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1 .  I n t r o d u c t i o n  
The National Health Interview Survey (NHIS) is a 

major source of health statistics for the United States' 
population. It is based on an area probability sample, with 
a separate stratum to account for new construction since the 
last census. Data are collected year-round, with only a one 
week break at the beginning of each year. Fifty thousand 
housing units are sampled each year, with data collected on 
all 125,000 people living at those addresses. Every ten 
years the NHIS is redesigned based on new Census data and 
responding to updated priorities for the survey. The two 
primary goals of the current redesign (to be used by the 
NHIS for 1995-2004, budget permitting) are to produce 
accurate estimates for the 50 states plus the District of 
Columbia, and for blacks and Hispanics nationally. 

As part of the plans for the NHIS for 1995-2004, 
NCHS has worked with the U.S. Bureau of the Census and 
Westat, Inc., to revise the sample design so as to improve 
the Center 's  ability to produce both of these types of 
estimates. Unfortunately, these two primary goals of the 
redesign are in substantial conflict. The overwhelming 
majority of blacks and Hispanics live in the largest states; 
those for which the sample sizes are already relatively 
large. Improving the ability of the NHIS to provide 
minority statistics requires allocating more of the sample 
to the large states, thereby decreasing the sample sizes in 
smaller states. Alternatively,  improving state-level  
estimates for the smaller states involves reducing the 
sample sizes in large states, hence decreasing the accuracy 
of estimates for blacks and Hispanics. 

Given this conflict between the two priorities, a 
decision was made to oversample blacks and Hispanics to 
improve estimates of their health and only to use state 
stratification to improve the ability to provide estimates at 
the state level. The resulting sample sizes in all but 10 
states will be too small to produce direct estimates of the 
desired accuracy. The alternative is to employ some form 
of small-area estimation technique to produce state-level 
estimates using a composite estimator with a model-based 
component. The remainder of this paper addresses the 
issues of how to combine a direct design-unbiased state 
sample estimate with a model-based estimator, and how to 
estimate the accuracy of the resultant composite estimator. 

This paper begins by reviewing the existing small- 
area estimators that may be appropriate for the NHIS. It 
then introduces a new, more general, small-area estimator, 
provides an empirical comparison of alternative estimators 
that was carried out on the current NHIS, and describes 
attempts to produce state-specific mean square errors for 
these estimators. 

2 .  Model -Based Estimators 
2 . 1  Exist ing Al ternat ives  

Small-area estimates of most health measures face 
l imitations beyond those found for demographic or 
economic measures. "Truth" is generally not measured, 
that is, there is no census that asks sufficient health 

Yi.. = 

questions that would provide a baseline against which 
models could be developed or tested. Existing procedures 
that have potential for the NHIS are synthetic estimation 
(first developed for use on the NHIS (NCHS, 1968)), and 
composi te  est imation combining the direct sample 
estimator and the synthetic estimator (Schaible 1971). 

The form of the classical synthetic estimator of the 
mean for small area i is: 

J 

j~ l  N ij Y.i. 
= Ni. 

where: 

Yi.. = 
Nij = 

y.j. = 
Ni. = 

synthetic estimator for state i; 
total population for subgroup j in state i; 

sample mean for subgroup j across all states; and, 
total population for state i. 

Composite estimation takes a weighted average of the 
direct design-unbiased est imator and this synthetic 
estimator, where the weights are inversely proportional to 
the mean square errors of the two estimators. 

For either of these estimators to be unbiased, it is 
necessary that for any population subgroup the mean is the 
same across every small area; for example, the average 
number of doctor visits by 20-44 year old black males is 
the same in every state. This model assumption is always 
false. However, if it is approximately correct, the biases 
will be small, and tolerable. 

2 . 2  Generalized Synthetic Estimator 
A more general small-area estimator can be developed that 
does not make this restrictive assumption of constant 
averages across all small areas (Marker). Ericson (1969) 
p roposed  app ly ing  the Bayes i an  concep t  of 
exchangeability to survey sampling. In the following 
small-area estimator, exchangeability is used at two levels. 
First, the individuals are assumed to be exchangeable 
within small area/subgroup; this implies that the values of 
the characteristic of interest (e.g., the number of doctor 
visits) of all individuals in a given small area/subgroup are 
distributed with a common mean and variance. Second, 
assume that for each subgroup the small area/subgroup 
means and variances are exchangeable across small areas. 
Thus, the small area/subgroup means are a random sample 
drawn from a population with a common subgroup mean. 
This allows the average number of doctor visits by 20-44 
year old black males to vary from state to state, but to have 
a common expectation and variability about the overall 
mean for 20-44 year old black males. 

Let Yijk be the value (e.g., the number of doctor 
visits) of the 

i th small area, i = 1, 2 ..... I, 
jth subgroup, j = 1, 2 ..... J, and 
k th individual k = l, 2 ..... Nij. 
We can now rigorously characterize the prior 

distribution as follows: 
Assumption 1: Conditional on their mean and variance 

2 
(I.tij, ~ij), the Yijk are exchangeable within 
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small area/subgroups and are independent 
between small area/subgroups. 

Assumption 2: For each subgroup j, the ordered pairs (I.tij, 

) are exchangeable across small areas i, 
and they are independent between 
subgroups j with: 

E(Bij I m j) = mj, (the prior expectation within 
subgroup j) 

V(I.tij I mj) = vj, 

Cov(I.tij, IXrj) = cj i # r, 

E(o~ij) = Cj, 
To properly represent the assumptions of the classical 
synthetic estimator, define a second level in the prior 
distribution: 
E(mj) = m j 
V(mj) = vj 
Pj = vj + vj -cj 
Sij = (1- fi) Cj/nij 

Pj and Sij are the prior and sampling variances, 

respectively, of Yij. To ensure that weights in the resulting 
estimator remain positive, it is necessary to have the 
following restrictions- 

v i + v  i 
either cj > 0, or cj < 0 and Icjl < • and 

- ( I  - I) 
i 2 

~ l p j  Pj < Ni 
= + Sij I ' 

Expanding on the work by Ericson (1981, 1983), it 
can be shown (Marker) that the posterior expectation given 
the prior distr ibution described under these two 
assumptions is (let (s, y) represent the sample s containing 
values y): 

- [ - i  
E~i." I(s, y)) = ni. yi.+ (Nij- nij ) 

, I 1 I N . .  ^ ij 1 " 
. j .  Pj+~j mj ~ - 

N. 
• J .j i. (1) 

Sij+-----~j +cj 

This Bayes estimator is called the Generalized 
Synthetic Estimator (GSE). The reason for this name 
becomes clear if we make three further assumptions. 

