
J A C K K N I F E  V A R I A N C E  E S T I M A T I O N  
W I T H  I M P U T E D  S U R V E Y  D A T A  

J.N.K. Rao, Carleton University 
Department  of Mathematics & Statistics, Carleton University, Ottawa, Canada 

KEY WORDS" Adusted imputed values, 
item nonresponse, stratified multistage sam- 
pling 

Item nonresponse is usually handled by 
some form of imputation; in particular, de- 
terministic or hot deck imputation is often 
used to assign values for missing item re- 
sponses. We provide an account of our re- 
cent joint work on jackknife variance esti- 
mation based on adjusted imputed values, 
using only a single imputat ion and, hence, a 
single completed data set. We also present 
linearization versions of the proposed jack- 
knife variance estimators which are asymp- 
totically consistent under missing at ran- 
dom set-up. To implement the proposed 
variance estimators, the completed data set 
must carry identification flags to locate im- 
puted and observed values. We study both 
simple random sampling and stratified mul- 
tistage sampling. 

1. I N T R O D U C T I O N  

Item nonresponse is usually handled by 
some form of imputation. Two types of im- 
putation are often used: (a) deterministic 
imputation which covers mean imputation, 
ratio and regression imputation and nearest 
neighbour imputation. The imputed val- 
ues are deterministic, given the sample of 
respondents and any auxiliary information 
on nonrespondents. (b) Hot deck imputa- 
tion which employs a sample drawn from 
the respondent values. Various versions of 
hot deck imputat ion have been proposed 
(Kalton, 1981, p.91; Sedransk, 1985). In 
the simplest form of hot deck imputation, a 
simple random sample is selected with re- 
placement from the sample respondents to 

an item y, and the associated item values 
are used as donors. In practice, the ac- 
curacy of imputat ion is improved by first 
forming two or more imputat ion classes us- 
ing auxiliary variables observed on all sam- 
ple units, and then performing hot deck im- 
putation separately within each imputat ion 
class for each item with missing values. Hot 
deck imputation has the following advan- 
tages: (i) it preserves the distribution of 
item values unlike mean imputation; (ii) re- 
sults obtained from different analyses are 
consistent with one another, unlike the re- 
sults of analyses from an incomplete data. 
set; (c) it permits the use of same survey 
weight for all items, unlike the weighting 
adjustment method which is more appro- 
priate for unit nonresponse. 

It is a common practice to treat the im- 
puted values as if they are true values, and 
then compute the variance estimates using 
standard formulae. This procedure, how- 
ever, can lead to serious underestimation of 
the true variance of the estimates, when the 
proportion of missing values for the item of 
interest is appreciable. Rubin (1978) pro- 
posed multiple imputation to account for 
the inflation in the variance due to impu- 
tation. Multiple imputat ion leads to valid 
variance estimators when the imputat ion is 
"proper" in the sense that the imputed va.1- 
ues are drawn from the posterior distribu- 
tion of nonobserved y-values given the re- 
spondent values. However, it may not lead 
to consistent variance estimators for strati- 
fied multistage surveys in the common sit- 
uation of imputation cutting across sample 
clusters (Fay, 1991). (Note that such impu- 
tations are not proper.) Moreover, several 
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statistical agencies seem to prefer single im- 
putation, mainly due to operational difficul- 
ties in maintaining multiple complete data 
sets, especially in large-scale surveys. 

Burns (1990) proposed jackknife vari- 
ance estimation for multistage surveys, us- 
ing pseudo-replicate hot deck imputation. 
This method uses independent imputations 
from the full sample of respondent values 
and from the samples of respondent values 
obtained by deleting each sampled cluster in 
turn. Unfortunately, Burns jackknife vari- 
a.nce estimator can lead to serious overesti- 
mation (Rao and Shao, 1992). 

