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Abstract:  
This is the third in a series of papers which have dealt 

with adapted uses of linear model sampling and 
analyses for electric power industry data. Several 
applications are outlined, including monthly estimation 
of fuel costs per million BTU when neither total costs 
nor total BTU are known or estimated accurately and 
data are preliminary. Also included is the combination 
of two estimators, each of which uses a different 
regressor, for the estimation of generation expense. This 
latter process, unlike a single multiple regression, makes 
better use of the work that has been done by Royall and 
Cumberland, and others. A tentative conclusion is made 
regarding the use of this process for establishment 
surveys, which, along with a conclusion regarding 
heteroscedasticity, results in a simple, and perhaps often 
useful methodology for a large number of cases. 
Introduction: 

Along with Knaub(1990) and Knaub(1991), this paper 
presents a variety of applications of model sampling to 
electric power establishment survey data. Here, the 
model form chosen will be reviewed; some comments 
will be made regarding Knaub(1990) and Knaub(1991); 
study results will be shown for variance estimator 
performance under special, but often occurring 
conditions; and, finally, two new cases are considered 
and methodology developed. 
Model form review: 

The model used here is of the form 

Yi- bxl * X~eoi " 

From page 776, Knaub(1991), "...gamma may be obtained 
by fitting a homoscedastic linear regression to the result 
of dividing the absolute values of the residuals by x~ to 
see when the slope approaches zero. The reasoning is 
that if each error is a multiple of a random error, then 
the absolute values of the errors, divided by the 
corresponding multipliers, should not be increasing or 
decreasing with increasing x." 

The method of iterated reweighted least squares could 
have been used. However, just as the slope in the 
method that was used does not always equal zero for 
some value(s) of gamma, neither does the iterated 
reweighted least squares method always converge. These 
situations might be expected when the data appear to 
favor a nonlinear relationship, but this is conjecture and 
has not, as yet, been studied. Graphs of the 'slopes' 
mentioned above, plotted as functions of gamma, 
provide an interesting insight as to possible values of 

gamma that may be used, in addition to the gamma 
value which yields the slope closest to zero. (See Figure 
3b.) However, sample sizes for establishment surveys 
used in this office are generally small enough that 
factors, such as nonsampling error, that may greatly 
impact upon gamma and other parameters, do "not 
impact as greatly upon estimates of totals, ratios, and 
variances. This is apparently due largely to the highly 
skewed nature of establishment survey data. Thus, 
perturbances in the estimate of the 'best' value for 
gamma may not be very important. This is especially 
true if only very old and /o r  small sample data are all 
that are available for estimation of gamma. 
Comments regarding previous papers in this 
series: 

Knaub(1990) showed cases where gamma = 0.5 and 
gamma = 1.0 performed well. This seems to be true of a 
lot of electric power establishment survey data. Note 
also that Kirkendall (1992), in this same volume, finds 
gamma = 0.5 useful. 

Knaub (1991) showed graphs for several cases. These 
cases intersect with those used in this paper. 

Note that the use of n=2 was explored (Knaub (1991)) 
as if, other than the regressor data set, no other data 
were available. However, a referee from the Journal of 
Official Statistics, Statistics Sweden, made a good point 
when he suggested that the use of gamma = 1 when n=2 
does not have any relation to the value of gamma for the 
underlying populations. Therefore, more information is 
needed; much more is preferred. 

