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INTRODUCTION 
Estimating regression coefficients requires var(y). 

One often assumes normal, binomial, or Poisson 
distribution to obtain var(y). Such a simple 
assumption on distribution is not correct for 
complex data such as the death rates obtained by 
Vital Statistics Division at National Center for 
Health Statistics. Therefore var(y) should include 
not only random errors of deaths, but also those 
caused by sampling, classification, and weighing. 
This paper presents var(y) including these four 
sources of errors. The regression coefficients 
based on such var(y) are estimated, and the 
limiting var(/~) are presented. 
Consider outcome variables, y~ - (y~ . . . . .  y~j, .... 
y~j)' are weighted death rates 10,000 persons, and 
vector of covariate, x~ = (x~ . . . .  , x~j,..., xi~)' is p 
x J matrix, observed in the ith month, i = 1 . . . . .  
M, for the J groups, j = l , . . . ,  J. one may be 
interested in change of rate y in the dependence of 
outcome on the covariate x. For instance, death 
rates of outcome variables y's may depend on such 
covariates x's as age, sex and race for certain 
causes of deaths. We assume that months are 
independent. Often such rates are obtained 
through multistage process of occurrence of death, 
sampling from all deaths, classification of sample 
deaths, and finally estimation of population rates 
by weigh. The major purpose of this paper is to 
present a tractable parametric form of the variance 
of estimated rates, which accounts for four 
impacts" occurrence of deaths, sampling, 
classification, and weighing. 
In setting a generalized linear model with 

independent covariates x and dependent variable y, 
we utilized the actual variance and the quasi- 
likelihood for death rate analysis. Liang and 
Zeger (1986), and Thall and Vail (1990) used 

quasi-likelihood when they could not assume one 
of the well known distributions. 

1.1. POISSON DEATH 
The occurrence of death is a rather rare 

happening, and may be assumed to be distributed 
as Poisson. It can be approximated by normal 
distribution for a large number of occurrences. 
Although other distribution may be possible, 
deaths frequently follow the Poisson process. 
Thus we assume that D~ deaths occurred in the 
month i ( i= l , . . . ,M)  among N~ population are 
distributed as Poisson. 

1.2 SAMPLE DESIGN 
A sample of d~ deaths is selected from all D~ 

deaths in the i-th month according to a certain 
sample design. It may be a simple random sample, 
or stratified simple random sample, or cluster 
sample, with or without replacement, or any other 
design used to take a sample from a well defined 
population Di. For this data, we assume that the 
sample is taken by simple random sample without 
replacement. 

1.3. POST-CLASSIFICATION 
After a sample of d~ is taken, d~ sample deaths are 

post-classified into J groups, giving d~j deaths 
belong to the jth age-sex-race-cause group. We 
assume the post-stratification follows multinomial 
distribution for this data. However it could be 
other distribution, for example, we can consider 
the dependence among the deaths in the same 
group as the persons of the same group may likely 
have common cause of death for certain diseases. 
We may assume a model for such correlation for 
members in the same group (Choi and McHugh, 
1989), and adjust the multinomial distribution to 
correct such correlation problem. 

1.4. WEIGHT 
Sample data are often weighted to estimate 

population parameters from which the sample is 
taken. Weighing takes place in various forms, and 
we denote the weight by w. The weighted death 
rate, y~j, is the post-stratified yearly death d U 
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multiplied by appropriate weight w~, that is Yu = 
wi dij, where wi = fi (365/ai)(DJdi) (1/Ni) 10,000. 
The weight w~ is assumed to be known at this 

time and a~ = 28 for February, 30 or 31 for the 
rest of the months. 365/a~ is about 12 by which 
annual rate is obtained from monthly rate. D~/d~ is 
the sampling weight or inverse of the sampling 
probability, N~ is the population in the month i, 
and f~ is the processed counts divided by estimated 
counts which is almost one and ignorable, f~ is the 
factor that makes the rate equal to that of the 
population. The rate y presented in the NCHS 
publications is the annualized age-race-cause 
specific rate of deaths per 100,000 persons. Only 
change made in this paper is the rate per 10,000 
persons instead of 100,000 persons. 
In Section 2 we obtain the var(y) when a 

multiplicative model is assumed. In Section 3 we 
present the estimation of the parameter /~ with 
var(y) obtained in Section 2. A numerical example 
of U.S. homicide rate is presented in Section 4. 