1. We assume that the mean response for a given 

subgroup is the same for all small areas, i.e., I.tij 

= ~t.j for all j, or 

V(~tijlmj) = vj = 0 
for all j. This also implies that the covariance 
between any two such means for a given 
subgroup is equal to the variance of one of the 
means, i.e., 

cj = Cov (P.ij, l-trj) = V(t.tij) = vj. 

Thus, Pj = vj + vj -cj =0.  

2. Assume that the prior distribution for mj is 
diffuse (at least relative to the Sij) so that 

V(mj)= v j = * *  men 

ECYi.. I(s, y)) = ni. yi.+ (Ngj-ngj) B.j /Ni. (2) 

A 

~t.j. is the weighted average of the small 
m 

area/subgroup means Yij., this is only equal to 
m 

the overall sample average for the subgroup y.j. 
ff we assume 

3. The expected elemental variances of the Yijk, 

E(oij) = ej, are equal for all areas. Then: 

E(Yi." I(s, y)) - ni. Yi. + (Nij" nij) Y.j. i. (3) 

Finally, assuming there are no sampled 
elements in small-area i ( n i . -  nij - 0 )  results 
in the classical synthetic est imate first 
introduced by NCHS (1968): 

_ J 
- 

~ Y i . .  I(s, y)) = Nij y.j/Ni. (4) 

This commonly used form of the synthetic estimate 
is therefore appropriate if the following conditions are 
true: 

(a) The two initial assumptions hold. 
(b) In any subgroup, the means for all small areas 

are equal. 
(c) Prior knowledge of the value of the common 

mean for all small areas is nonexistent. 
(d) In any subgroup, the expected variances for all 

small areas are equal. 
(e) There are no respondents in the small area of 

interest. 
If only (e) is not true, the synthetic estimator still holds for 
the total of those not sampled. 

Condit ions (a) and (b) are discussed above. 
Condition (c), that there is no prior knowledge of the 
common value is in most cases not true. Prior information 
can be available from a number of sources. The same data 
may have been collected in a previous year. 

If the prior distribution on mj is not diffuse, then the 
. ,  

values of the Sij's and vj s must be considered. Sij is the 
expected variance in the average response in any small area 
for members of subgroup j (e.g., the expected variability 
for the sample average of 20-44 year old black males in 
state i). v j is the measure of confidence you have in the 
prior mean for subgroup j. To not assume that the means 
within a subgroup are all equal, just use (vj + v j - cj) instead 
of v~. 

Condition (d), homoscedastic variances within 
subgroups, goes unmentioned in all other literature on the 
synthetic estimator. If the variable is a proportion, then 
the variances are homoscedastic since 

E(o~) = E(I.tij ( 1 -  ~l,ij)) = mj-m~ 

because the small area/subgroup means are exchangeable. 
Similarly, if the variable follows a Poisson distribution the 
variances are homoscedastic since the variance of a 
Poisson variable is equal to its mean mj. If the variable is 
not a proportion or Poisson (e.g., continuous), this is not 
necessarily true. Variances are likely to vary since certain 
small areas are going to have more homogeneous  
subgroups than others. (If the differences in homogeneity 
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are not large, the impact of this departure from the 
assumptions may be minimal.) If one part of the sample is 
significantly more accurate than another, it is logical to 
w2eight its average more highly. While the true variances 

~ij may vary from small area to small area, they must be 
exchangeable with a common expected variance. 

Close examination of the GSE shows that for each 
subgroup it is a weighted average of the classical synthetic 
estimate and the prior expected total. If one feels more 
confident in the prior for a subgroup than in the sample 
responses due to a large expected sampling variance, then 
the General ized Synthetic Estimator will automatically 
give more weight  to the prior than to the classical 
synthetic estimate. If instead one is more willing to trust 
the sample data than the prior, the Generalized Synthetic 
Estimator will automatically adjust in that direction since 
Pj will be larger than Sij. 

3 .  E m p i r i c a l  A n a l y s i s  
Two NHIS variables were studied in the empirical 

analysis, one the mean of a count variable, and the other a 
proportion. The count variable was the average number of 
doctor visits in the past 12 months, and the proportion was 
the percent with a self-perceived poor health status. The 
exact forms of the questions on the NHIS questionnaire 
were as follows: 

• During the past 12 months, how many times 
did [ - - ]  see or talk to a medical doctor or 
assistant? (Do not count doctors seen while an 
overnight patient in a hospital.) 

• Would  you say [ - - ]  health in general  is 
excellent, very good, good, fair, or poor? 

3 . 1  E s t i m a t o r s  
A total of 6 small-area estimators for states were 

used. They are described below. 
1. D i r e c t ,  d e s i g n - u n b i a s e d  i n f l a t i o n  

e s t i m a t o r .  

Y li. = X ~ W ijk Yijk/X ~ W ijk 
J J 

where 
wij k = weight for the kth respondent, 

in subgroup j, in state i 
2. Synthet ic  Est imator.  This is equation (4). 