In this paper, we provide an account 
of our recent joint work on jackknife vari- 
ance estimation based on adjusted imputed 
values using only a single imputation and, 
hence, a single completed data set. To cal- 
culate the adjusted imputed values, the com- 
pleted data set must carry identification 
flags to locate imputed and observed val- 
ues. \¥e also present linearized versions of 
the proposed jackknife variance estimators 
which are asymptotically consistent under 
missing at random set-up. These variance 
estimators are obtained by Taylor a.pprox- 
imations to our jackknife variance estima- 
tors. An advantage of this approach is that 
the resulting linearization variance estima- 
tors retain certain important  properties of 
the jackknife, unlike some other lineariza- 
tion variance estimators. The linea.rized ver- 
sions can be implemented using software 
packages that  employ the linearization (Tay- 
lor) method instead of the jackknife method 
for calculation of s tandard errors, such as 
SUDAAN and PC CARP. 

We study both simple random sampling 
and stratified multistage sampling. Estab- 
lishment surveys, based on list frames, of- 
ten employ simple random sampling (within 
strata) while large-scale socio-economic sur- 
veys often use stratified multistage sampling. 

2. D E T E R M I N I S T I C  I M P U T A T I O N  

We focus on ratio and regression impu- 
tation. Nearest neighbour imputat ion can 
also be handled by the jackknife method. 
but limited simulation results (Zanutto, 
1993) suggest that  the jackknife variance es- 
timate can lead to serious overestimation as 
the nonresponse rate increases, possibly due 
to nonsmoothness of imputed estimator. 

2.1 S i m p l e  R a n d o m  S a m p l i n g  

Suppose in a simple random sample, s, 
of size n , m  units respond to item y and 
n - m  do not. Let .~,, be the mea.n for 
the respondents s,. and y* be the imputed 
value for unit i E s -  st,  the set of nonre- 
spondents. The imputed estimator of the 
population mean, Y, is then given by 

iEs,. iEs-s , .  

The jackknife varia.nce estimator, un- 
der deterministic imputation,  is calcula.ted 
in the usua.1 way except that when a. re- 
spondent j E sr is to be deleted, each of 
the imputed values y[ is adjusted by an 
amount y* (j) - y*, where y* (j) is the value 
one would impute for the i-th nonrespon- 
dent if j - th  respondent is deleted from the 
sample. Thus, the adjusted imputed va.lue 
equals the "correc t"  value y./(j) if j E s,. 
and remains unchanged, i.e. equals Yi*, if 
a nonrespondent j is deleted. Throughout  
the paper, we assume tha.t the completed 
data set carries identification flags to locate 
imputed and observed values. 

Denote the imputed estimator based 
on the adjusted imputed values as ~}~(j) 
when j - th  sample unit is deleted. The jack- 
knife variance estima.tor is then given by the 
standard formula applied to the adjusted 
estimators ~ (j)" 

Ft 1 
Tt 

v j ( ~ i )  - - E ~Y2(J) - ~I • (2.2) 
j--1 
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In the case of a nonlinear statistic of the 
form OI - g( f l I ) ,  the jackknife variance es- 
t imator is simply obtained from (2.2) by 

^ 

changing g~(j) to O}( j )  - g[~( j ) ]  and YI 

to 0I. For simplicity, we have ignored the 
finite population correction in (2.2). 

R a t i o  I m p u t a t i o n  

Suppose an auxiliary variable, x, closely 
related to y is observed on all sample units, 
s. Ratio imputation uses y* - ( f l m / 2 m ) X i  
for the missing values, where ~,~ and 2m 
are the means of y- and x-values for the 
respondents s~. In this case, the imputed 
estimator (2.1) reduces to 

YI  - - ( y m / X m ) X ,  ( 2 . 3 )  

where 2 is the x-mean for the full sample s. 
Under a uniform response mechanism, that 
is independent response across sample units 
and equal response probabilities p, the esti- 
mator (2.3) has the same properties as the 
standard two-phase sampling ratio estima- 
tor. This follows by noting that, condition- 
ally given m, s~ is a simple random sample 
of fixed size rn drawn from s. The estimator 
(2.3) is, therefore, approximately design (or 
p-) unbiased under uniform response. 