Errata from Knaub (1991): CVs for the examples on 
page 777 of that article are small, but actually, due to an 
error when programming, these estimates should have 
been smaller. Experience with these data, ironically, 
indicates that perhaps the erroneous estimates in the 
range shown, are superior. This is not likely to always 
be true, however, and the source code distributed at last 
year's Joint Statistical Meetings contained this error. 
Anyone interested may contact the author for the 
correction, as well as source code for a 'robust' CV 
estimator, and for the combination of two estimators, to 
be discussed later in this paper. 
Variance estimator case study: 

Consider regression using the zero-intercept model 
above, and using the variate of interest, but for a 
previously completed census, as the regressor. I 
considered monthly sample data, for which estimates 
had been made using a design based estimator (see 
Knaub (1989)), and compared results had the model 
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shown in this paper  been used. The design-based 
estimator contained an element of modelling as it did 
make use of auxiliary data on the variates of interest for 
a previously completed census, but it did not assume 
that respondents  of all 'sizes' had changed in the same 
proportions.  When l used only the "certainty" stratum 
from the design based sample as a model  based sample, 
approximately the same results were obtained using 
sample sizes a little more than half of that being used in 
accordance with Knaub (1989). Further, when using an 
annual census as regressor data, and a 'sample '  from 
another annual census as if it were the only data 
available, a technique once suggested at the Energy 
Information Administration by Dean Fennell, these 
m o d e l a n d  design based results were compared to the 
actual census results. The Royall and Cumber land (1978) 
V o 'robust '  variance estimator was then compared to the 
weighted least squares (WLS) variance estimator (used 
in Knaub (1990,1991)), using gamma = 0.5, and results 
were virtually identical. (See Table 1.) The difference 
appears  to be greatest for the most  extreme cases, i.e., 
where both estimators are severe underest imates of 
error. (See Figure 1.) This s tudy was only done for 
gamma = 0.5, but results for these two estimators often 
appear  to be nearly equal at other values of gamma also. 
(For a formulation of V D at various values of gamma,  I 
referred to Kirkendall (1991).) 

Consider the case marked "MO" in Table 1. The 
census result was 53,887. From the sample, the "best' 
estimate of gamma was 0.78, but when looking at census 
data (for the "y's," not just the "x's") gamma was 
calculated as 0.87. Since 0.78 would  have been our 'best 
guess '  for gamma here, I calculated the estimate, and cv 
estimates at that value of gamma,  and obtained 53,567 
(an improvement  over the result for gamma=0.5, as can 
be seen from the table). I also calculated a ' robust '  cv 
est imate (CVD) of 0.26%, and a WLS cv estimate of 
0.29%, which are still underestimates of the error, but are 
closer. Note that the set of graphs marked "Figure 2" 
pertains to this case. Figure 2a is of the x and y values 
from the sample, and similarly Figure 2c is for the 
census. Figures 2b and 2d are the corresponding plots 
for the absolute value of the 'slope' used to find the 
'best' gamma (i.e., when the absolute value of the 'slope' 
is smallest). For such small sample sizes, however,  it is 
not always the case that the sample based graphs will be 
such good indicators of the entire census-based graphs. 
See the case found in (set of graphs) Figure 3. In the case 
of Figure 3, unlike some other cases not shown, there is 
some indication of the "best' gamma value to use. 
However ,  estimation was not improved over the use of 
gamma = 0.5 for that case. It seems that for establish- 
ment survey data typically found in the electric power  
industry, the use of gamma = 0.5 is often satisfactory. 
Estimate of fuel costs per million BTU when 
total cost and total BTU are not well known: 

Let Y represent the total fuel costs in a given category, 
and let X represent the total millions of BTU that could 

be obtained in that category. Thus, Y/X is the fuel cost 
per  million BTU to be estimated. Let bc be this estimate. 
Then, 

where: "'s'" subscripts are for sampled observations, 
and "u" represents the remainder  of the population. 