Sixteen subgroups were used, 4 age categories 
(0-19, 20-44, 45-64, 65 or older), 2 race 
ca tegor ies  (black, nonblack) ,  and 2 sex 
categories (male, female). 
The predic t ive  vers ion of the synthet ic  
estimator was also examined (equation 3), but 
resulted in insignificant differences between 
the two forms of the synthetic estimator. Thus, 
we only report the results from the more 
common version given above. 

3. C o m p o s i t e  E s t i m a t o r .  This is a linear 
combination of the first two estimators where 
the weights are proportional to the mean square 
errors of the two estimators. 
A A D 

Y3i. = tiYli. + (1-ti) YEi. 
where 

. 

. 

MSE(Y2i.) 
t i = - 

Var(Yli .) + MSE(YEi .) 

Var(-Yli . )  c a n  be estimated directly from the 

survey data. The calculation of MSE (YEi.) is 
described in Section 3.2. 
G S E  W i t h  Heteroscedas t i c  Var iances .  
As mentioned previously, synthetic estimates 
of proportions where the subgroup means are 
assumed to be equal across small areas will 
automatically have homoscedastic variances. 
For continuous variables it is quite possible 
that  var iances  will  be he te roscedas t ic .  
Therefore, this estimator only applies to the 
doctor visits' variable. 

Assume the mean response for a given 
subgroup is the same for all small areas, i.e., 

V(ktij Imj) = vj = 0. Also, assume the prior 
distribution for mj is diffuse (at least relative to 
Sij) so that 
V(mj) = v~ = oo then 

F_~i. I (s, y) - ni. Yi.. + (Nij " nij) g.j. /Ni. 

A - -  

For the synthetic estimator we set I.t.j - y.j , but 
this is only appropriate when the expected 

elemental variances, E(~i~.) = Oj, are equal for all 
areas. To test the synthetic es t imator ' s  
robustness to the assumption of homoscedastic 
variances, we will make a relatively extreme, 
but p lausible ,  assumpt ion regarding the 
variances. 

Assume that within a subgroup, there are 
differences in the distributions of doctor visits 
between those in central cities and those who 
live elsewhere. In particular, assume the mean 

and variance of each small area/subgroup is (itij, 
2 2 

t~ij zij (1 - zij)) , with the pair (Itij, t~ij ) 
exchangeable, as before. 
zij = the p ropo r t i on  of the s t a t e ' s  

populat ion living in central cities 
(capped at .95). 

Thus, 
J A_ _ ^ 

Y4i. = (ni. Yi. + ~ ,  (Nij - nij) It.j) / Ni. 
J l = 

where 
I - I 

A = ~ n ij Yij / ~  nii 
It'J i= l  zij (1 - zij) • ~ "  Zij (1 - Zij ) 

G S E  W i t h  B a l a n c e d  P r i o r  and  
S a m p l i n g  V a r i a n c e s  (16 s u b g r o u p s ) .  
If our prior distribution on the subgroup mean 
is diffuse (relative to the sampling variance), 
the GSE has been shown to simplify to the 
synthetic estimator. If the prior distribution is 
believed to have very little variation, we would 
use the a priori mean and not bother to collect 
the sample data. This estimator explores the 
GSE when the values of the prior and sampling 
variances are both moderate. Bounds on the 
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. 

relationship between these two variances were 
specified in Assumption 2. 

2 
N i 

0 < l~__lPj + Si j l--~ Nij 

When the sampling variance is large, the 
central term approaches 0, but when the prior 
variance dominates it approaches the term on 
the right. This RHS describes how evenly 
subgroup j is spread across all of the small 
areas. If the subgroup is only present in a 
single small area, then the RHS is equal to 1. If 
the subgroup is evenly spread across all small 
areas, then it is equal to the number of small 
areas. Thus, for the NHIS this term can vary 
from 1 to 51 (50 states plus the District of 
Columbia). 
For this estimator, we balance the two 
variances by choosing the midpoint in the 
allowable range, that is, for each subgroup j: 

I pj 1 1 N~Ji=~ 1 i 1 Pj + S i j = 2  i 2 =~b j  (5) 
i=1 

N i j  

Also, we have already examined cj = coy (I.tij,~trj) 
when it is large and positive (estimators 2 and 
4), so for this estimator we let ].tij be a random 

sample with expectation kt.j, thus 

: 

This implies that 
I 

Pj = vj + vj -cj = i 1 (vj + vj) (6) 

Substituting (5) and (6) into the GSE (1) 
provides the following estimator 

^ [ ' 
Y 5i - niYi+ j ~  (Nij-nij) 

I ^ / 51 l 'x , f  51 \"!"1 
~tj[50b~-5oJ+mJ /5--6-~ ~ / /  \ ~ / x 'J////N~ 

51 1 '" L JJ 
For this empirical analysis we set 

A 

~j = y.j from the 1988 NHIS, and 
I 

mj = y.j from the 1987 NHIS. 
With 16 subgroups the values for bj vary from 
19.85 to 23.51. 
GSE with Balanced Prior  and 
Sampling Variances (32 Subgroups). 
This estimator is of the same form as estimator 
5. However, to examine the possibility of 
significant differences between members of a 
subgroup who live in a central city versus 
outside the central city, we use 32 subgroups. 
These are each of the 16 subgroups used 
previously, subdivided into central city and 
noncentral city. While the values of bj used for 

estimator 5 only vary from 19.85 to 23.51, the 
bj used for estimator 6 vary from 14.30 to 
25.92. 

Tables 1 and 2 provide the estimates derived for each 
state for each of the estimators for number of doctor visits 
and perceived poor health status, respectively. The states 
are sorted in descending order of the estimates from 
estimator 1. Note that for two of the states, North Dakota 
(ND) and Nebraska (NE), no sample was collected and thus 
no direct, design-unbiased estimate exists. The largest and 
smallest estimate is shaded for each estimator. While the 
model-based estimators are not consistent with the design- 
unbiased estimator, it is striking to note the similarities 
between the different model-based estimators. In particular 
for doctor visits, the standard synthetic estimator and all 
three generalized versions found Alaska (AK) to have the 
smallest estimated numbers. All but estimator 6 found 
Florida (FL) to have the largest estimated number (Florida 
was second largest for estimator 6). The different versions 
of the synthetic estimator had very little differences, 
generally less than 1 percent. This robustness of the 
synthetic estimator to heterogeneous variances and 
inclusion of data from the prior year is surprising and also 
comforting if this estimator were to be used to produce 
state-level estimates. 