Under ratio imputation, we have y~[(j) 

= [ y m ( j ) / ~ , m ( j ) ] x i ,  w h e r e  Y m ( j )  - - ( m y r a  - 

y j ) / ( m -  1) and xm(j) -- (m2m - - x j ) / ( m -  
1). Using these values, the jackknife vari- 
ance estimator is obtained from (2.2). Lin- 
earized version of the jackknife variance es- 
t imator is given by (Rao and Sitter, 1992)" 

Y L ( ~] I ) - -  "X m 7rt  X" m r t  

where 

A 1 E (  Ym ) 2 
m 1 Y i -  _----xi 

- -  X m 
i E s , .  

xo-5 g 
i E s .  

(2.4) 

C 
~t 

)2 
- -  _ - - - x i  

X rrt 

and 
- 2 

Xm 
1 ~--,( __ 2)2 

n - 1 z - - - " x i "  
iEs 

Under two-phase sampling, a standard 
p-consistent variance estimator is given by 
(Sukhatme and Sukhatme, 1970, p. 176)" 

vo - A + -  ~ Y i - ~ J m  • 
rn n n m - 1  

i E s , .  

(2.5) 
The second term in (2.5) is simply obtained 

2 ~ (?)~ by using the sample variance s y m 
1)-1 ~ i e ~ ,  (yi - Ym)2 to estimate the popu- 
lation variance S 2. An alternative p- 
consistent variance estimator that uses x- 
information to estimate S 2 is given by (Rao 
and Sitter, 1992)" 

A B C 
Vl - - -  + 2--  + --. (2.6) 

7Yt ~ 72 

It follows from (2.4) and (2.6) that VL(~Z) i s  
asymptotically equivalent to vl under uni- 
form response, since 2/2m " 1. Thus, v r ( g z )  

and vj(gz) are p-consistent under uniform 
response. 

S/~rndal (1992) assumed the following 
"imputation" model ~" 

E~(v~)  - ~ ,  V~(y~) - ~ ~ ,  cov~(y~, vj)  - 0, 

i ¢  j C s. (2.7.) 

The imputed estimator (2.3) is design-model 
(or p~-) unbiased for Y irrespective of the 
response mechanism, provided the model 
also holds for the respondons s~, i.e., if se- 
lection bias is absent. S/irndal (1992) pro- 
posed the following approximately p~- 
unbiased linearization variance estimator, ir- 
respective of the response mechanism: 

- ~ - + 2  - - + - .  ( 2 . s )  v s ( f j I )  ~.~ m n n n 
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Comparing (2.6)with (2.8), it follows, how- 
ever, that vs( f l I )  is design-inconsistent un- 
der uniform response. 

Comparing (2.4)with (2.8) and noting 
that E ~ B  - O, it follows that the jackknife 
variance estimator and its linearized version 
are approximately p~-unbiased, irrespective 
of the response mechanism. Thus, the jack- 
knife variance estimator (and its linearized 
version) remain p-consistent, unlike (2.8), 
under uniform response irrespective of any 
underlying model, as well as approximately 
p4-unbiased under model (2.7), irrespective 
of the response mechanism. This robust- 
ness property is an important feature of the 
jackknife method. 

Our jackknife variance estimator (2.2) 
can also be used in standard two-phase sam- 
pling when "mass" imputation is used, i.e., 
when the y-values of the units not sampled 
at the second phase are imputed, using the 
first phase z-information. Whitridge and 
Kovar (1990) discuss the practical advan- 
tages of mass imputation and give applica- 
tions in business surveys. 

For nearest neighbour imputation, the 
proposed jackknife variance estimator, with 
adjusted values under ratio imputation, may 
be used as an approximation. Simulation 
results by Kovar and Chen (1992) indicate 
good performance of this variance estima- 
tor, provided the correlation between y and 
z is high. 

Rao and Sitter (1992) considered jack- 
knife variance estimation when the auxil- 
iary variable, x, is not observed on all the 
sample units. 

Regression Imputation 

We again assume that x is observed on 
all sample units, s. Simple linear regres- 
sion imputation uses y~ - fire + ~ m ( Z i -  

2r~) for the missing values, where /3m is 

the usual least squares regression coefficient 
based on the respondents, s~. In this case, 
the imputed estimator reduces to the stan- 
dard double sampling regression estimator 

YI -- Ym -1- /~m( ~ -- :~m). (2.9) 

The estimator (2.9) is approxima.tely p- 
unbiased under uniform response. It is also 
p(-unbiased under the "imputation" model 

E ( ( y i )  - c~ + / 3 x i ,  V ( ( y i )  - (72, 

cov((yi, y j )  - O, i 7~ j C s (9.10) 

irrespective of the response mechanism, pro- 
vided the model also holds for the respon- 
dents, s~. 