Now, 

b / × > . x ] / [ x  +xl 
J 

=[b(7) X ÷b(1/2) X] / IX *X] 

X -- t X ,  so (approxinuately) X is [ 1 / ( t - l )  ] X ,  

t 1 
then b -- b (7) ÷ b (1/2) 

' t + l  t + l  

To apply V D to any ratio of variates (R = N/D) ,  the 
CV estimate for this ratio is 

" 2  2 
CPl), --" I V~). / YN ~" VDo / ?D - 2 Vo, " / (~'N" ~7~)) 11/2 

Using a model sample estimate equivalent of a double 
ratio estimate (see Knaub (1989) and Cochran (1977)) to 
take advantage of previously collected census data for 
both total costs and total millions of BTU, and using the 
relationship between costs and BTU, some indication of 
costs/mill ion BTU was found to be obtained in advance 
of the collection of the entire census of fuel costs for a 
given month. The prel iminary data being worked with, 
however,  gave the author  a lot of trouble, as 
nonsampling error not yet discovered was a pr imary 
concern. I established rules for eliminating some 
preliminary data, and a t tempted to determine the 'best' 
regressor data sets (e.g., data for the previous two 
months,  or the same month in the previous year). I also 
experimented with gamma values. The most  that can be 
done here appears to be to 'predict, '  from preliminary 
data for half or more of the population,  whether  a large 
change in cost per million BTU is occurring for any 
given fuel. It is interesting to note, however,  that the 
relationship between past and current data sets for 
heavy oil is so weak that the use of the double ratio 
estimate is not recommended  for that fuel. 

One lesson learned here is t h a t w h e n  data, say for 
different types of coal, are treated together, if the 
individual coal types result in substantially different 
estimated b values, then for modell ing purposes, these 
different types of coal should be disaggregated. That is, 
in model  sampling, a 'separate '  method can be far 
superior to a 'combined'  method.  
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Table 1. 

Note that many "Est. GarrvT~" values of "0.00" are the result of my programming logic which finds local minima. Better estimates can often be found by looking at plots, such 
as Figures 2b, 2d, 3b, and 3d. This table only shows results for gamma equal to 0.5. As Nancy Kirkendall also has found, here gamn~ -- 0.5 is a consistently good choios for 
estimation based on modeling. From a sensitivity analysis that I have done, one reason for this appears to be that for small sam;de sizes, such as found in this table, the addition 
or deletion of a single observation can change the estimate of gamma based on the sample by a considerable margin. It sometimes makes the difference as to whether a gamma 
value that will satisfy the mathematical model even exists. (In plots that follow, this is indicated when 'ABSYRL' does not equal zero for any value of gamma.) In some cases, 
the estimate (here, for total sales) does not vary much with gamma, but in some cases it does. There appears to be some indication, however, that when the estimator does 
vary with gamma appreciably, the estimated gamma value can often be used to Improve the accuracy of the estimated total, but the cv estimate is likely to deteriorate. This seems 
not only to be true when using the same variate for a different time period as the auxiliary or regressor varklte, but also when using another variate entirely. (See my paper on 
applications to generation and generation expense in the 1990 ASA proceedings for the Survey Retmarch Methods section. CV L is shown there, but CV o is comparable as in 
the table below.) CV o is the robust estimator shown here and associated with RoyaU and Cumberland's (1978) V o. CVt is associated with their Vt, and is shown under "WLS" 
(weighted least squares) here. 

Note that I have dropped cases where n--2 since gamma can not be estimated. (It always appear= to be equal to 1, and, as a JOS referee noted, this does not estimate 
the 'true' gamma value.) I also dropped observations from the universe where the value of the regretmor was 0, as 'new' member= of the universe would best be treated separately. 

ROBUST WI.S 

Est. Total = Total = 
ST GAM SHAT S SHAT-S cvHAT(%) sigmaHAT zHAT cvHAT(%) sigmaHAT zHAT Est. Gamma n-Sample N-Universe "Coverage" 

