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1. Int roduct ion Battese et al (1988) estimated 13, cr 0 and 

Battese et al (1981, 1988) proposed and o e from real data and Prasad and Rao 
applied a nested error regression model (1990) used these in a simulation study 
to provide small area estimates. The to evaluate the efficiency of their 
model took the form: estimators for each small area, together 

with the accuracy of their approximation 
Y. = X. [3 + v 1 + e. (1.1) to the MSE and the relative bias of the 

1 , oi i l estimator of the MSE. The numerical 
results show that when the model in (1.1) 

where Y.,, e.~ and 1.=(1,~ ..... 1)' are holds, the two stage estimator (as they 
vectors of length n. for the sampled called it) is considerably more efficient 

1 

units in the ith small area, i = 1 .... ,A; than the regression synthetic estimator 
and X is the n × (p+l) matrix of and the approximately unbiased regression 

i estimator. The relative bias of the MSE 
explanatory variables. The vector ~ is a estimator is small (< 7%) under normally 
set of (p+l) fixed regession parameters distributed random effects. 
and v is a scalar random effect for 

oi 
each small area where E(v )=0; 2. A more general model 

o, 2.1 Introduction 
V(Voi)=O'2a;.. coy  (Voi, Voi,)=0 i~:i'. The  

e. are assumed independent (E(e) = 0; In model (1.1) the differences between 
1 1 

V(e)=cy 2 I)  and v and e are assumed small areas are represented by vo,., a 
t g t oi i 

independent. For the whole population random intercept term. In practice the 
(1 1) applies with n replaced by N the regression coefficients, [3, can vary 

• i ~ across the small areas too. Thus a more 
small area population sizes. When the general approach should allow differences 
components of variance are assumed to be between slopes for each small area as a 
known, the Best Linear Unbiased Predictor set of random terms. A second 
(BLUP) estimator of the ith small area generalization is to extend the framework 
mean is obtained from (1.1): to a multi-level model by the 

^ introduction of explanatory variables at 
- -  --,^ ^ the small area level so helping to 
Y = X.13 + v (1.2) explain differenaes bedweea small,areas. 

i(RI) t oi 

- -  We consider the following generalization 
Where X. is the (p+l) vector of of model (1.1) for predicting the small 

I 

population means for the auxiliary area means: 
variables including a constant^ term for Yi = Xi[3i + ei 

the ith small area; 13 is the BLUP 
A [~i = ZiY+Vi (2.1) 

estimator for 13 and voi is a predictor 

for v .. The label RI is taken to imply a 
Ol  

random intercept model. 

where: 

Z. is the (p + 1) x q design matrix of 
1 

small area level variables, y is the 
vector of length q of fixed 
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coefficients, and v. = (vi0, .... v. )' is 
l 2p 

a vector of length p+l of random effects 
for the ith small area. We assume the 
following about the distribution of the 
random vectors" 

(a) The v. are independent between small 
1. 

areas and have a joint distribution 
within each small area with E(v.)=0 and 

1 

V(v)=f~ 
1 

. 2 (3. 0 O ' 0  ' 1 ....... % 

I3"10 0 .2 ( j  
' 1 ....... lp 

9 

. (~po  ' O'pl ....... (~p 

(2.2) 

y =  Z . . X i Z  £ Z Iy i  
1 i i = I  

(2.4) 

V = o~ I + X f2X{ (2.5) 
i i 

The estimator of the predicted values of 
the residual v. is: 

1 

A X' Vil A 
Vi = ~ i " ( Y i  " X i Z i 7 )  ( 2 . 6 )  

When 0 is unknown, there are iterative 
methods for estimating 0 and 7. See for 
example, Longford, N.T. (1987) and 
Goldstein (1986 and 1989). We confine 
ourselves to the Restricted Maximum 
Likelihood Estimator. 

A A A A 

Let t9 = (0 t ...... O)' and 7* be the 

(b) The e.'s and v.'s are independent and restricted maximum likelihood estimator 
t 1 

V ( e )  = (I~I i- 
1 

(c) Although this is unnecessary for 
point prediction multivariate normality 
is assumed for v and e. 