2. M U L T I P L I C A T I V E  MODEL 
We adopt the symbols E, V, and C for 

expectation, variance, and covariance operator 
respectively throughout this paper. The first stage 
is the occurrence of death. Define indicator 
(5~k = 1 if the k-th person died, and = 0 otherwise 
(1 < k < N~)). 
We assume that ~5~k'S are independent and 

distributed as Poisson with mean m~ = D~/ N~, 
which does not depend on the other subscript j. 
The stage 2 is a sampling of d~ deaths out of D~. 

Define z~: = 1 if the k-th file is sampled, and 
= 0 otherwise. 
The top stage 3 is the classification of d~ sample 

deaths into different age-sex-race-cause groups, 
giving d~j cell counts. 
Define Z~jR = 1 if k-th file classified into j-th 

group, and = 0 otherwise. 

Let the variable y~j = .--.,~-~-~-~1 Yijk, where 

Yijk = Wi dijk and 
dijk = tSik Zik Zijk. 

We consider the weights w~'s are fixed numbers, 
and d~jk'S are the only variables (1 < k < N~). 

2.1. ASSUMPTIONS 
Conditioning on the Z~k and Z~jk, we assume that 

responses d0k'S are conditionally not correlated, 
and that the Z~R'S and Z~jR'S are mutually 
independent, and at the stage 1, 
E(dijk/Z~R Z~jk) = m~ Z~R Z~jR and the expectation over 
all stages is E(m~ Z~R Z~jk) = m~ p~ Ir~j, where 
m i -  D~/N~, Pi = d~/D~, and 7r~j = D~j/D~ are the 
expectations of ~i~k, Z~R, and Z~jR, respectively, and 
E(y~j) = /z~j(/~) = w~ N~ m i p~ 7r~j = w~ di Dij/Di 

Thall and Vail (1990) used a multiplicative Poisson 
model E(y~j) = /z~j E(z~) E(zj) for two independent 
random variables zi and zj. Morton (1987) and 
Firth and Harris (1991) used a multiplicative error 

mode l ,  Yijk = ~ijk e i e ij I~ ijk, where e ~, e ~j, and 

e ~jk are the errors arising from three stage nested 
data, and the E(y~jR) =#~jk = /Z(#)~jk. Note that our 
model is somewhat different from these two 
models. Chiang (1967) also obtained the var(y) 
without using such a multiplicative model. 
If a sample was taken by simple random sample 

without replacement, then we may define the 
variance of Z~R at the 2nd stage 

ei = pi(1-pi)Di/(Di- 1) for k = k',  
(1)V(z~ z~,)= 

% = - pi(1-pi)/(Di- 1) for k ,  k'. 
This variance depends on the actual sampling 

design and type of variable. Some common 
variances are presented in most text book (for 
example, Cochran, 1979) for simple random 
sample, stratified simple random sample, cluster 
sample, and systematic sample with or without 
replacement. 
We may assume multinomial distribution for 

classified cells in the 3rd stage, and write its 
variance 

% = 7r~j(1-Tr~j) for j = j '  and k = k' 
(2)V(Zijk Z~j,k,) = 

%i' =-Tr~j 7r~j, for j ;~j' and k = k',  
and all other covariances are zero for k ~ k'. 
This covariance would not be zero if they are 
dependent on each other, and one may use an 
adjusted multinomial distribution discussed in 
Section 1.3. 

2.2. A VARIANCE-COVARIANCE 
From the above assumptions, we present a 

variance-covariance matrix Vi or var(y~)on the 
main diagonal of V. The V~ is a block diagonal 
matrix with var(y~j) on the main diagonal, and 
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cov(y~ Yu') on the off-diagonal for j # j ' .  
Following the conditional variance (Appendix 1), 
and defining 

#ij(fl) = Wi Ni mi Pi 7rij, 
e t a - W i [ 1  + mi], 

and ~'~ = - [1/N~ - (1-1/N~)(1-p0D~/(d~(D~-I)], 
it is elementary to show that the variance is 

V i - "  19/i d iag(p,~) + ~ #~ #~' 
where #~' =(/z~,. . . ,  #~ . . . . .  #~). 
Here we assumed that months were independent, 

and the cells of age-sex-race-cause were 
multinomial with restriction of ~ 7r~ = 1 and 
7r~ > 0 for i = 1 . . . . .  M. Deleting one redundant 
column and row, and define D~ = ot~ diag(#~), 

Vi"= Di"-{  ~i/( 1 + ¢i ,u,i+/°ti)} °ti "~ li li'- 
where #~+ = 11 #~ and 1 is the column vector of 
ones. The impacts of death process, sampling, and 
weighing are reflected on the variance V~. 
The V~ can be simplified when the data are not 

weighted by setting w~ = 1. Other sample design 
can be easily reflected on the variance V~ by 
adjusting sampling error (1) accordingly. 
Similarly we can also modify V~ for other cell 
distribution. For independent months, var(y) is a 
diag{V 1, ..., VM}, and zero on the off-diagonal. 