AK 0.5 4223 4244 -20.9 0.58 24.5 -0.85 0.64 26.8 -0.78 0.00 9 65 0.8319 
AL 0.5 59424 59926 -502.0 0.60 357.6 -1.40 0.66 391.8 -1.28 0.36 6 62 0.8128 
AR 0.5 26604 27365 -761.7 0.40 107.3 -7.10 0.28 74.7 -10.19 0.31 5 38 0.7425 
AZ 0.5 41137 41376 -238.3 0.47 193.1 -1.23 1.06 436.2 -0.55 0.00 4 40 0.8808 
CA 0.5 213170 211093 2077.2 0.24 518.3 4.01 0.38 811.4 2.56 0.00 S 50 0.8616 
CO 0.5 30731 30795 -63.6 0.10 31.0 -2.05 0.22 67.9 -0.94 0.00 5 58 0.7584 
Fl_ 0.5 142986 143535 -548.9 0.20 284.9 -1.93 0.17 242.7 -2.26 0.31 4 55 0.7778 
GA 0.5 80264 80440 -176.6 0.77 617.5 -0.29 0.37 294.7 -0.60 0.45 9 08 0.8097 
IA 0.5 29514 29437 77.1 0.92 270.3 0.29 0.80 236.7 0.33 1.86 9 200 0.7882 
ID 0.5 18014 18003 10.5 0.22 40.3 0.26 0.28 50.6 0.21 0.00 5 34 0.9138 
IN 0.5 74429 73977 452.2 0.82 607.7 0.74 0.75 558.2 0.81 0.00 4 122 0.7298 
KS 0.5 27213 27115 97.9 0.47 128.8 0.76 0.65 178.1 0.55 0.00 4 162 0.7433 
KY 0.5 62330 61097 1232.8 5.03 3133.3 0.39 5.06 3153.2 0.39 0.87 8 64 0.7823 
LA 0.5 63770 63826 - 55.6 0.22 140.2 -0.40 0.25 156.3 -0.36 0.06 5 42 0.8716 
MA 0.5 45404 45408 -4.5 0.32 145.2 -0.03 0.30 134.2 -0.03 0.46 4 50 0.7742 
MN 0.5 47337 47167 169.9 0.66 312.7 0.54 0.43 201.9 0.84 0.75 8 183 0.7865 
MO 0.5 53478 53887 -409.3 0.33 174.2 -2.35 0.36 191.8 -2.13 0.78 7 141 0.7627 
MS 0.5 32368 31831 537.1 2.73 883.5 0.61 2.92 944.2 0.57 0.06 9 50 0.7295 
MT 0.5 13209 13111 97.8 0.56 73.9 1.32 0.52 68.3 1.43 0.35 5 39 0.8641 
NC 0.5 89691 89925 -233.7 0.17 156.0 -1.50 0.18 157.9 -1.48 0.45 7 110 0.8157 
ND 0.5 7110 7014 96.0 0.63 45.0 2.14 0.78 55.5 1.73 0.00 8 42 0.7546 
NE 0.5 17971 17868 102.7 0.64 114.4 0.90 1.09 196.1 0.52 0.02 13 166 0.7690 
NH 0.5 8997 8980 17.0 0.26 23.6 0.72 0.21 18.5 0.92 0.70 3 13 0.8158 
NM 0.5 13632 13821 -188.5 0.62 84.5 -2.23 0.76 103.3 -1.82 0.05 S 33 0.7525 
NY 0.5 129516 129324 191.9 0.15 195.9 0.98 0.13 164.2 1.17 0.91 8 63 0.9722 
OH 0.5 141798 141874 -76.2 1.72 2439.4 -0.03 2.17 3074.9 -0.02 0.60 8 121 0.9212 
OR 0.5 43043 42977 66.0 1.07 460.2 0.14 1.38 584.6 0.11 0.00 4 40 0.7848 
PA 0.5 114919 114751 168.3 0.40 454.9 0.37 0.34 390.8 0.43 1.33 4 58 0.7504 
SC 0.5 55247 55652 -404.9 0.28 157.2 -2.58 0.30 165.5 -2.45 0.42 5 47 0.8363 
SD 0.5 6390 6334 56.2 1.61 102.8 0.55 2.08 132.8 0.42 0.00 6 77 0.5837 
TN 0.5 76854 77069 -215.7 0.42 325.7 -0.66 0.34 264.2 -0.82 0.81 25 93 0.7766 
TX 0.5 237064 237335 -271.1 0.29 694.3 -0.39 0.30 719.7 -0.38 0.27 5 162 0.7373 
VA 0.5 72549 72696 - 147.6 0.17 123.3 -1.20 0.24 172.7 -0.85 0.00 5 34 0.9096 
VT 0.5 4714 4716 -2.2 0.67 31.4 -0.07 0.59 28.0 -0.08 0.50 4 25 0.8524 
WA 0.5 91074 91046 28.0 1.17 1067.7 0.03 1.38 1260.0 0.02 0.44 9 67 0.8116 
Wl 0.5 48979 49198 -219.4 0.32 158.1 -1.39 0.23 110.8 -1.98 0.00 6 123 0.8324 
WY 0.5 12025 11769 256.0 0.62 74.5 3.44 0.46 55.7 4.59 0.71 3 36 0.8177 