Under regression imputation, we have 

Y * ( j )  -- f i r e ( j ) +  ~ m ( j ) ( z i  -- Z m ( j ) ) ,  

^ 

where/3re(j) is the least squares regression 
coefficient when the j - th  sample unit is 
deleted. 

Rao and Sitter (1992) have shown that 
the jackknife variance estimator remains p- 
consistent under uniform response irrespec- 
tive of any underlying model, as well as ap- 
proximately p~-unbiased under model (2.10), 
irrespective of the response mechanism. 
They have also given a linearized version 
of the jackknife variance estimator. 

2.2. Stratified Mult is tage Sampl ing  

Suppose we have L strata with nh pri- 
mary sampling units (psu) sampled from 
stratum h. Let n hi be the number of ul- 
timate units (elements) sampled from i-th 
psu in h-th stratum, and n = ~ n h i  be the 
total sample size. In the absence of nonre- 
sponse on item y, an estimator of popula- 
tion total Y is of the form 

^ E Y -  whik Yhik, (2.10) 
(hik)~s 
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where s is the total sample, Whik and Yhik 
respectively denote the survey weight and 
y- value attached to the (hik)-th element. 
Typically, the basic weights Whik are sub- 
ject to post-stratification adjustment. Here 
we confine ourselves to the basic weights 
and the resulting imputed estimators. Ex- 
tensions to post-stratification and "calibra- 
tion" regression estimators are being inves- 
tigated by a Ph.D. student, Wesley Yung. 

A customary estimator of variance of 
is given by 

L nh 1 
v ( ? ) -  Z nh(nh-  1)E(rh'- ~h)~ 

h = l  i=1 

= V(rhi), 

where 

P h i -  Z ( r t h W h i k ) Y h i k ,  

k 

(2.11) 

rh -- n h rhi 
i 

and the operator notation V(rhi )  denotes 
that v(l ~) depends only on the psu totals 
rhi. This variance estimator is p-unbiased 
if the psu's are sampled with replacement, 
but generally it tends to overestimate the 
variance. 

In the presence of nonresponse on item 
y, let Y~ik be the imputed values for the 
nonrespondents under a specified imputa- 
tion procedure. The imputed estimator of 
Y is given by 

} z I -  E WhikYhik + E WhikY~ik, (2.12) 
8 r 8 - - 8 r  

where s~ is the sample of respondents. 

A jackknife variance estimator is ob- 
tained by first calculating the adjusted ira- ^ 
puted estimator Y~(gj) when each sample 
psu (g j) is deleted in turn and then using 
the usual formula: 

L ng 
n g  ]2 

Z _ 1 Ztff(g;)- 
9=1 g j = l  

^ 

Here Y~(gj)is simply obtained from (2.12) 
by retaining the original weights W hik for 
h ¢- g, changing wgik to [ n g / ( n g -  1)]wgik 
for i 7~ k, setting Wgjk -- O, and finally ad- 
justing each of the imputed values, Yl*~ik, by 
an amount Y~ik (gJ) -- Y~ik where Y~ik (g J) is 
the value one would impute for the (hik)- 
th nonrespondent if (gj)-th sample psu is 
deleted from the sample. Thus, the ad- 
justed imputed value equals the "correct" 
value Y~ik(gJ) if (gj)-th sample psu is 
deleted. 

Mean Imputation 

Mean imputation is equivalent to cus- 
tomary weight adjustment. It u s e s  Y~ik = 

S/T,  where 

8 r  8r 

In this case, YI reduces to 

?i 
where U/T is the nonrespondent adjustment 
factor and 

Moreover, Yf(gj) reduces to [S(gj)/T(gj)] 
~I(gj), where S(gj)is obtained from S by 
changing the weights as described above, 
and T!gj) and U(gj) are similarly obtained 
from T and U. The jackknife variance esti- 
mator is readily obtained from (2.13) using 
these adjusted imputed estimators. 

