton-Raphson or grid search. 

With many latent class models, computation and model- 
ling is greatly simplified because observed variables are 
assumed to be independent conditional on unobserved 
classification variables (e.g., Titterington, Makov, and 
Smith 1988) or such independence can reasonably be 
assumed hold (Rubin and Stem 1993). With record 
linkage problems, conditional independence does not hold 
(Smith and Newcombe 1975, Thibaudeau 1993). If latent 
class models have a large, say ten, number of observed 

variables, modelling the correct set of interactions is 
considerably more difficult than it is with general 
loglinear models where is is known to be difficult (e.g., 
Bishop, Fienberg, and Holland 1975). Conventional 
statistics such as chi-square do not yield accurate 
indications of the fit of estimates to the truth (Winkler 
1989, 1992, Rubin and Stern 1993). 

Instead of modelling the precise set of interactions, it 
may be suitable to include an easily specified, say all 3- 
way, set of interactions and restrict the solutions to a 
subregion of the parameter space based on prior know- 
ledge. If such constraints are appropriate, then the 
parameter estimates and decision rules may be nearly as 
good as those obtained through detailed modelling of 
specific sets of interactions. The constraints need to be 
easily specified and must be sufficiently weak that they 
provide sensible restriction in a variety of similar situa- 
tions. Also, 3-way interactions and suitable parameter- 
space restrictions should yield reasonable approximations 
to true models with interactions higher than 3-way. 

The main example involves a record linkage problem 
with files having known matching status. Computation 
is straightforward because each of the successive compo- 
nents of the Maximization step are in closed form and the 
restriction to a subregion of the parameter space is also 
in closed form using simple constraints. To motivate the 
concepts, basic parameter-estimation in record linkage 
and the successive types of EM-type estimation 
procedures that have so far been applied are described. 

Fellegi and Sunter (1969) gave a formal model for 
record linkage that involves optimal decision rules that 
divide a product space AxB of pairs of records from two 
files A and B into matches and nonmatches, denoted by 
M and U, respectively. The main issue is the accuracy 
of estimates of probability distributions used in a crucial 
likelihood ratio. When estimates are sufficiently accurate, 
decision rules are (nearly) optimal. The optimality is in 
the sense that, for fixed bounds of the proportions of 
false matches and false nonmatches, the size of the set of 
pairs on which no decision is made is minimized. 

Fellegi and Sunter (1969, pp. 1194-1197) considered 
the following probability decomposition 

P(pat) = P(M) P(patlM ) + P(U) P(patlU ), (1.1) 
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where pat represents an agreement pattern on character- 
istics such as surname, house number, and phone. They 
observed that, in the case for which pat represents the 
eight patterns of simple agreement/disagreement on three 
fields and the agreements are conditionally independent 
given M and U, (1.1) represents seven equations and 
seven unknowns that can be solved directly. In general 
situations, the set of equations (1.1) can be solved by least 
squares, methods of moments, or maximum likelihood. 
Because methods of moments do not yield solutions that 
are as pleasing as those via maximum likelihood (Titter- 
ington, Smith, and Makov 1988), and least squares has 
shown numerical instability in record linkage situations 
(Jaro 1989), Expectation-Maximation (EM) algorithms 
(e.g., DLR) are used to get maximum likelihood estimates. 

The second section of this paper presents the EMH 
algorithm. The third section gives more background on 
EM-type algorithms and the empirical data. The results in 
the fourth section compare estimates computed via the 
EMH algorithm with estimates computed via prior me- 
thods. In the fifth section, the limitations of current EM- 
type methods involving latent class models are described. 
The final section consists of a summary and conclusions. 

2. EMH ALGORITHM 
This section contains background on how EM-type pro- 

cedures can be applied to latent class models. While the 
existing EM-type procedures are intended for uncon- 
strained maximization on the parameter space f~ (DLR, 
Wu 1983, Meng and Rubin 1993), the EMH algorithm is 
intended to constrain solutions to a closed, convex 
subregion R of ~. The key idea needed for the EMH 
algorithm is the following inequality due to Haberman. 