Note that one or two 'odd' observations can change results substantially. For example, in the case of California, if we eliminate a single observation from the universe which 
has an auxiliary value, in the units above (millions of kilowatthours), of 1550.4 when the actual value in the 'current' data set is 0, and this data point was not in the sample, then 
the following is obtained: 

CA 0.5 211523 211093 429.9 0.24 502.5 0.86 0.37 786.7 0.55 0.00 5 49 0.8616 

1) Gamma=0.5 still looks good for at least most of these cases. 
2) Vo, one of Royall and Cumberland's 'robust' variance estimators, seems to work reasonably well, although variance estimation is not as impressive as the estimate of total 

(or a ratio), and may possibly be improved upon. 
3) 'New' utilities, i.e., those having a zero or no data for the auxiliary varlate, i.e., those who had no retail sales reported in the year used as the auxiliary prior to the period 

of current interest, should be required to respond and their data treated separately as a 'certainty' stratum. 

Combination of estimators with different 
regressors: 

There is a lot of literature available that applies single 
regressor models to survey sampling, but this is not true 
for multiple regression. (Note as an exception, however, 
Little (1988). Also, relatedly, see Rao and Mudholkar 
(1967).) To directly apply work such as that done by 
Royall (1970), or Royall and Cumberland (1978,1981), 

when more than one regressor may be available could be 
difficult. However, I noted that I did have two possible 
regressors for estimating generation expense. These are 
nameplate capacity, and net generation (with perhaps a 
small arbitrary constant added to avoid zero and 
negative net generation values). It seemed reasonable 
that a better estimate might be to 'average' the estimates 
resulting from these two single regressor models, and 
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N o t e  tha t  a "~" p r e c e d i n g  a variate ind ica te s  an 
es t imate ,  just  as i f  a "ha t "  w e r e  p l a c e d  a b o v e  it. 

Figure 1. 
The graph below compares absolute values of z 
estimates associated with CV D (the robust estimator used 
here) to those associated with CV L. ]t appears that there 
is virtually no difference here except perhaps for cases 
with extreme values for z estimates. (Note -z  = (--S- 
S)/-c,  where in this case, "S" stands for "total sales.") 

AZCVL - absolute values of z 
estimates associated with cv L 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  = ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i •  • • 

0.0 2.0 4.0 6.0 8.0 10.0 
AZCVD 

absolute values of z estimates associated with CV o 

that the final estimate would have to have a cv estimate 
no greater than the largest of the two individual 
estimates. Further, this would appear  to provide some 
limitation on bias. When I brought  this to Nancy 
Kirkendall 's attention, she suggested using a weighted 
average determined by the single regressor variance 
estimates and referred me to Granger and Newbold  
(1977), where a method for combining forecasts attrib- 
utable to Bates and Granger (1969) was discussed. When 
applied to generation expense data, it appeared,  as 
shown in Table 2, that just as using gamma = 0.5 for 
these small sample establishment surveys often appears 
to be practical, so to does it seem prudent  to assume no 
correlation between errors for the two estimators even 
when rho is estimated to be far from zero. Perhaps the 
reason lies partly in the variance of the estimate of rho, 
or in nonsampling error, or bias which is ignored by 
Bates and Granger,  or some other factor or combination 
of factors. Perhaps further case studies will reveal that 
rho should not be set equal to zero, but for now, for 
small sample establishment surveys, I would recommend 
it. 