Similar results are observed for self-perceived poor 
health status. The three versions of the synthetic estimator 
each found Alaska to have the lowest incidence rate and the 
District of Columbia (DC) the highest. It is intriguing to 
note that these two states had direct estimates that were 
very similar. Again, the robustness of the synthetic 
estimator for the NHIS is a striking finding. 

3 . 2  Accuracy of Estimators 
In the previous section it was noted that the 

different model-based estimators produced similar point 
estimates. We now examine their accuracy; in particular, 
that of estimator 2, the synthetic estimator, and estimator 
5, the GSE with 16 subgroups and relatively balanced 
contributions from prior and sample estimates. While the 
GSE was developed in a Bayesian framework, and the 
synthetic es t imator  is a model-based est imator,  
practitioners would like to measure their accuracy in a 
design-based manner. This would allow for comparisons 
with the variance of the design-unbiased direct estimator. 

Gonzalez and Waksberg (1973) introduced the 
average (across small areas) mean square error as the 
measure of accuracy for model-based small-area estimates. 
The average MSE is computed as follows: 

A 
m ~ 2 

E(Yxi- yfi ) 

where 

Yli 

^ 

Yfi 
Thus, 

aveMSE (yfi) 

A m m 

= aveMSE (yl) + aveMSE (yf) 
A 

m 

= aveVar (yl) + aveMSE (yf) 

= design-unbiased inflation estimator for 

state i; and, 

= model-based estimator f for state i. 

A 

= ECYli - ~fi)2 _ aveVar (Yli) (7) 
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Table 1. Average number of doctor visits by state 

State 

VT 
DE 
CO 
13(2 
MI 
CT 
AZ 
NV 
MA 
RI 
MT 
KY 
PA 
OH 
WY 
CA 
OK 
NM 
ME 
MD 
b'L 
TN 
WA 
AR 
NY 
IA 
NJ 

WV 
OR 
UT 
WI 
SC 
VA 
AL 
HI 
KS 
MO 
MS 
"IX 
IL 
LA 
IN 
SD 
NH 
ID 
AK 
MN 
GA 
NC 
ND 
NE 

Design-unbiased 
inflation 
estimator 

m, 

6.036 
5.648 
4.868 
4.706 
4.594 
4.589 
4.562 
4.530 
4.481 
4.424 
4.394 
4.333 
4.204 
4.201 
4.156 
4.111 
4.104 
4.084 
4.075 
4.045 
3.981 
3.950 
3.869 
3.840 
3.828 
3.821 
3.806 
3.734 
3.704 
3.704 
3.692 
3.677 
3.671 
3.638 
3.575 
3.573 
3.549 
3.489 
3.450 
3.420 
3.410 
3.380 
3.334 
3.236 
3.162 
3.093 
3.034 
3.000 
2.685 

NA 
NA 

Synthetic 
estimator 

3.889 
3.856 
3.831 
3.852 
3.852 
3.926 
3.889 
3.841 
3.933 
3.959 
3.911 
3.895 
3.967 
3.896 
3.827 
3.817 
3.898 
3.842 
3.928 
3.811 

3.876 
3.871 
3.908 
3.902 
3.957 
3.913 
3.975 
3.928 
3.740 
3.894 
3.780 
3.819 
3.846 
3.850 
3.897 
3.913 
3.763 
3.789 
3.862 
3.754 
3.885 
3.921 
3.879 
3.857 

3.885 
3.755 
3.842 
3.908 
3.913 

Composite 
estimator 

4.178 
4.477 
4.121 
4.461 
4.343 
4.350 
4.026 
4.362 
4.098 
4.159 
4.179 
4.175 
4.162 
3.912 
4.093 
4.041 
3.898 
3.981 
3.970 
3.985 
3.931 
3.870 
3.867 
3.836 
3.878 
3.828 
3.888 
3.800 
3.721 
3.732 
3.730 
3.704 
3.698 
3.796 
3.690 
3.655 
3.674 
3.482 
3.483 
3.502 
3.516 
3.702 
3.798 
3.616 
3.542 
3.258 
3.190 

3.908 
3.913 

,,, 

Hetero-scedastic 
variances 

3.912 
3.898 
3.858 
3.967 
3.890 
3.957 
3.915 
3.871 
3.960 
3.984 
3.933 
3.925 
4.000 
3.930 
3.849 
3.848 
3.927 
3.865 
3.949 
3.863 

 ii)i)i)))i)i)iiiiiii i.i:Li.li) i    ii:ii!.i Li.iii.i:Li:i.iiiiiii:iiii 
3.916 
3.896 
3.949 
3.943 
3.980 
3.950 
3.999 
3.951 
3.761 
3.920 
3.838 
3.864 
3.899 
3.875 
3.924 
3.947 
3.829 
3.824 
3.901 
3.813 
3.915 
3.924 
3.901 
3.877 