Theorem. (Haberman 1975, 1977). Let the parameters 
being estimated via an EM-type procedure be products of 
multinomial or Poisson distributions. If ~v and ¢~v÷1 are 
successive estimates, then for all, 0 • ct ,: 1, the log- 
likelihood L satisfies 

L(¢p) .= L(ot Cp + (l-a) Cp+,). (2.1) 

Inequality (2.1) states that all parameters on the line seg- 
ment between ~, and ~,+1 yield nondecreasing likelihood. 
If Op lies in the interior of a convex subregion R of the 
parameter space, then it is possible to obtain an ot such 
that ct ~p + (1-c 0 ~p+~ lies on the boundary of R. If the 
constraints defining R are simple, then such an a can be 
represented as a closed form solution of an equation; 
otherwise, such an a may have to be obtained via an 
iterative procedure such as Newton-Raphson. Inequality 
(2.1) does not hold for general EM-type procedures. In 
the following, the restraint functions {&, i = 1, ..., S} can 

be assumed to be the same as those given by Meng and 
Rubin (1993, also 1991, pp. 245-246). While additional 
restraint functions may determine the closed, convex 
subregion R of the parameter space f~, they are not 
explicitly needed in the statement of the algorithm. 
Replacing the missing data with expected values is 
referred to as completing or ]~lling-in the data (DLR). 

EMH Algorithm for loglinear models constrained to 
a closed, convex subregion R of parameter space ~. 

1. Beginning with an initial set of parameters ~0 in R, 
complete data with expected values using ~0. 

2. Using the restraints imposed by the completed data 
and gx, find the maximum likelihood estimate ~1 in 
Q. If ~1 ~t R, find the a so a ¢~0 + ( l-a)  ~1 is on 
the boundary of R and use ct ~0 + ( l-a)  ~ as the 
estimate. If ~ E R, use it as the estimate. 
Complete the data according to the new estimate ~.  

3. Using the restraints imposed by the completed data 
and g2, fred the maximum likeliood estimate ~, in f~. 
If ~2 ~ R, use it as the estimate. If ~1 is on the 
boundary of R and ~2 ~ R, use ~1 as the estimate 
of ~2. If ~1 is in the interior of R and ~2 ~t R, find 
the a so ¢x ~ + (1-or) ~, is on the boundary of R 
and use a ~1 + ( l-a)  ~e as the estimate. Complete 
the data according to the new estimate ~2. 

4. Continue constrained E and M steps by successively 
cycling through all restraints in the manner of Step 3. 

By the theorem, the EMH algorithm yields nondecres- 
hag likelihood. If the restraint functions g, i = 1, 2, ..., 
S, are the usual constraints associated with iterative 
proportional fitting, then each conditional maximization 
is in closed form. If the constraints defining the subre- 
gion R are simple, then each of the as that pull succes- 
sive estimates back to the boundary of R are also in 
closed form. The initial estimate ~0 must be in R. If 
there is no restriction to R, then the EMH algorithm cor- 
responds to the MCECM algorithm of Meng and Rubin 
(1993). Rather than find a maximum at each CM-step, 
it is sufficient to find q~t different from Op so that the 
likelihood increases. Computer code should monitor that 
the likelihood strictly increases on some of the CM-steps. 

3. RECORD LINKAGE BACKGROUND 
This section contains background on the previous 

applications of the EM to give insight into why the new 
methods were developed. The first subsection 
summarizes earlier EM-applications to record linkage and 
the second describes the empirical data. 
3.1. Previous Applications of EM 

The main reason that existing parameter-estimation 
procedures fail to yield optimal decision rules is that the 
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conditional independence assumption is not valid. Thib- 
audeau (1993) observed that, when files contain name and 
address information, strong dependencies between agree- 
ments on fields such as surname, house number, street 
name, and phone number occur on the set on nonmatches 
U. Winkler (1992) showed that, instead of AxB naturally 
dividing into the desired two classes M and U, AxB can 
be naturally partitioned into three classes: C 2- matches 
agreeing on name and address, (72- nonmatches agreeing 
on address, and Cj- nonmatches not agreeing on address. 
In the decision rules classes C 2 and Cj are combined into 
U. The primary reason the 2-class EM procedure fails is 
that it divides the set of pairs into those agreeing on 
address and those not. If the 3-class EM algorithm is 
applied under the independence assumption, reasonable 
decision rules are obtained when matching decision thres- 
holds are obtained manually (Winlder 1992). Error rates, 
however, cannot be estimated accurately. An alternative 
error-rate estimation procedure (Belin and Rubin 1993, 
Rubin and Belin 1991) can yield accurate estimated false 
match rates (Winlder and Thibaudeau 1991) in some cases 
but is not applicable to the situations of this paper. 

Winlder (1992) applied 3-class EM algorithms under 
models in which all 3-way interactions were allowed. 
While the the interactions gave dramatically lower chi- 
square values and the overall fits as given by the esti- 
mated cumulative probability distributions appeared ac- 
ceptable, both probability estimates for individual agee- 
ment patterns and the estimated proportion of pairs in 
class C1 could differ substantially from the true values. 
The EM-type procedures arbitrarily classify sets of pairs 
into classes according to the variables that are agreeing in 
the patterns and according to interactions being fit. When 
a set of matching variables contains many associated with 
addresses, general EM-type procedures can yield probabil- 
ity estimates and resultant decision rules that give primary 
weight to address information and secondary weight to 
name and demographic information. When all 3-way in- 
teractions are fit, spurious agreements of nonessential 
variables may be given too much weight. 