By T ylor e p n ion of ??(g j ) -  
around (S, 2~, ~r), we get a linearized version 
of the jackknife variance estimator. It is 
given by 

VL(]ZI) -- V(rhi) (2.14) 

with 

~hi ~ --~ hi -- hi hi 
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where where 

8 h i -  ~ ( r t h W h i k ) Y h i k ,  t h i -  E ( r t h W h i k )  
kEs,. kEs,. 

kEs 

Thus, the linearized version is simply ob- 
tained from the standard variance formula 
(2.11) with rhi changed rhi which is a lin- 
ear combination of cluster totals 8hi ,  t hi and 
Uhi. 

Rat io  I m p u t a t i o n  

Suppose covariate values X hik closely 
related to Yhik are observed on all the el- 
ements in the sample s. In this case, ratio 
imputation uses Y~ik -- (S/T)xhik, where 

-- WhikYhik , Z -- WhikXhik .  
8 r  8 r  

The imputed estimator I~x reduces to 

where 

U - WhikXhik .  
8 

Further, Yp(gj) reduces to [S(gj)/T(gj)] 
U(gj), where S(g~), T(gj) and U(gj) are 
obtained from S, T and U by changing the 
weights as described above. The jackknife 
variance estimator is readily obtained from 
(2.13) using these adjusted imputed estima- 
tors. 

A linearized version of the jackknife vari- 
ance estimator is simply given by 

- ( 2 . 1 5 )  

with 

ghi -- ~ ( r thWhik)Yhik ,  
kEs~ 

- ) 

kEs,. 

~ h i -  ~ ( 7 ~ h W h i k ) X h i k ,  
kEs 

R -  s / T .  

3. H O T  D E C K  I M P U T A T I O N  

We consider ratio and regression hot 
deck imputation as well as imputing all miss- 
ing item values from a common donor. The 
latter method preserves multivariate rela- 
tionships (Kalton and Kasprzyk, 1986, p.11). 
It was used in the 1975 Canadian Census 
of Construction, as noted by Ford (1983). 
Under this method, we consider general pa- 
rameters which cover population means, vari- 
ances and covariances, correlation and re- 
gression coefficients, domain means and cell 
proportions in two-way tables. 

3.1. Simple Random Sampling 
i 

The imputed estimator of Y and the 
jackknife variance estimator are again given 
by (2.1) and (2.2) except that y[ is adjusted 
by an amount E j J y [ -  E,y~ when a re- 
spondent j is deleted, where E,  denotes the 
same expectation with the donor set modi- 
fied by excluding unit j .  The imputed value 
y[ remains unchanged, as before, if a non- 
respondent j is deleted. 

Rat io  Hot  D e c k  

As in ratio imputation, we assume that 
an auxiliary variable, x, is observed on all 
sample units, s. In the ratio hot deck 
method, donors i are selected by simple ran- 
dom sampling with replacement from the 
respondents s~, and the associated ratio resid- 
uals e~ = y i -  (~Jm/Xm)Xi are then added to 
the deterministic imputed values (~m/2,,~)Xi, 
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i E s -  s~ to get the hot deck imputed val- 
ues: 

y * - ( ~ m / ~ m ) x i + e * ,  i E s - s ~  (3.1) 

Noting that E.(e~)  - 0, the imputed esti- 
mator YI is approximately p-unbiased under 
uniform response. 

The adjusted imputed values used in 
the jackknife variance estimator (2.2) are 
given by y* +[f lm(j) /2m(j)]xi - - ( f lm +2m)Xi 
if j - th  respondent is deleted and remains y~ 
if j - th  nonrespondent is deleted. 

It can be shown that the linearization 
version of (2.2)is given by (Rao, 1993) 

V L ( f l I ) -  (2.4) (3.2) 

+ 1 - r n )  2 D * + _ _ +  ) 

where 

D ~ -  --~ n - m - 1  ei i - -  

8 - - 8  r 

, 2  1 ~-~ , _, 
s e -- n - - m - - 1  ~ ( e i  - - e n - m  

8 - - 8 r  

and e,~_ m - *  is the mean of e i s. It follows from 
(3.2) that the linearization variance estima- 
tor is obtained by adding a term due to hot 
deck to the formula under ratio imputation. 