Note that another  possible use of the Bates-Granger 
method that could not be replaced by multiple 
regression, like the original use, would be to combine 
estimates from completely different model forms, or a 
model based estimate and a design based estimate, etc. 

The author thanks Prof.Poduri S.R.S. Rao for notes 
and a model covariance estimator used in generating 
Table 2. 

Conclusions: 
Model sampling is proving to be very useful for our 

establishment surveys. Test results show this. As I have 
not been using 'balanced'  sampling, but instead have 
recommended use of those possible respondents  with the 
largest regressor values (when available), the worst 
scenario seems to be one in which the relationship 
between the variant of interest and the regressor is very 
different for the 'smaller '  members of the population 
than for the ' larger'  ones. Fortunately, for highly skewed 
establishment surveys such as these, the threat is diluted. 

The advantage in using a ' robust '  variance estimator 
seems to have been exaggerated in the literature, at least 
as applied to the data analyzed here. However ,  it is still 
r ecommended  that one be used, and further 
recommended  that, barring good information to the 
contrary, gamma = 0.5 be used. (When gamma--0.5 is 
used, the problem solved by the section "Incompletely 
Specified Auxiliary Data" in Knaub (1991), becomes 
moot.) Also, for cases where  more than one regressor is 
available, I recommend consecutive applications of the 
Bates-Granger method, with rho=0, unless another value 
of rho is proven to be better, or this method is shown to 
be inferior to that of Little (1988), or some other method, 
in some way important  to your  application. (See notes at 
the bottom of Table 2.) 
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y,-  bx,+-X~eo From page 776, Knaub (1991), " .gamma may be obtained by fitting a homoscedastic  
linear regression to the result of d iv iding the absolute values of the residuals by x Y to 

see when the slope approaches zero. The reasoning is that if each error is a multiple of a random error, then ' 
the absolute values of the errors, divided by the corresponding multipliers, should not be increasing or decreasing 
with increasing x." 
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Table 2. 

Note that a "-" preceding a varlate indicates an estimate, just as if a "hat" were placed above it. 
(VL) indicates variance (and covariance) estimates are based on WLS 
(Vo) indicates variance estimates are of the 'robust' form so-named by Royall and Curnbedand 
-T  = k-T~ + ( l - k ) -T  2 • est. of T, where k is Bates-Granger factor for combining two estimators, and -7"I and -T  2 are each estimators of T using separate 
single regressors; 

k = (o'2 z - po',~r 2) / (0, 2 + O'22- 2po',oz) 
" f l  and "1'2 are estimates of 7, and 1'2, the 1' model parameters for estimators -T~ and - T  2 (Note: 1', and 1'2 are 'unknown') 
-p is estimator ol correlation coefficient between errors for two estimators o! T 

= (o,2(r2 2 [1-p;']) / (o, 2 + o2 2- 2pa, o2); o 2 <-. rain (o,z,a2 2) 

DATA SET A: 

N=32, n=17, -7,=2.80, 71=0.99, -yz=1.53, yz=0.77, and -P(7) is such that we have the following table for lhe WLS case: 

7,,1'z 0,0 0.5,0.5 0.8,0.8 1.0,1.0 1.0,0.8 
-P(1',,72) 0.867 0.822 0.782 0.753 0.839 
-SE,/-SE2 0.884 0.793 0.728 0.685 0.634 

Finally, T=5113 is 'unknown' total for variable of Interest 

EST. 'TYPE' ('h,'Yz) Set p -7"1 -SE, -CV~ - Tz - S E  2 -CV~ - T - S E  - C V  
Equal To: 