To better make use of prior information, specific sets of 
interactions can be modelled using new algorithms first 
applied by Armstrong (1992). The difficulty with using 
specific interactions is that there are far fewer available 
degrees of freedom (dofs) with latent class models than 
with ordinary loglinear models. For instance, with ten 
variables there are insufficient dofs to model all 4-way 
interactions; with eight variables, insufficient for all 3- 
way. If use of specific sets of interactions are not 
sufficient, then convex constraints can be used to 
predispose solutions to convex subregions that are more 
likely to yield accurate estimates. 
3.2. Data Used in Results 

The pairs are taken from two files having known 
matching status and 12,000 and 15,000 records, 
respectively. Only 116,305 pairs agreeing on a 
geographic identifier and the first character of the 
surname are used. There are 9800 matches. The analysis 
evaluates nearly all matches because less than 4 percent 
of the true matches disagree on the geographic identifier 
or on the first character of the surname. The matching 
fields that are: surname, first name, house number, street 
name, phone, age, relationship to head of household, 
marital status, sex, and race. To simplify computation all 
comparisons are considered agree/disagree. The ten data 
fields yield 1024 data patterns for which frequencies are 
calculated. If one or both identifiers of a pair are blank, 
then the comparison (blank) is considered a disagreement. 
This only substantially affects age (15% blank) and phone 
(35% blank). Name and address data are never missing. 

4. RESULTS USING EM-DERIVED PROBABILITIES 
This section presents results from fitting using under 

five models: (1) independent, 3-class EM, (2) dependent, 
3-class EMH with all 3-way interactions of variables, (3) 
dependent, 3-class EMH with a selected subset of interac- 
tions, and (4) dependent, 3-class EMH with all 3-way 
interactions and selected convex constraints, and (5) 
dependent, 3-class EMH with a selected subset of interac- 
tions and selected convex constraints. 

When the number of interactions are increased, chi- 
square values will typically decrease. The selected inter- 
action patterns (Table 4.1) are chosen as a compromise 
that allows a number of degrees of freedom so that the 
statistics can be tested. The first set of patterns were 

Table 4.1. Interactions Used in 
Fitting Hierarcharical Models 

ja 1. last, first, hsnm, stnm, 
phone, age, re1, marit 

2. first, hsnm, phone, sex 
3. last, race 

3-way i. all 3-way 

chosen with knowledge of some of the true statuses. The 
set of patterns is described as ja because combinatorial 
algorithms due to Armstrong (1992) are used in the 
fitting. The second set consisting of all 3-way inter- 
actions was chosen as a general exploratory tool that left 
some degrees of freedom for testing. Because the inter- 
action patterns do not necessarily yield estimated proba- 
bilities that give good decision rules, the convex con- 
straints of Table 4.2 are used to predispose estimates into 
subsets of the parameter space. The second set of convex 
constraints use twice the true underlying probabilities as 
an upper bound on the estimated probabilities. Some of 
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the convex constraints will lead to solutions that are on the 
boundary imposed by the constraints. Others will initially 
constrain the solutions to certain subsets but final limiting 
solutions will not hit the boundary. 

Table 4.2. Convex Constraints Use in 
Fitting 

ja 
14 complicated restraints 

3 -way 
P({agree last, disagree first} N C~) 

O. 0070 
P({disagree last, disag first} f~ CI) 

s 0. 0014 

The statistics associated with the fits of the different 
models yield somewhat contradictory information (Table 
4.3). With the exception of the chi-squares associated 
with fits of the models that include all 3-way interactions, 
all chi-square values are much too high. The loglike- 
lihood associated with fitting using the first set of 
interactions (denoted by ja) is closer to the theoretical 
maximum of-4.1071 than the log-likelihood from all 3- 
way interactions. The Z-statistic is the standard normal 

Table 4.3. Summary Statistics 
Associated with Various Models 

log-like chi-sq z P~ 

independent 
-4.2206 26,383 570.4 .0910 

ja 
-4.1084 294 8.7 .0878 

ja, convex 
-4.1086 340 11.4 .0869 

3-way 
-4.1088 375 -2.8 .1015 

3-way, convex 
-4.1100 660 5.2 .0886 

approximation to the chi-square statistic and is given as a 
reference. The reason that the Z-values associated with 
the ja models are higher than those of the 3-way models 
is that many more interactions are fit in the ja models and 
the Z-values involve fewer degrees of freedom. The P~- 
value associated with Class C~ is the estimated proportion 
of pairs that are matches M. The Pt-value 0.0878 
associated with the first set of interactions (denoted by ja) 
is the second closest to the true Pt value of 0.0869. The 
detailed constraints in ja, convex were chosen to force the 
estimated proportion Pt close to true proportion. 