The p~-properties of vn (YL) under "im- 
putation" model (2.7) are being investigated. 

R e g r e s s i o n  Hot  Deck  

As in the ratio hot deck, donors i are 
selected by simple random sampling with 
replacement from the respondents s~. The 
associated regression residuals e* - ( y i -  
~ m ) -  ~ m ( Z i -  2m) are then added to the 

deterministic imputed values ym + ) m ( Z i  -- 

2m), i C s -  s~ to get the hot deck imputed 
values: 

* - -  - ~ (X i - - 2  )'~-e* i C s - s  Yi Ym + m m i ~ r. 
(3.3) 

Noting that E,(e*)  - O, the imputed esti- 
mator yx is approximately p-unbiased under 
uniform response. 

The adjusted imputed values used in 
the jackknife variance estimator (2.2) are 

given by y* + {Ym(j) + ~m(j ) (x i  -- Xm(j))} 
--{~m + ~ m ( Z i -  2)} if j - th  respondent is 
deleted and remains y~ if j - th  nonrespon- 
dent is deleted. 

A linearized version of the jackknife vari- 
ance estimator is given by Rao (1993). 

C o m m o n  D o n o r  Hot  Deck 

Skinner and Rao (1993) consider gen- 
eral parameters either of the form 

2 --  N -1  E z ( y l i ,  Y2i)  (3.4) 
u 

for some function z(., .), where ( y l i , y 2 i ) i s  
a pair of values associated with unit i in 
a finite population U of size N, or of the 
form g(Z)  for some function g(.). These 
parameters cover means, variances and co- 
variances, correlation and regression coem- 
cients, domain means and cell proportions 
in a two-way table. For example, a domain 
mean is of the form N -1 ~ u  yliy2i/]q if yli 
is an indicator variable taking the value 1 
when i belongs to the domain of interest 
and 0 otherwise. 

The subsample responding to both ~1i 

and y2i is denoted by s~  with s~ ,  s ~  and 
s~  defined similarly and with n~ ,  n~ ,  n ~  
and n ~  denoting their respective sizes. A 
common donor hot deck uses with imputed 
values drawn by simple random sampling 
with replacement from s~ ,  the donor set. 
All missing item values of a recipient are 
imputed from the responses of the donor. 

_ 

The imputed estimator of Z is given by 

z [  -- 7t -1 ~ z(~lli, Y2i), (3.5) 
8 
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where yai and ysi denote either the actual 
response or the imputed value if the for- 
mer is missing. Assuming uniform response, 
Skinner and Rao (1993) have shown that 
the conditional expectation of 2I, given n ~ ,  

n ~ , n ~ ,  is a Z + (1 - a)Z, where 
a -(n, . , .  + nee)In and 

Z -  [N(_/Y- 1)] -1 E z ( y l i , y 2 i ) .  
i , jEU:iCj 

(3.6) 
In general, Z 7(= Z so that 2t is p-biased. 
Note that  if both Yai and Y2i are either ob- 
served or missing, i.e. if n ~  - n ~  - 0, 
then a = 1 and z1 will be p-unbiased under 
uniform response. 

Adjusted imputed values, z~ (j), are de- 
fined as follows: 

z](j)  - 5i + E ,  JY~i - E,  Si if j E s ~  

= 5i if j ¢ s~, if j ¢ s~ ,  (3.7) 

where E ,  j and E .  are defined as before and 
5 i  - z(~i ,ys i ) .  A p-consistent, jackknife 
estimator of variance of 2i is then given by 

V J ( Y - . I ) -  r t -  1 E [ 2 ~ ( j  ) _ 2112 , (3.8) 
n 

8 

where 2] (j) is the imputed estimator based 
on the adjusted imputed values when j - th  
sample unit is deleted: 

2~r(j) - ( n  - 1) -1 E z]( j) .  (3.9) 
iEs:i~j 

Skinner and Rao (1993) also consider 
an adjusted estimator of Z which is asymp- 
totically unbiased. 

A jackknife variance estimator of g(Sr) 
is readily obtained from (3.8) by changing 
5~(j) and 2i to g[2~(j)] and g(zI) respec- 
tively, where 2x could be a vector of im- 
puted estimators. 