3. ESTIMATION 
Let y~ = (y~, ..., y~j . . . . .  y~j)' of the weighted 

death rates with mean #~ = (/z~, .... #~ ..... #~j)'. 
X~ = (xi~ . . . . .  xi~ . . . . .  x~j)' be the p x J matrix of 
covariates as each x~ = (x~ ..... X~p) is 1 x p 
vector. Denote linear predictor ~/~ = (~7~ ..... r/~, 
.... ~/~)'. The link function g relates the predictor 
r/~ to the expected value #~ = E(y3. i.e. g(#~) = ~/~ 
= X~ f3. If the link function is wrong or ~/~ = X~ 
/3 is not a correct predictor, the variance will be 
distorted as the variance depends on #i. 
Let S i = y~- #~ with E(Si) = 0, and V~(#u) be the 

J x J matrix of var(y~). D~ = igtt~lO~ = O#~lO~l~ 
O~/~/OB. Often there is no probability distribution 
available on the variables, especially complex 
survey data; however, under mild assumptions, 
quasi-likelihood function has similar properties as 
those of ordinary log likelihood. Following the 
quasi likelihood (McCullagh and Nelder, 1989), 
the p estimating score equations for p regression 
parameters ~ are given as 

(3) U(B) --" ][~i Di T Vi "l Si 

/~ is defined to be the solution of this equation. 
Here if the variance of sampling and classification, 
and weighing were set to one, the variance V~ in 
(3) reduces to the usual case of Poisson var(y). 
Let ~ be the solution of U(B) in (3), in which the 

variance V~ is not only a function of B and o, but 
also that of m~, p~, and ~r~j as well. Assuming that 
a are known at this time, the equation (3) may be 
expressed as Xli Ui(/~ m*(~) 7r*(/~))=0 where 

m*(/3)= at(13, P(13)), 7r*(B)= ~(13, D(13), rh*(13)). 

13 is now defined to be the solution of this 
equation. 

Theorem 1. Under some basic conditions for 
Taylor expansion, and 

(i) rh~, ~0 ' /~  are the M~2-consistent estimates of 
m~, 7r~j, and Pi respectively given/3, that is Op(1); 

(ii) rh([3, #(13)), -~o~(13,/~([3), rh(13)), and 

0 ~ (13,/~(13), n~(13)) are bounded in probability 
Om 

or Op(1); 

then M~n(~ -/~) has asymptotically normal with 
mean 0 and variance F ~ A F ~, where 
A = tZ~, M Di T Vi ~ cov(y~) V( ~ Di and 
I ~ --- ~ieM(Di T Vi "1 Di). 
The proof is outlined in Appendix 2. The matrix 
V~ is given in Section 2.2. If we assume coy(y3 = 
Vi, then the variance becomes [~:a,M(Di T Vi ~ D~)] ~. 
When a link function is specified, we can obtain 

the explicit form of V~. Variance of [~ may be 
correctly estimated by replacing cov(y3 with STiS~ 
which may be more efficient then V~ when the 
model used for the derivation of V~ is not correct. 

3.2. ITERATIVE M E T H O D  

We may begin iteration with i~ ° substantially 

close to 13" The sequence of parameter estimates 
are generated by Newton-Raphson method, using 
the sum, 

(5) 0 - 0r + (15 

The estimate 1~ may be obtained by iterating 
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until it converges. We may start the iteration with 
ordinary least square estimate of/3. Convergence 
criterion is to stop the iteration at (r + 1) step when 

MAXI(~ "+I- *o-5, • 

Provided that the eigenvalues of b r ly-*D are 
sufficiently large, the second term of (5) is 
negligible. Then, we may take the first round 

approximation I~l=~, even when i~ 1 is not a 
computable statistics. When V~ is set equal to 
usual Poisson form, existing GLIM software 
(A.V. Swan et al, release 3.77, 1987) provides the 
estimates of the parameters. 