Plots of the cumulative probability distributions of the 
five models versus the truth (given by the 45 degree line) 

are presented in Figures 1-5 for matches; in Figures 6-10 
for nonmatches. For matches, only the regions in which 
the error proportions (false nonmatch rates) are less than 
0.30 are shown. With the exception of the independence 
model (Figures 1 and 6) which deviates substantially 
from the truth, all plots show reasonable fits to the true 
distributions. While the curves associated with the 
chosen subset of interactions (ja, Figures 4 and 9) appear 
acceptable, they mask the fact that some probability 
estimates at individual points deviate substantially from 
the truth. The final two models that involve convex 
constraints give better fits at individual points (and thus 
in each subrange of the distribution) than the others. 

5. DISCUSSION 
The results show that conventional chi-square statistics 

describing the fits give no valid indication of the quality 
of the estimated probabilities when they are used in 
decision rules. In decision rules, matches need to be 
distinguished from nonmatches. Often there is no clear 
demarcation between Class C~, matches within the same 
household, and Class C2, nonmatches within the same 
household. For instance, in one set of pairs, husband- 
wife pairs in which age agrees and sex agrees due to 
miskeying are placed in Class C1; in other sets such pairs 
may be placed in Class C2. This section describes 
limitations on the general applicability of convex 
constraints and the extension of the EMH algorithm to 
general statistics. 
5.1. Basic Limitations on Use of Convex Constraints 

With other similar data bases having the same 
matching variables, representing similar types of 
geographic characteristics, and for which true matching 
status was known, the following improving relative 
accuracies of estimated probabilities were observed 

independent < all 3-way < ja selected interactions 
< all 3-way + convex 

where the ja selected interactions are the same as those 
given in Table 4.1 and the convex constraints are the 
same as those given in Table 4.2. Generally, the last two 
models had about the same accuracy and were much 
better than the first two. In one set of files in which 
some of the demographic variables had substantially 
higher typographical variation than in other files, the last 
model yielded more accurate estimated probabilities. 

On an absolute basis, the estimated probabilities under 
the last two models were not as accurate as those given 
Figures 3-5 and 8-10 but were still reasonable. The 
estimated cumulative probabilities given a nonmatch were 
typically much more accurate than the corresponding 
cumulative probabilities given a match. 
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No set of convex constraints or set of interactions has 
been found that consistently yield highly accurate 
estimates. This is is due to the fact that the underlying 
true probabilities vary significantly from data set to data 
set. With ten matching variables, some true conditional 
probabilities associated with individual data patterns vary 
by an order of magnitude. The estimates associated with 
the ja selected interaction model exhibited more variation 
than estimates under the all 3-way, convex model. Severe 
or unusual typographical variation in only 0.1 percent of 
the pairs (associated with Classes Cz and (72) were 
sufficient for significant changes in estimates. 
5.2. EMH Algorithm for General Statistics. 

The idea of conditional maximization in which 
parameters are constrained to convex subregions of the 
parameter space can be extended from latent class models 
to general statistics. The basic idea is still the one 
originally emphasized by Meng and Rubin. It is reduce 
dimensionality to make computation associated with 
maximizations faster or more stable. In general, it is  
possible to search for the ao so that ~ ¢~, + (1-~) ¢~1 
lies in the subregion R imposed by a set of constraints and 
(approximately) maximizes the likelihood over all ct, 0 s 
cx • 1. As it is only necessary to increase the likelihood, 
it may often be possible to find a simple algorithm to 
obtain an ~ > 0 that yields increasing likelihood. In 
general, such an o. 0 can be found via one-dimensional 
Newton-Raphson or grid-search methods. 

6. SUMMARY AND CONCLUSIONS 
This paper describes general theory and algorithms for 

fitting loglinear models for latent classes. The algorithms 
do not require an independence assumption on the 
estimated conditional probabilities associated with different 
latent classes, are related to ideas of Haberman (1977) and 
Meng and Rubin (1993), and allow convex constraints to 
be imposed on the estimated probabilities. Because 
conventional chi-square and other statistics describing the 
fits do not give good indication of the accuracy of the 
estimated probabilities, the convex constraints can be used 
to predispose solutions to subregions of the parameter 
space that are consistent with prior knowledge. 

*This paper reflects views of the author and not 
necessarily those of the Bureau of the Census. A longer 
version of this paper is available from the author. 
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