))i))ii))))i))ii)))i))iii))))) ii   )i)i)i)i))i)il)i)iiiiii)iiiiiiiiiii 

3.809 
3.890 
3.931 
3.938 

GSE with (16) 
balanced 
variances 

3.904 
3.895 
3.851 
3.987 
3.888 
3.948 
3.906 
3.862 
3.951 
3.974 
3.925 
3.921 
3.993 
3.926 
3.844 
3.841 
3.923 
3.860 
3.941 
3.861 

iiil)iiiiiiiiiiiiiiiiiii ii   iliiiii!iiiii!iiiii) ii 
3.915 
3.888 
3.949 
3.937 
3.971 
3.943 
3.992 
3.941 
3.761 
3.912 
3.843 
3.864 
3.903 
3.864 
3.917 
3.942 
3.840 
3.823 
3.897 
3.819 
3.910 
3.933 
3.893 
3.871 

iiiiiiiiiiiiiiiiiiiiiiiiiii~ii~i~ iiiiiii iii iiiiiiiiiiii) 
~.~UU 

3.812 
3.891 
3.920 
3.931 

GSE with (32) 
balanced 
variances 

3.893 
3.873 
3.859 

iiiiiii!i!i)i!iiiii!iii! i   i iiiiiiiii!i!iiiii)iiiiii)iii 
3.890 
3.956 
3.927 
3.865 
3.959 
3.977 
3.920 
3.913 
3.994 
3.930 
3.842 
3.850 
3.928 
3.866 
3.933 
3.841 
4.025 
3.924 
3.890 
3.937 
3.958 
3.973 
3.930 
3.981 
3.943 
3.760 
3.920 
3.801 
3.859 
3.893 
3.869 
3.922 
3.940 
3.793 
3.838 
3.908 
3.810 
3.920 
3.932 
3.893 
3.864 

!ii!ili!iliiiiiii i ilili i~ii~i~iii iiiiii)iliiWi 

3.787 
3.874 
3.923 

. 3.938 
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Table 2. Percent with perceived poor health status by state 

Design- GSE with GSE with 
!unbiased i (16) (32) 
in f la t ion  Synthetic Composi te  balanced balanced 

State estimator estimator estimator t variances variances 

WV 7.17 2.87 iiiiiiiiiiiiiiii~iii~giiiiiiiiii~iiii! 2.86 2.87 

MS 6.28 3.19 iiiiiiiiiiijji~iii~i~iiijiiiii!iiiil 3.18 3.23 
AL 5.42 3.13 4.94 3.13 3.14 
ME 5.19 2.60 4.01 2.59 2.59 
AR 5.10 3.07 4.49 3.07 3.08 
KY 5.06 2.70 4.56 2.69 2.70 
NC 4.68 2.99 4.48 2.99 3.01 
TN 4.46 2.91 4.23 2.91 2.90 
OK 3.81 2.75 3.61 2.74 2.74 
LA 3.52 2.96 3.44 2.96 2.97 
GA 3.44 2.81 3.38 2.81 2.83 
SC 3.42 3.03 3.36 3.03 3.07 
IN 3.40 2.69 3.33 2.68 2.68 
AZ 3.29 2.57 3.18 2.56 2.55 
VA 3.29 2.80 3.25 2.80 2.80 
"IX 3.02 2.49 3.00 2.48 2.47 
FL 2.96 3.29 2.97 3.30 3.30 

DC 2.95 i~ili~ili!ii~iiiiiiiii~i~ii 3.62 i~i~i~i~iiii~ ~iiiiiii~i~i~i~ li i!iii~ii~i~iiiiiiiiiiiiiii 
AK 2.87 iiii}iiiiiiii~i!!i~iiiiiiiiiii:i: 2.13 i:iiiii:iiii:~i?i~iiiili~i~:iii: !ii!!iijiiii:~ii!~iijiiiiiiiiiii 
ID 2.80 2.42 2.66 2.40 2.41 
OH 2.79 2.81 2.79 2.80 2.80 
MI 2.78 2.76 2.78 2.75 2.75 

MO 2.64 2.88 2.66 2.87 2.87 
DE 2.61 2.85 2.72 2.85 2.87 
OR 2.50 2.65 2.53 2.64 2.64 
WY 2.41 2.32 2.36 2.30 2.30 
IL 2.40 2.82 2.42 2.82 2.81 

CA 2.31 2.45 2.31 2.45 2.44 
NY 2.31 2.96 2.33 2.96 2.94 
KS 2.21 2.69 2.28 2.68 2.68 

MA 2.21 2.71 2.24 2.70 2.69 
MT 2.10 2.59 2.27 2.58 2.58 
VT 2.09 2.45 2.24 2.44 2.44 
NJ 2.03 2.94 2.07 2.94 2.95 
SD 2.00 2.63 2.23 2.62 2.62 
RI 1.97 2.78 2.19 2.77 2.77 

MD 1.84 2.91 1.91 2.92 2.93 
UI" 1.75 1.99 1.79 1.97 1.97 
NV 1.74 2.56 1.92 2.56 2.56 
PA 1.69 3.02 1.72 3.01 3.01 

NM 1.67 2.36 1.79 2.35 2.35 
IA 1.65 2.77 1.76 2.76 2.76 

WA 1.44 2.50 1.50 2.49 2.49 
WI 1.38 2.64 1.45 2.63 2.62 
CT 1.27 2.82 1.38 2.82 2.81 
CO 1.20 2.36 1.27 2.35 2.35 
MN 1.16 2.51 1.23 2.49 2.49 
HI 0.87 2.44 1.08 2.44 2.43 
NH 0.68 2.42 iil j: ii!iii!~i!iSi~iiiiiii! iili! 2.40 2.40 
ND NA 2.59 2.59 2.58 2.58 
NE NA 2.67 2.67 2.66 2.66 

The average MSE is simple to compute and provides a good 
overall measure of accuracy. Unfortunately, by averaging 
across all states, it overstates the error associated with 
states where the model fits well or for which the sampling 
error is small (compared to an average state). Similarly, it 
understates the error associated with states where the model 
fails or for which the sampling error is large. 

It would be far preferable to produce state-specific 
MSEs for the model-based estimators. This would provide 
smaller MSEs in states where the model fits well or for 
which the sampling error is small. It will also provide 
larger MSEs in states where the model fails or for which the 
sampling error is large. We therefore develop the 
following procedure for estimating state-specific MSEs. 