4. U.S. HOMICIDE DATA 
The monthly data of mortality of U.S. population 

are reported from 50 states and Washington D.C. 
to the National Center for Health Statistics. Ten 
percent sample is taken each month and used to 
estimate the U.S. death rate according to age-sex- 
race-causes. Only homicide records are extracted 
from the ten percent sample. Since the highest 
rate was reported from the age group of 15-24 
years, we used only this age group. The 
homicides are also more frequently reported from 
the blacks and males, therefore our study concerns 
only the black and male in this age group. The 
year is included in the model to see any change of 
rate during these five years from 1985 to 1989. 
The preliminary data analysis shows that the race 
and sex are the good candidate, and years are in a 
lesser degree. 
About 23,000 homicides were reported from the 

15-24 age group of white and black during the 55 
months, 12 months in 1985, 1986, and 1987 
respectively, 11 months in 1988, and 8 months in 
1989. A ten percent simple random sample is 
selected without replacement from each of those 55 
months, and we have an aggregate of 2,282 sample 
records which were classified into four categories, 
two sexes (female and male) and two races (white 
and black). We assume that deaths in the four 
categories follow the multinomial distribution, and 
that the process of death, sampling, and 
classification is independently contributing to the 
random errors. 
First we used the Poisson variance for the 

regression analysis of homicide rates per 10,000 
persons. Secondly we used the actual variance to 
study the same data. The deviance and residual 
sum of square is used to explore the adequacy of 
model fit in respect to the choice of variance 
function, link function, and terms in the linear 
predictor. We decided to use the model" 
mean death rate= 1 + /~ sex+ ~2 race+ #3 year. 
The Poisson assumption gave better fitting than 
normal assumption for error. There was no 
evidence of significant interaction between sex, 
race, and year when the ordering of the variable 
are rotated, thus dropping interaction terms. All 
the 220 residuals of above model were less than 1 
except 12 when the Poisson error and log link are 
used for the model. Even those 12 were less than 
1.7. 
It took nine iterations to obtain the estimates of 

the coefficients under the assumption of Poisson 
variances, giving 

log(rate) =-5.07 + 1.59sex + 1.85race+0.09 year. 
Although all terms are significant, the influence of 
sex and race to the log-rate is about 1.6 and 1.9 
units respectively while the year is only 0.09 unit. 
Scaled deviance is 0.3036, and means quare error 
is 1.3328. 
It took seven iterations to obtain the estimates 

under the assumption of actual variance, giving 
log(rate) =-3.98 + 1.25sex + 1.52race + 0.05year. 

The contributions of sex and race to the log-rate is 
1.25 units and 1.52 units respectively. Both are 
significant factors at alpha = 0.01 level. But the 
year contributes only 0.05 unit to the log-rate, and 
is not significant at this level. The scaled deviance 
is 3.5045, and mean squared error is 3.159. 
The variance of y estimated only by Poisson 

assumption is significantly underestimating the real 
variance. As a result of the underestimation of 
variance, it provides the coefficient estimates 
(- 5.0719, 1.5872, 1.8504, 0.0927) with the 
standard errors of (0.183, 0.067, 0.053, 0.018), 
while the actual variance gives more realistic 
estimates (- 3.9766, 1.2458, 1.5177, 0.0507) with 
the standard errors of (0.269, 0.080, 0.097, 
0.038). In both situations the goodness of fit of 
the model is acceptable, and the sex and race are 
the most influential terms of all reducing the 
deviance greatly. 
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From the model under the actual variance, we 
have the mean death rate for male=2, white= 1 
and first year= 1 is 1.08, while the mean rate of 
male=2, black=2, and first year= 1 is 4.95. 
Thus, the difference between the male-white-1985 
and male-black-1985 is about 3.87 = 4.95-1.08 
annualized deaths per 10,000 persons. Similarly 
the difference between the male-black-1989 and 
male-white-1989 is 4.71 = 6.05-1.34 annualized 
deaths per 10,000 persons. 
The rate difference between black and white is 