1 1 

A special case of (2.2) is when f'2 is 
diagonal so that the small area 
regression coefficients are random but 
uncorrelated between covariates. We 
refer to this as the Diagonal model and 
to the models with correlated random 
effects as the General model. Other 
intermediate models exist with some 
covariance terms constrained to zero. 

of 0 and y respectively. Replacing 0 
A A A 

with 0 and y with 7" in (2.2) and (2.6), 
we obtain the following predictor of u" 

1 

A,. t Z  A A, 

U i = X i  i7" + X{v., , (2.7) 

A, A X P  A ' I  A 
where v = f2 V. (Y.-X.Z.7*) (2.8) 

I I I I I I 

A A 2 ~ t  
V = (xe I + Xf2 (2.9) 

i i i i 

2.3 Approximation to the Mean Square 
Error  (MSE) 

2.2 The est imator  of the small area mean Kackar and Hnr-,,ille ft9~4~ s'how that the 
A .  

Let 0 = ([vech(f2)]',o2~:)'=(01,...,tg~)" mean square error of ui can be 

be the random parameters in the model approximated by: 
(2.1). 

From Henderson (1975), the best linear 

• x ~  unbiased predictor for u = [3 when O 
1 1 1 

is known is given by" 

A .  ^ A A. "i21 MSE(u.) = E[u.-u.] 2 + E [ u * -  u 
1 1 1 I 1 

(2.10) 
It may be shown that an approximation to 
the MSE is: 

A --A -- A -- A 

u i = X'13 = X' Z.7 + X' v (2.3) 
A i i i t i t 

where 7 is the generalized least squares 
estimator of y ; that is: 
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= + 

. --  t ] - I  
2 X"  ( 9 3  "1 I_~l z " i x '  Z O:E i Z {O i i X i  i 

m 

• -| 
Z.G.X.  + trace (AB) 

1 1 1 

(2.11) 

where G. is the (p+l) x (p+l) matrix: 
t 

G., = Ip+ 1 + ~ 2  X'i Xi ~ (2.12) 

The elements of A are given by" 

Ae, s i 0 0  g " 

g = 1 . . . . .  S-1 (2.13) 

Ae, g'= i i ~ Ci ~ i 

(2.14) 

&g = 1, ...,s-1 and e < e'. 

..._,.= =.-=- 

A = X' ~ S f~X (2.15) 
S ) $  t l l 

where C = (~2 G-~ X' X; 
i i 1 

i i --- O'~ 4 G7 2 X5 X. 
1 1 1 

t 
B ~ = [  Z t r y 2 .  (2.18) 

s , s  2 l 
i = l  

Each of the three terms in (2.11) can be 
associated with a particular source of 
error. The flu'st term xs the prediction 
variance for the situation in which all 
parameters are known. The second term 
is the increase of variance due to 
estimating the fixed parameters. The 
last term of (2.11) comes from 
estimating the random parameters. 

Since prediction is only required for 
unobserved units in each small area, we 
obtain estimators of the small area mean 
and its mean square error as follows: 
A 

~ A A 

= f~ +(X -f,~)'(zT*+v*) (2.19) Yi(G) i i i i i i i 

A 

MSE(Yi(G) ) = (1 - fi )2 
A 

[MSE*(Yi(G>)+N:' ( l - f )"  o'a] (2.20) 

where g. is the (p+l) vector of sample 
1 

A ---" 
means and MSE* (Yi(G~) is equation (2.11) 

with X. replaced by the vector of 
1 

non-sampled means X~.=(X.-f.g)/(1-f.). 
I I I I I 

3. A Numerical Framework 

-4 G-2 Ci and S = o" E i " 
1 

The elements of B t are given by:- 

t ( 0f2 0f2_ Ci ) 
and B t _ 1 2; tr O0~ Ci 00 ~, 

~, g . . . .  = 1, s-1;e < g 

(2.16) 

"~ - ~  Z tr C. 
B~,~ -~ i:1 

~ =  1, . . . ,  s-1 (2.17) 

Holt and Moura (1992) used data from a 
sample of 951 r ~  .~tores i a  £ o u ~ e m  
Brazil to estimate the parameters of the 
model given in section 2.1. The data 
were classified into 73 small areas. 
They used a single auxiliary variable 
(X) which was highly correlated with the 
variable of interest and no small area 
level (Z) variables. The parameter 
estimates were used to generate 
simulated samples, under Normality, 
using the same fixed covariates (X) 
values for each sample. The parameter" 
values were Y0 = 5.515; 71 = 1.046; cr~ 

= 0.0433; c~ z = 0.0100; (r z = 0.0350 and 
0 I 
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o'0~ = - 0 . 0 0 8 5 .  These results have been 

extended to include data generated under 
the diagonal model (assuming cJ0~ = 0) 

and the random intercept model (o'~ = 0; 

601 = 0). For a single covariate (X) the 

d 0 d a.d random terms are cr e, ' 1 0I 

the estimators compared were: 

A 

IY Y I 1 i,r( R I) 
b~(RI) = R-- I; _ , 

r - 1  y 

i 

and the average for all small areas is" 

A 

b(RI) = ~ Z b.~, 
i--1 

i) Y the Random Intercept Hence the ratio of these measures for 
i0~ the General estimator and the Random 

estimator which is the BLUP under the Intercept estimator is defined as 

model (2.1) with cy~ and cy01 taken as zero 
rb(Gen) = b(Gen)/b(RI).  