(VL) (0.5,0.5) 0.822 5046 144 2.9 5239 182 3.5 5032 144 2.9 
(VL) (0.5,0.5) 0 5046 144 2.9 5239 182 3.5 5121 113 2.2 
(Vo) (0.5,0.5) 0 5046 166 3.3 5239 201 3.8 5124 128 2.5 
(VL) (1.0,1.0) 0.753 5036 99 2.0 5250 144 2.7 5014 99 2.0 
(VL) (1.0,1.0) 0 5036 99 2.0 5250 144 2.7 5104 82 1.6 
(Vo) (1.0,1.0) 0 5036 112 2.2 5250 154 2.9 5110 91 1.8 
(VL) (1.0,0.8) 0 5036 99 2.0 5246 156 3.0 5096 83 1.6 
(Vo) (1.0,0.8) 0 5036 112 2.2 5246 170 3.2 5100 93 1.8 

DATA SET B: 

N=30, n=17, -7,=0.93, -y2>1, T .. 'unknown' total = 6393 

EST. TYPE' (Y,,'Yz) Set p -7", -SE,  -CV, - T  2 - S E  2 - C V  2 - T  - S E  - C V  
Equal To 

(ME) (0.5,0.5) -0.229 6305 187 3.0 5190 607 11.7 6156 164 2.7 
(ME) (0.5.0.5) 0 6305 187 3.0 5190 607 11.7 6208 179 2.9 
(VD) (0.5,0.5) 0 6305 227 3.6 5190 1613 31.1 6284 224 3.6 
(VL) (1.0,0.8) 0 6184 215 3.5 5889 473 8.0 6133 196 3.2 
(Vo) (1.0,0.8) 0 6184 216 3.5 5889 1046 17.8 6172 212 3.4 

Data Set B', Data Set B with one poss~le 'OUTLIER' REMOVED: 
N=29, n=17, ~y,=0.98, --t'2=0.61, T • 'unknown' total = 5986 

EST. 'TYPE' ('f,,1'2) Set p - T  I - S E t  ~CV, - T  2 - S E  z - C V  2 - T  - S E  - C V  
Equal To 

(VL) (0.5,0.5) 0.679 5754 151 2.6 5886 284 4.8 5736 148 2.6 
(VL) (0.5,0.5) 0 5754 151 2.6 5886 284 4.8 5783 133 2.3 
(Vo) (0.5,0.5) 0 5754 184 3.2 5886 306 5.2 5789 158 2.7 
(VL) (1.0,0.8) 0 5673 180 3.2 5767 317 5.5 5696 157 2.8 
(Vo) (1.0,0.8) 0 5673 178 3.1 5767 313 5.4 5696 155 2.7 

NOTES: o~(p) generally tends to zero as p approaches -1 or 1 (see Granger and Newbold (1977), pp. 270 and 271) - and, letting ~ ,. MIN (o',,o'z) and 
o', • MAX (o',,o'z), o~(P) is maximized at p = ~ /a , .  (See Granger and Newbold (1977), p. 270, and note also that 0o'2(p)/~p = 0 yields p = ~/~u-) Therefore, 
p=0 is not a maximizing or minimizing value for o'Z(p). Also, note that if p > ~/c~r u, T will be outside of the (TI,T2) range~'t~;,q/e,,'~. 

Therefore, p = 0 is not an unreasonable value to use, especially if bias possibilities are considered and one may therefore want to use an estimator 
of T closer to (-. T~ + -7"2)/2 than is obtained in may cases when p is estimated. 

Like --y, perhaps -p  is too easily disturbed by an outlier, and for establishment surveys, p=0, like y=0.5, may often be useful. 
For m regressors, if all covariances are set equal to zero, -T = k,-T, + k:,-T 2 + k3-T 3 + . . . .  k,-T, + ... k,,,-T,, 

where ,,I 

m m 

h .  1 j-  1 h~! 
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