Linearized versions of the jackknife vari- 
ance estimators are currently being investi- 
gated. 

3.2. Stratified Multistage Sampling 

For simplicity, we consider only the case 
of a single imputation class with uniform 
response mechanism. The results, however, 
may be extended to multiple imputation 
classes, along the lines of Rao and Shao 
(1992), by allowing for separate imputation 
within different imputation classes. 

The imputed estimator of Y and the 
jackknife variance estimator are again given 
by (2.12) and (2.13) except that  Yl*ik is ad- 

justed by an a m o u n t  E .  gj y~ik--E,Y~ik when 
(gj)-th psu is deleted, where E ,  denotes the 
expectation with respect to hot deck impu- 
tation and E ,  gj denotes the same expecta- 
tion with the donor set modified by exclud- 
ing (gj)-th psu. 

S imp le  H o t  Deck  

The estimator ~r/will be biased if sim- 
ple random sampling is used to select the 
donors from s~, the set of respondents to 
item y, unless Y~ik is chosen as ygj,(w~j,/  
Whik), where (gjg) C s~ is the selected donor 
(Platek and Gray, 1983). The latter choice, 
however, may not be practically appealing 
when y takes only integer values, for exam- 
ple, when y = 0 or 1. A simple alternative, 
proposed by Rao and Shao (1992), is to se- 
lect the donors (gjg) C s~ with replacement 
with probabilities w g j e / ~ ~  whik and use 
Y~ik -- YgJe" Under this hot deck scheme 
and uniform response, the imputed estima- 
tor I)x is asymptotically unbiased for Y as 
n - -  ETth  ----+ O~. 

The adjusted imputed values are ob- 
tained by adjusting Y~ik by an amount 

S ( g j ) / T ( g j ) -  S IT .  Rao and Shao (1992) 
have shown that  the resulting jackknife vari- 
ance estimator (2.13) is asymptotically con- 
sistent as n ~ ec. 
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A linearized version of the jackknife vari- 
ance estimator is obtained using a Taylor 
expansion of ? p ( g j )  - YI around (,.,5, ~, U). 
It is simply given by (Rao, 1993) 

(3.10) 

where 

and 

* - - r h  q- * Phi i ahi 

a'hi -- ~ (rthWhik)(Y~ik -- S / T ) .  
kEs-s~ 

* to the determin- That is, we simply add ahi 
istic component rhi, defined below (2.14), to 
get r~i and then use the standard formula 
(2.11) with rhi changed to r~i. 

Simulation results by Kovar and Chen 
(1992) that the adjusted jackknife variance 
estimator has negligible relative bias for all 
values of response probability p, confirming 
its asymptotic consistency. 

Zanutto (1993) extended the results of 
Rao and Shao (1992) on estimating Y or 
g ( Y )  to the case of common donor hot deck. 

R a t i o  H o t  D e c k  

Let ehik --Yhik - -RXhik  be the respon- 
dent residuals, (h ik)  C s~. We select donors 
as before and add the donor values e* to hik 
the deterministic imputed values RXhik t o  

get the hot deck imputed values: 

* - R x  + e *  ~]hik hik hik, (h ik)  C s - s~. 
(3.11) 

In this case, the imputed estimator YI is 
approximately unbiased under uniform re- 

* - 0 The ad- sponse, noting that E ,  ehik 
justed values used in the jackknife variance 
estimator (2.13) are given by Y~ik + [S (g j ) /  

T ( g j ) - ~ ; / T ] z h i k  when (gj)-th psu is deleted. 

A linearized version of the jackknife vari- 
ance estimator is simply given by 

VL(~'zI)-  V( a* 'hi), (3.12) 

where 

and 

~* - - r h  +~*  rhi i ahi 

ahi -- (nhWhik)ehi k. 
kEs-s~ 

That is, we simply add ahi~* to the determin- 
istic component rhi, defined below (2.15), to 
get (~i and then use the standard formula 
(2.11) with rhi changed to r~i" 

Extensions to general parameters Z of 
the form (3.4) under common donor hot 
deck are being investigated. 
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