A 

ii) Y 
i,(D) 

estimator which is the BLUP under the 

model (2.1) with cy01 taken as zero 

A 

We note that for this situation the 
the Diagonal Covariance random components are important both 

compared to the fixed parameters (cyj7 ° 

= 0.02; (yl/71 = 0.18) and compared to 

the unit level variance (o'2/cyz,, = 0.23). 

iii) Y the General estimator which As one might expect when the data are 
i(G) generated under the General model the 

is the BLUP under model (2.1). General estimator is best although the 
Diagonal estimator is almost as good. 

For each estimator for each small area Both estimators are about 10% more 
the MS E is obtained from the simulations efficient than the Random Intercept 
by comparing the small area estimator estimator. Even when the data is 
with the corresponding predicted small generated under simpler models (ie the 

Random Intercept or Diagonal models) the 
area mean 5r i using the simulated random General Estimators and Diagonal still 
effects ~ and ~ . For example for the perform well and are robust. The ratios 

o~ t~ of the relative absolute bias show the 
Random Intercept estimator and the ith same pattern. 
small area. 

I 1 1 Z Y MSE(RI)  = - R -  Y~.~r~- i,~ 
r 

Table 1- Properties of Diagonal and 
General Estimators compared to Random 
Intercept estimator 

where r = 1, ..... R indexes the 
simulations. In this investigation 
R=IO,O00 simulations were generated. 

Estimator Data Generation Model 

General Diagonal Random 
Intercept 

Table 1 contains a summary of the ratio Diagonal 90 91 
of the average mean square error of each (95) (95) 
estimator compared to the Random General 87 91 
Intercept estimator. In addition, rb, (93) (95) 
the ratio of the relative absolute bias 
is presented. Specifically the relative 
absolute bias for a particular small 
area, i, for the Random Intercept 
estimator for example is defined as: 

100 
(10o) 

100 
(10o) 

N.B. First entry is ratio(%) of Average 
Mean Square Error for estimator 
compared to Random Intercept estimator. 
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Second entry is ratio(%) of relative fit the data set approximately. 
absolute bias compared to Random However, the explanatqry power of the 
Intercept estimator, model is poor (i.e. R" = .37) and, as 

one might expect, the distribution of 
the residuals from the fitted model is 

There are several comments and criticisms highly skewed. In practice one would 
that might be made of this numerical want to explore the data much more. The 
investigation: investigation presented here should be 

viewed as a test of the robusmess of 
i) The simulation is carried out using the predictive power of the multi-level 
artificial data rather than 'true' Y model for making smaU area estimates in 
values from real data even though the adverse circumstances. 
model parameters are determined by 
analysing real data. Thus the assumed model is:- 

ii) The data were generated under the y.. = 130i+i31i(xliT~-) + - 
assumed model framework and using ,j 1 ~2i(X2ij'X2)+Eij 
Normally distributed errors. 

i=l...A; j=l  ... N. 
iii) No area level variables (Z) used. 

iv) The covariate values X are held 
constant for every simulation so that, 
as in the model framework, all the 
properties of the estimators are 
conditional on the fixed covariate 
values. Survey practitioners would 

~01 = 'Y0 + v0i 

~li -- ~1 + Vii 

~2i = ~2 + V 
prefer to see properties of estimators 2i 
with respect to a repeated sampling where x = number of rooms 
framework where the X variables changed 
for each simulation according to a 
random selection of cases, and x = e d u c a t i o n a l  a t t a inment  of "9 

" Head of Household.  