MSE (yfi) = Var (yfi) + Bias2(yfi) (8) 
Unfortunately, the lack of an estimate of the "truth" for 
these biased estimators requires the use of an average bias, 
in conjunction with a state-specific variance. 

^ ~ 
aveBias 2 (yfi) = aveMSE (yfi) - aveVar (yfi) (9) 

Combining equations (7) and (9) gives 
A A 

aveBias 2 (~fi) = E(Yli-Yfi)2-aveVar(Yli)-aveVar(yfi) (10)  
Using this average bias (10), we can produce state- 

specific mean square errors by replacing (8) with: 
A ~ A 

MSE(Yfi) = Var(yfi) + aveBias 2 (yfi) (11) 
A 

Var(yfi) is calculated using replicated variances (jackknife 

or balanced repeated replication). 
Table 3 shows the results of the six-step process for 

computing MSEs for estimators 2 and 5 for average number 
of doctor visits. Unfortunately, the average variance 
across states is quite small compared with the average bias 
(less than 2 percent). As a result, the largest and smallest 
state-specific MSEs are very similar to the average MSE. 
For the synthetic estimator, the aveMSE = .1703, while the 
smallest state-specific MSE is .1701 (Georgia) and the 
largest is .1732 (DC). This result is not very surprising 
since numerous examples have shown that the bias of the 
synthetic estimator is bigger than its variability. This is 
compounded by the fact that the sample size of the NHIS is 
so large (125,000 respondents) that the sampling variation 
is quite small. For most surveys, where the sample size is 
likely to be much smaller, the sampling variation can be 
expected to play a more major role, increasing the utility of 
state-specific MSEs. 

3 . 3  State Groupings 
Given the large sample size of the NHIS, it is 

possible to divide the nation into groups of states within 
which it is anticipated they would have similar biases with 
respect to the variable of interest. When this is true, the 
differences in MSEs between these groups can be large; 
and, for states in groupings where the model fits well, the 
average bias will be small and the state-specific MSEs will 
vary. The range of estimated mean values may also 
increase when the computations are based on data from a 
restricted subset of states. 

Two potential groupings of states were examined. 
They were based on the percent of the nonblack population 
living in central cities, and the percent of the black 
population living in central cities. Figure 1 identifies 
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which states were classified into the high, medium, and low 
categories under each of these groupings. 

Table 3. State-specific mean square errors for number of 
doctor visits using estimators 2 and 5 

^ 2 
m 

1. E(Yli" - yfi.) 

2. aveVar(yl) 

aveMSE(yf) 

4. aveVar(yf) 

aveVar - 
aveMSE(Yf ) 

2 
5. aveBias (yf) 

6. MSE(yf) 

smallest 
largest 

m 

RMSE(yf) 

Synthetic 
estimator 

•3777 

.2074 

.1703 

.0020 

1.2% 

.1684 

• 1701 (GA) 
• 1732 (DC) 

.412-.416 

GSE with (16) 
balanced var. 

.3754 

.2074 

.1680 

.0003 

0.1% 

.1678 

.1680 (many) 
• 1684 (DC) 

.410 

Figure 1. Groupings of states by common expected 
biases 

P e r c e n t  of  1990 n o n b l a c k  p o p u l a t i o n  in 
central  city: 

0-15% 

16-37% 

38-100% 

Percent  
c i t y :  

/0-35% 

36-77% 

78-100% 

DE, VT, SC, MS, WV, GA, NJ, MD, ID, 
ME, KY, MI 

all 34 others 

AK, NY, TX, AZ, DC 

of 1990 black populat ion  in central  

MS, SC, HI, VT, ND, ID, WV, ME, GA, 
DE, NC 

AR, MD, MT, UT, FL, NV, NM, NJ, SD, 
AL, KY, LA, VA, NH, WY, WA, CA, MO, 
OK, CO, AK, TX, RI, KS, OH, AZ, TN, 
MN, PA, CT, IA 

IL, MI, OR, MA, NY, NE, IN, WI, DC 

3.3.1 Point Estimates Using Subnationai State 
Groupings 

Estimated number of doctor visits was derived for 
each state for each of the estimators, based only on data 

from within that state's groups of states, grouped by 
percent of black or nonblack population in central cities• 
Again the similarities were striking between the different 
model-based estimators• With states grouped by black 
percentage of the population in central cities, the standard 
synthetic estimator and all three generalized versions found 
Mississippi (MS) to have the smallest estimated number of 
doctor visits and the District of Columbia (DC) to have the 
largest estimated number. The four model-based estimators 
again agreed on the states with the largest and smallest 
number of doctor visits when states were grouped by 
percentage of nonblack population in central cities, but the 
extreme states were not the same as with the f'rrst grouping. 
Now West Virginia (WV) was always highest and Alaska 
(AK) lowest. 

A major difference between these estimates and 
those in Table 1 is that the state-to-state range of model- 
based point estimates is much larger when the states are 
grouped than when all states used national subgroup 
estimates. Table 4 demonstrates that the range of model- 
based estimates across the states doubles when the states 
are grouped. For example when data from all states were 
combined, the GSE with 32 subgroups had a range of 0.41 
(from 3.67 (AK) to 4.08 (DC)). When only data from 
within a state's grouping is used this range is increased to 
0.76 for nonblack groupings (3.42 (AK) to 4.18 (WV)) and 
0.97 for black groupings (3.48 (MS) to 4.45 (DC)). This is 
important since one of the concerns about the synthetic 
estimator is that many analysts believe it "over shrinks" 
the est imates towards the national average, 
underrepresenting the true variability from small area to 
small area. 

Similar results are observed for self-perceived poor 
health status. With states grouped by nonblack 
populations in central cities (Table 5) the three versions of 
the synthetic estimator each found Alaska to have the 
lowest incidence rate and the District of Columbia the 
highest. It is again intriguing to note that these two states 
had direct estimates that were very similar. When grouped 
by black populations in central cities Alaska still has the 
lowest rate, but Mississipi now has the highest rate. 