3.87 = 4.95-1.08 in 1985 and 4.71 = 6.05-1.34 in 
1989. Both black and white rate are increased 
during these five years, 22 percent for black and 
24 percent for white. Although the percent 
increase is more for white by 2 percent, the black 
rate is 4.95, which is 358 percent of white the rate 
of 1.08 in 1985, and 6.05 or 352 percent of the 
white rate of 1.34 in 1989, giving much higher 
rate of black homicide in both years. The 
homicide rates of both races are increasing during 
those five years. 
It shows that Poisson variance should be adjusted 

for a meaningful regression analysis of data. 
When we considered sex, race, and year as 

factors of two, two and five levels respectively, it 
did not improve the model much. When the 
population is used as offset and actual count of 
sample deaths as dependent variables, it increased 
the deviance too much for us to handle it 
effectively. Although the contribution of the years 
to the model is not significant, we kept it in the 
model because the yearly trend is one of the topics 
of our interest. 
It is worthy to mention a possible extension. We 

obtained the death rate from a population, which 
remains the same every year except the new born 
babies and deaths occurred previous year. 
The rates obtained from such population may be 
correlated as a same population may be the basis 
from which the deaths arise. When the correlation 
occurs, Liang and Zeger (1986) have further 
adjusted covariance matrix to correct the time 
correlation. Following their method, such a 
correlation problem can be easily corrected. 
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APPENDIX 1 
The subscript 1, 2, and 3 under E, V, and C 
symbolize the respective stage, d ~jk = ~i~k z~k z~jk, 
i= l t o M m o n t h s ,  j =  l t o J ,  k= l toN~ 
(AI.I) V(Yijk)"- w~ 7 V(d~jk) 
= w~ 2 [E3E2V~(d~jk) + E3V2E,(d~jk) + VaE2E,(d~jk)] 
wi 2 [E3E2(mi zik zijk) + E3V2(mi z~, zijk) 

+ V3E2(mi zik zijk)], 
= wi 2 [mi p~ 7rij + mi 2 ei E3(zijk 2) + mi 2 Pi 2 V3(zijk)], 
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= wi = [mi Pi z'uu + m~= {e~(e u + 7ri7) + pi e % }1. 
= w~ = [m~ p~ 7r u + m~ 2 {e~(eu+Tru'-)+ p~= %}1, 
= Wi 2 [mi Pi % + mi 2 {ei % + Pi2(%-%2)}], 
(AI.2) C(Yu~ Yu,0 = wi 2 C(du~ du'0, where 
C(d~j~ d~j,~)=[E~E2 C~(d~jk, d~j,~) 

+ E3 C2 {E, (d~j~), E,(du.~)} 
+ C3 {E2E,(d~k), EeE,(dijk)}]; 

= 0 +  E3 C~(m~ zu~ z~, m~ z~j.k zi0 
+ C3 [p~m~ zu~ k, p~m~ zu. d,  

= 0 +  E 3 (mi 2 Zij k Zij, k V2(Zik ) "+" pi :z mi ~ C3(zuk zij.0, 
= 0 + 0 - ( m i  p32 % %.. 
(AI.3) C(Yuk Yu'k') = wi2 C(dij k dij 'k') , 
= w~ ~ [E3E2 C,(d~jk d~j,k,) + E3C:{E,(d~jk), E,(d~j.k.)} 

+ C3{EeE,(dijk), E2E,(d~,~.)}]; 
= wi = [E3E= [C~(~Si~ ~5i~,) zi~ zij,~' zi~ zi~, ] 

+ E3 [mi = C2(zi~ zi~.) zi~ zi~.~,] 
+ C3 [pimi zi~, pimi zi~.~.] ] 

= 0 +  m~ ~ eu % 7ru.} + 0=  w~ ~ mi 2 e u "/i'ij "/i'ij,. 

(AI.4) C(Yu~ YUk') = Wi ~ C(du~ du~'), where 
C(dij k dijk,) = EaE: C~(dijk dijk,) 

+ E3 C=[E~(d~k) E~(d~jk.)] 
+ C3 [E2E~(d~jk) E2E~(d~k.)], 

= 0  + mi ~ e u 71ij = + 0. 
Defining /z~ = N~ w~ mt p~ 7r u, the variance and 

covariance matrix V~ includes the diagonal element 

V(y~j) = ~¢, V(Y~jk) + l]/,,t,,m, V(Yijk Yijk') 
= N~ wi 2 [m~ p~ % + m~ 2 p~ % - m~p~ ~ 7ruq 

+ Ni(N i- 1) wi 2 mi 2 el i  7rij 2, 

= #ij [Wi(1 + mi)] - #ij2/Ni 
+ #u2(1-1/N~)(1-p0D~/(d~(D: I)). 