4. Numerical  Investigations 
The records comprise a complete 

In order to meet these challenges a population from each of the 140 small 
different data set was obtained from a areas so that the true population mean 
test census in the urban part of a Y for each small area is known. A 

1 

county in Brazil which was divided into small number of records with extreme 
140 enumeration districts. The data incomes was excluded from the 
comprises 38740 household records and population. Each simulation consists of 
the variable of interest is the Head of a 10% simple random sample from each 
Household's income (Y). After some 
preliminary modelling on the entire data small area so that the sample size in 

each area is fixed but the choice of 
set the unit level covariates (X) are records and the corresponding covariate 
taken to be the educational attainment 
of the Head of Household (ordinal scale values is random. For each sample data 

set the random intercept, diagonal and 
of 0-5) and the number of rooms in the general models were fitted. For 
household (1-11+). Initially no area 
level (Z) variables were used. comparative purposes the ordinary 

regression estimator (with 0 "2, ~ and 

It must be stressed that this data set all zero) was also calculated. No 
is far from ideal insofar as the cJ01 
underlying model assumptions are diagnostic checks or tests were made for 
concerned. One unit level covariate is each separate simulation to see whether 
ordinal although a linear regression the sample appeared to be consistent with 
model for the two covariates appears to 
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the assumed model. Each result in the 
tables is based upon 500 simulations. 

The parameter values for the model are 
given in Table 2. It will be noted that 
compared to the parameter values that 

general model with Normally 
distributed errors. The 'true' 

population small area means Y. were 
1 

obtained from the 'population' 
created. 

led to Table 1, the components of 
variance in f2 are much smelllel; than the P2 The general model was fitted to t h e  
unit level variance o '~ .  (cr0/c ~ = 0.03) whole population and predicted values 

A 
but are large compared to the fixed Y.. obtained for each case. The 
effects (~0/Y0 = 014; ~l/yl = 0.4; u " observed Y.. values were then 

ij 
62/Y2 = 0.4). replaced by 

Table 2" Population Parameters (No 
Small Area Level Covariate) 

A 
,,, (Y. -Y..) 

~.. = y . .  + .  u u 
lJ lJ 2 

F i x e d  Parameters  Est se 

constant (130) 8.46 0.11 

Rooms ([3 l) 1.22 0.05 

Education -_-([3 z) 2.60 0.09 

Random Parameters  (standard errors in 
parenthesis) 

This provides a data set from the 
'true' data with the same X values 
and the same skewed distribution of 
residuals but reduces the unit level 

.,) 

variance to cj~J4 and so makes the 

variances and covariances of the 
random terms relatively more 
important. 

1.385 0.354 0.492 

(0.19) (0.07) (0.12) 

0.234 0.333 

(0.04) (0.05) 

0.926 

(0.12) 

2 = 47  7 4  ( 0 . 3 5 )  O'g 

P1 As for P3 but with the artificial 
data generated under a model with the 
same parameter values except that the 
unit level variance is replaced by 
(y~J4. 

The rationale behind the choices is that 
P 1 yields a Normally distributed 
population with the area level random 
terms of relatively high importance 
although still not as large as in Table 
1. P2 provides a population with a set 
of fixed and random parameter values 
corresponding to P l but with the skewed 
distribution of residuals representative 
of the true data. P3 provides an 
artificial Normally distributed 

In order to investigate the impact on population with the relatively small but 
small area estimates of various features realistic components of variance and 
of the data a series of populations was covariance. P4 is, of course, the 
created from which the simulations were original population with small random 
carried out. These were: effects and a skewed set of residuals. 

P4 The actual Y and corresponding X The important difference between Table 1 
values (the real data) and the other results will be that the 

simulations for P l to P4 are under a 
P3 The actual X values, but with Y repeated sampling framework. 

generated artificially under the 
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Table 3 contains the ratios of average Diagonal Estimator is 91%. The diagonal 
Mean Square Error and Relative Absolute line on the plot represents equal MSE 
Bias of the Diagonal and General for the two estimators. It will be seen 
estimators compared to the random that there are small areas with small or 
Intercept estimator for the four large MSE for which one or the other 
populations. For both of the artificial estimator is preferred. Thus whichever 
(Normally distributed residuals) estimator is chosen there will be small 
Populations, P1 and P3, it is clear that areas which consequently achieve smaller 
the Diagonal and General estimators mean square error and others that suffer 
provide a clear gain in efficiency and a loss of precision. 
reduction in bias compared to the Random 
Intercept estimator. For population P2 The essential feature of the Random 
only the Diagonal estimator shows an Intercept estimator is that all 
improvement and for the real data regression slopes are assumed to be 
(population P4) the Random Intercept constant and the only area specific 
estimator is best. The overall random effect is the random intercept. 
conclusion is that the Diagonal When the small area specific regression 
estimator is robust and can provide slope is different from the average for 
smaller average relative bias and MSE. all small areas then one might 
For data generated under the model with conjecture that the General or Diagonal 
Normal residuals the general estimator estimator would be more efficient. 
is preferred. However even if the regression slope is 

different in a particular small area, 
Table 3: Properties of Various this will have no effect on the small 
estimators compared to the Random area prediction if the sample covariate 
Intercept estimator mean x. and the population mean X are 

l i 

approximately equal. Hence gains in 
Estimator Population efficiency for the General Estimator for 

P 1 P2 P3 P4 example, compared to the Random 
Intercept estimator are likely to occur 

Diagonal 81 91 88 103 for small areas where 
(92) (93) (95) (99) 

General 73 99 79 105 i) the small area regression slope [3 
1 

(88) (97) (90) (106) is different from the overall average 13 
Regession 430 337 188 157 ( i e v  i is large). 