Table 6 examines the robustness of the synthetic 
estimator by comparing the variation among the different 
model-based estimators for each state. Small variation (as 
was found when national subgroup estimates were used) 
would indicate that the synthetic estimator is robust to its 
assumptions that were loosened in the various forms of the 
GSE that were examined. For doctor visits the variation 
among the model-based estimators was similar when states 
were grouped by nonblack population as when all states 
were combined. When grouped by percentage of the black 
population in central cities there was significant variation 
among the model-based estimates for the eleven states with 
more rural black populations. 

Table 4. Variation in state estimates - average number of doctor visits 

All states 

Percent nonblack 

Percent black 

Design 
unbiased 

2.69-6.04 

2.69-6.04 

2.69-6.04 

S~,nthetic Composite 

3.63-4.00 2.95-4.60 

3.46-4.13 3.09-5.24 

3.14-4.23 2.72-5.37 

Heteroscedastic 
variances 

3.66-4.04 

3.50-4.16 

3.34-4.28 

GSE with 16 
l~roupings 

3.65-4.03 

3.42-4.18 

3.48-4.44 

GSE with 32 
groupings 

3.67-4.08 

3.42-4.18 

3.48-4.45 
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Table 5. Percent with self-perceived poor health status - 
States grouped by percent  of nonblack 
population in central cities 

Design- - G S E w i t h  G S E  with 
unbiased (16) (32) 
inflation Synthetic Composite balanced balanced 

State estimator estimator estimator variances variances 

WV 7.17 3.34 i!!i!}!}}!i}}i,}~ii~ ii}iiiii!iiiii 
MS 6.28 3.37 5.67 
AL 5.42 3.10 4.71 
ME 5.19 3.06 4.52 
AR 5.10 3.00 4.23 
KY 5.06 3.10 4.81 
NC 4.68 2.95 4.36 
"IN 4.46 2.84 4.09 
OK 3.81 2.65 3.48 
LA 3.52 2.95 3.40 
GA 3.44 3.04 3.42 
SC 3.42 3.25 3.40 
IN 3.40 2.59 3.27 
AZ 3.29 2.72 2.81 
VA 3.29 2.75 3.21 
"IX 3.02 2.59 2.78 
FL 2.96 3.19 2.98 
DC 2.95 iiii!iiii!ii~iiiii~iiiiiiii 3.99 
AK 2.87 ii~iii~!iii~iiiii}iiiiiiii 1.91 :::::::::::::::::::::::::::::::::::::::::::::::::::: 

ID 2.80 2.83 2.81 
OH 2.79 2.72 ! 2.78 
MI 2.78 3.09 2.79 

i 
MO 2.64 2.79 2.66 
DE 2.61 3.18 2.78 
OR 2.50 2.53 2.51 
WY 2.41 2.20 2.28 
IL 2.40 2.75 2.42 

CA 2.31 2.36 2.31 
NY 2.31 3.03 2.63 
KS 2.21 2.59 2.29 

MA 2.21 2.60 2.25 
MT 2.10 2.46 2.27 
VT 2.09 2.89 2.32 
NJ 2.03 3.31 2.07 
SD 2.00 2.51 2.25 
RI 1.97 2.67 2.24 

MD 1.84 3.16 1.89 
UT 1.75 1.89 1.78 
NV 1.74 2.46 1.97 
PA 1.69 2.92 1.74 

NM 1.67 2.25 1.82 
IA 1.65 2.65 1.81 

WA 1.44 2.38 1.52 
WI 1.38 2.52 1.48 
CT 1.27 2.72 1.43 
CO 1.20 2.26 1.31 
MN 1.16 2.39 1.26 
HI 0.87 2.32 1.16 

NH 0.68 2.30 iiii!i!ii!iiii!i~i~iiiii!il!ii!iii 
NE NA 2.56 2.56 
ND NA 2.47 2.47 

3.44 3.43 
3.56 3.56 
3.11 3.13 
3.13 3.13 
3.02 3.04 
3.19 3.19 
2.97 3.00 
2.86 2.85 
2.67 2.67 
2.97 2.98 
3.18 3.17 
3.40 3.41 
2.62 2.61 
2.47 2.45 
2.77 2.78 
2.34 2.34 
3.23 3.24 

!iiiiiiliii~i~iiiiiiiiiiii iiiiiiiiiiiii~i~i~iiiiiiiiiiii 
iiii!iNNiiiiiiiii iiiiiiiiiiiii ii!Niiiiii!iiiiiii 

2.90 2.90 
2.75 2.74 
3.20 3.20 
2.82 2.82 
3.30 3.29 
2.56 2.56 
2.22 2.22 
2.78 2.77 
2.39 2.39 
2.77 2.78 
2.61 2.61 
2.62 2.62 
2.49 2.49 
2.94 2.93 
3.43 3.43 
2.53 2.54 
2.69 2.69 
3.30 3.30 
1.91 1.91 
2.49 2.49 
2.95 2.94 
2.28 2.28 
2.67 2.67 
2.41 2.41 
2.55 2.55 
2.75 2.74 
2.28 2.28 
2.41 2.41 
2.36 2.36 
2.32 2.32 
2.58 2.58 
2.50 2.49 

Grouping the states also increased the variation 
among model-based estimates for percent with poor health 
in each state. This variation was particularly pronounced 
for states will large percentages  of its nonblack 
population, or small percentages of its black population, 
in central cities. 

Thus using subnational groupings of states resulted 
in model-based estimates that vary more from state-to-state 
and are, in general, still consistent across the form of 
estimator that is used. There are some states, however, for 
which the form of the estimator can have a significant 
impact on the estimate. We now examine the impact on 
mean square errors of using the subnational groupings. 