= #ij [wi(1 + m0] 
- #~7 [1/N~ - (1-1/N~)(1-p~)D~/(d~(D:I))]. 

and the off-diagonal element C(y u Yu') 
= N~ C(y~k y~j.k) + N~(N~- 1) C(y~k Yij.k.), 
= -N~ wi 2 m~ 2 p2 ,/l.ijTl.ij ' .~. Ni(N i _ 1) wi2mi2eiiTrijTrij, 
= - #u#~J' [1/N~ - (1-1/N~)(I-p~)D/(d~(D:I))]. 

APPENDIX 2 

Denote vectors m*(B) = d~(#,/~(13)) and 

~r*(B) = ~(13, P(13), m*(13)) and D T V ~ S = 0 
may be expressed as 

U = U(B,m*(B),Tr'(#))= 0. 
Taylor expansion of U, using the sum, 
can be written as 

0 = U(,8,m*(/5),Tr'(,8)) + (~ -/~)dU/d~ + Op(1). 

M~/Z( l] -/~) can be approximated by 
[(dU/d/~)/M] ~ [-(U(/~, m*(B), 7r*(B))/M~'q. 

where dU[fl,m*(B),Tr*(fl)l/dB = 
O U [~, m'(/~), 7r*(/5)]/O/~ 
+ 0U[#,m*(#),Tr*(#)]/0m*(#) 0m*(g)/Og 
+ /}U[#,m*(f),Tr*(f)]/07r*(#) 07r*(fl)/O# 
= A + B C  + D E .  It is easy to see that 
B = %(M"), D = Op(M"), and C = Op(1)and 
E =  Op(1) and that the expectation o f - A / M  
converges to - D ) V ~ D/M for large M. 

Let ~ be fixed and again by linear expansion, 
U(H,m*(#),Tr*(#))/M ''2 

= M '`2 U(B,m(B),Tr(fl)) 
+ M ~ 0U(B,m(B),Tr(B))/0m M~'2(m*-m) 
+ M" 0U(/~,m(/~),Tr(/~))/OTr M"2(Tr*-Tr) + %(1) 

= A* + B* C* + D* E* + Op(1). 
Note that B* = %(I) and D* = %(1) since 
OU(B,m(B),Tr(B))/0m and OU(/~,m(B),Tr(B))/&r are 
linear function of S's whose means are also zero 
and finite variance. Also 
C* = Ml/2(m * - m) 

= M~/2(n~(B,p(13)) - at(/~,P) + ~h(B,P)- m) 

= M~'2[~h(3,p(13))-~h(fl,P)]+ M"2[~h(3,P) - m)] 
= 0 ~ ( 3 , p ) / O  r, M~'2(/~ -p) + M~'2[ rh (3, p)-m)] + %( 1 ) 
= A*" B** + C'" + %(1) = %(1) 
since A** = Op(1), B** = op(1) and C** = Op(1) by 
the assumption (i) and (ii), and 
E" = Ml'2(Tr "-  ~r) 

= M"= (~[13,/~(13),th([3,/~([3))1 - ~r) 

= M~2 {~(13,/~(13), rh(13,/~(13))) 

-  (13, p(13), ,a(13, p(13))) 
+  (13, p(I3), ,a(13, p(I3))) 

- ~ ( 13, p(13), m( 13, p(13))) 
+ R(I3, p(13), m(13, p(13))) 

- r~(13, p([3), m(13, P(13)))}, 
E" = 0~(13 ' p(13), ,'h(13, p(13)))/3P M"2(p - P) 

+ 3R(13, p(13), m(13, p(13)))/3m M~/2(,-h - m )  
+ M"2[~ - 701 + %(1) 

= A*** B*** + C*** D*** + E*** + Op(1) = op(1) 
by the assumption (i) and (ii). Therefore the 
A* + B* C* + D* E* + %(1) is equivalent to A*, 
whose covariance matrix is 

cov(A) = X;i, M Di ~ Vi ~ cov(yi) Vi ~ Di. 
Therefore 

M~'2( ~ -/5) ~- (E~M A~/M) ~ A* + %(I) 
and has asymptotically normal with mean 0 and 
covariance matrix (E;~,M AJM)'~COV(A)(X;i,M AJM) ~. 
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