(196) (181) (131) (127) 
ii) the within area variance for the 

Note: First entry is ratio of MSE of auxiliary variables is large 
each estimator to MSE of Random 
Intercept estimator (%). and 

Second entry is ratio of Relative iii) the sample size is small 
Absolute Bias (b) for each estimator 
compared to Random Intercept Estimator To illustrate this point. Figure 2 
(%). shows the plot of relative efficiency:- 

The Regression Estimator is included for M S E (RI) ] 
comparative purposes and demonstrates e = ~ - 1 x 100% 

J the loss of efficiency if no components M SEi(G) 
of variance are included in the 

estimation process at all. against a measure of the small area 

Figure 1 shows the plot of the MSE for difference in regression slopes which 
was derived from the population data: each small area for the Random Intercept 

and Diagonal Estimators for population l (v  , v )  S v ' 
P2 where the Relative Efficiency for the di = ni li 2i xx,i(Vli ' 2i ) 
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where S is the variance-covariance As might be expected the effect of 
xx,i introducing an area level explanatory 

matrix for the auxiliary variables in the variable is to improve the MSE of aU 
i th  small area. In accordance with the the estimators but to reduce the 
conjecture, it will be seen that the difference between the Random Effect, 
large efficiency gains for the General the Diagonal and General Estimators. 
Estimator generally correspond to large 

values of d~. Table 4: Properties of various 
estimators which include an arealevel 
covariate to the Random Intercept 

5. Introducing An Area Level Covariate estimator with no area level covariate 

The model in section 4 was modified by Estimator 
introducing an area level variable (Z." 

1 

the number of cars per household in each Diagonal (with z) 
small area). Analyses using the 
complete population data indicated that 
this was a useful explanatory variable General (with z) 
for the two regression coefficients for 
the individual level variables 'rooms' 
and 'education' but not for the constant General(2) (with z) 
term. That is 

Population 
P2 P4 

87 98 
(92) (100) 

105 
(105) ( - )  

88 100 
(93) (101) 

Y = 13oi + 131i(x .-x--) + Random Intercept 
ij lij (with z) 87 92 

~2i(Xxij-X2) + Eli (93) (98) 

~oi = ~0 + Voi N.B. First entry is ratio of Mean Square 
Error (%). 

= + T t z  + v  ~li ~I0 1 i li 

= + V ~2i T20 + ¥21Zi 2i 

Second entry is ratio of Average 
Relative Bias (%). 

Table 4 compares the various estimators 
using z with the Random Intercept 

The effect of introducing an area level estimator with no area level covariate. 
variable is to leave the unit level There are two General estimators since 

2 the full General estimator could not 
variance oeunchanged but to reduce the always be fitted to each simulated 
area level components of variance by sample for the real data (P4). 
converting some of the between area Consequently a second estimator 
differences to fixed effects related to (General(2)) was used in which the 
z.. Thus the covariance structure was: 

1 

1.364 .239 .242 
(. 189) (. 045) (. 069) 

.081 .017 
(.017) (.020) 

.279 
(. 047 

(72 = 47 74 (345) 

covariance terms ~ l  and 0"02 were set to 

zero. For the real data set (P4) it may 
be seen that the Diagonal and General(2) 
estimators are comparable to the Random 
Intercept estimator with no z but that 
the Random Intercept estimator (with z) 
is the most efficient. For the other 
population (P2) the Diagonal, General(2) 
and Random Intercept estimators (with z) 
are equally efficient and all are 
superior to the Random Intercept 
estimator without z. 
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6. Discussion Diagnostic measures are needed which will 
help to guide the use of models for 

It is clear from many studies that estimation purposes. 
there is no single approach to the 
small area estimation problem which will 
prove satisfactory for all situations. Acknowledgement 
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FIGURE 1" C O M P A R I S O N  OF MSE F O R  R A N D O M  I N T E R C E P T  AND D I A G O N A L  
E S T I M A T O R  F O R  P O P U L A T I O N  P2 
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