Table 6. Robustness of the synthetic estimator 

Variable 

Doctor 
visits  

Poor 
health 

State 
grouping 

None 

N o n -  

black 

Black 

None 

N o n -  

black 

Black 

Range among estimators 
~2), ~4),/5), and ~6) 

6% DC 
0-2% All others 

6% DC 
3% AZ 
0-2% All others 

10-11% All 11 states with <36% 
4% DC 
0-2% All others 

0-2% All states 

7-12% All 5 states with >37% 
3-6% 9 of 12 states with <16% 
0-2% All others 

10-12% All 11 states with <36% 
3-4% 8 of 9 states with >77% 
0-2% All others 

3.3.2 Mean Square Errors Using Subnational State 
Groupings 
The six-step process used in section 3.2 for 

computing mean square errors was recalculated averaging 
only across those states in the same grouping. The 
subgroup means were calculated separately for each 
grouping. The following tables are demonstrative of 
results for the two different groupings of states examined 
for each of the two variables. 

Table 7 demonstrates that grouping states with 
similar expected biases can result in state-specific mean 
square errors where the variance is a major component of 
the MSE. For states with a high percentage of their 
nonblack population residing in central cities the variance 
of the synthetic estimator is on average 21 percent of the 
mean square error. When all states were taken together the 
RMSE varied only from .412 to .416. When states are 
grouped by the distribution of nonblack population we 
have RMSEs that vary from .190 in Utah to .717 in West 
Virginia, reflecting the fact that the model-based 
estimators are able to produce estimates for some states 
with much greater accuracy than for others. 
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Table 8 shows more promising results. Using the 
synthetic estimator to estimate percent with perceived poor 
health without subgrouping the states, the variance of the 
model-based estimator is only 0.4% of its MSE and the 
RMSE varies only from 1.16 to 1.17 in any state. 
However, when the states are grouped according to the 
percent of the nonblack population in central cities, the 
state-specific MSEs are quite different. For states with a 

high percentage in central cities, the average variance is 78 
percent of the MSE! Among these states the RMSEs vary 
from 0.179 in Alaska to 0.311 in the District of Columbia; 
thus a confidence interval on the estimate for DC would be 
almost twice as wide as one for Alaska. The state-specific 
RMSE for West Virginia is 1.57, almost nine times the 
RMSE for Alaska. 

Table 7. State-specific mean square errors for number of doctor visits using the synthetic estimator, with states grouped 
by percent nonblack population in central cities 

_ A '2 

(1) E(Yli" - Y2i.) 

(2) aveVar(Yl) 

aveMSE(y 2) 

(4) aveVar(Y2) 
aveVar - 

aveMSE(Y2 ) 

(5) aveBias2(y2) 
m 

(6) MSE(Y2) 
smallest 
largest 

m 

RMSE(y 2) 

(GA) 
fDC) 

All states 

.3777 

.2074 

.1703 

.0020 

1.2% 

.1684 

.1701 

.1732 

.412 

.416 

Nonblack Population in Central Cities 
L o w  

.7536 

.2417 

.5119 

.0119 

2.3% 

.5001 

(WV) .5141 

.717 

Moderate 

.2203 

.1842 

.0361 

.0029 

8.0% 

.0333 

(U'13 .0360 

.190 

High 

.3238 

.2736 

.0502 

.0106 

21.1% 

.0396 

(TX) .0474 
(DC) .0586 

.218 

.242 

Table 8. State-specific mean square errors for percent with perceived poor health using the synthetic estimator, with 
states grouped by percent of nonblack population in central cities 

(1) E(Yli. - Y2i.) 

(2) aveVar(yl) 

aveMSE(y 2) 

(4) aveVar(Y2) 
aveVar - 

aveMSE (y2) 

(5) aveBiasE(y2) 
m 

(6) MSE(y 2) 
smallest 
largest 

RMSE(~' 2) 

all  va lues  are t imes  .0001, excep t  RI~ 

All states 

1.724 

0.369 

1.355 

.0005 

0.4% 

1.350 

(AK) 1.353 
(DC) 1.374 

1.16 

1.17 
ISE which  is t imes  .01 

(wv) 

Nonblack Population In Central Cities 
L o w  

3.011 

0.552 

2.459 

.0055 

2.2% 

2.404 

2.475 

1.57 

Moderate 

1.080 

0.265 

0.815 

.0007 

0.9% 

0.809 

High 

.0651 

0.600 

0.051 

.0040 

78.4% 

0.011 

(AK) 0.032 
(DC) 0.097 

0.179 
0.311 

4 .  Conc lus ions  and R e c o m m e n d a t i o n s  
This paper has examined a series of issues involved 

in developing small-area estimates for the National Health 
Interview Survey. When designing the NHIS, or any other 
national survey from which it is hoped to develop small- 
area statistics, it is very important to stratify the sample in 

accordance with the small-area boundaries that are to be 
analyzed. This will improve the ability to produce design- 
unbiased estimates for those areas with large enough 
sample sizes. It will therefore improve composite 
estimators. Finally, it will improve the estimates of MSE 
for model-based estimators that are based on these data. 
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A Generalized Synthetic Estimator has been 
introduced that allows prior information to be included as 
well as the use of heterogeneous variances across small 
areas. It also allows one to examine the robustness of the 
classical synthetic estimator to several assumptions that 
determine when it is an appropriate estimator. In the case 
of the NHIS, the classical synthetic estimator appears to be 
quite robust to the assumption of homogeneity and the use 
of data from a prior year's survey. 

Finally, a procedure is demonstrated for developing 
state-specific mean square errors for the model-based 
estimators. Variances for the model-based estimators are 
computed using replicated variances. An average bias is 
then calculated across all states. If the sample size is 
sufficiently large, improvements on the procedure can be 
made by grouping states together that have common 
expected biases. Applying these state-specific MSEs to 
the NHIS found instances where the root mean square error 
for one state was nine times larger than for another state, 
indicating the greater level of accuracy in predicting the 
estimate for the first state• 
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