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1. INTRODUCTION 
In the 1991 Canadian Census, a 1 in 5 systematic sample 

of private households was selected from each of 40,072 
enumeration areas (EAs). Sampled EAs contained on average 
249 households. Besides the basic demographic questions 
asked of all households, sampled households were required to 
answer additional questions. 

In the 1986 Census, raking ratio (RR) estimation generated 
sample weights that ensured agreement between certain 
sample estimates and known population counts at the 
weighting area (WA) level. In both 1986 and 1991, WAs 
contained on average 7 EAs. RR estimators generally have 
smaller variances than estimators based on weights equal to 
the inverse of the probability of selection (see, for example, 
Brackstone and Rao 1979). However, residual differences 
remained between some sample estimates and population 
counts because the RR iterative solution (as proposed by 
Deming and Stephan 1940) had not completely converged after 
40 cycles. Also, the agreement between sample estimates and 
population counts with RR estimates was usually no better at 
the EA level than for estimates calculated using the initial 
weights. Finally, because different weights were used to 
produce household and person estimates, this caused 
discrepancies between these estimates in certain cases. 

For the 1991 Canadian Census, two step generalized least 
squares (GLS) estimation was used. GLS estimation is a form 
of regression estimation. The Census weights were adjusted 
in two steps because this made it possible to achieve 
reasonable consistency between sample estimates and 
population counts at the EA level. At the same time, the 
variance of the two step GLS estimator was significantly lower 
than that of the 1986 Census estimator at the EA level and 
somewhat lower at the WA level. This was important because 
EAs are the basic building blocks for tabulations of larger 
geographical areas. GLS estimation was used because its 
methodology is well known and well accepted. In addition, 
GLS estimation had a non-iterative solution so there are no 
problems with lack of convergence. 

Besides illustrating a major application of GLS estimation, 
this article describes an effective method for eliminating GLS 
weights less than 1 by discarding constraints. A new method 
of identifying nearly collinear constraints so they can be 
discarded is described. The results of a Monte Carlo study 
are reported which provide an assessment of the size of the 
bias of the two step GLS estimators as well as of the bias for 
different estimators of the variance. The performance of this 
method is then evaluated by applying it to 79 WAs from the 
1986 Census. 

2. THE ONE STEP GLS ESTIMATION TECHNIQUE 
Sample weights are calculated separately for each WA. In 

a particular WA, assume that there are G sampled EAs. In 
order to simplify the variance formulae, it will be assumed that 
a simple random sample of households is selected without 
replacement from each EA. (Estimated variances under the 
assumption of systematic sampling are discussed later in the 
section on the Monte Carlo study.) Let ng and Ng represent 

the number of households in the sample and population 
respectively for the gth EA in the WA. The initial household 
weight is W; =Ng/ng . Horvitz-Thompson estimators 
based on this weight are unbiased. 

The basic characteristics for which agreement between 
sample estimates and population counts is desired are called 
"constraints". Examples of characteristics for which agreement 
is required at the WA level are number of persons, number of 
males, number of persons of age 25 to 29, number of census 
families, number of households and number of owned 
dwellings. In addition, agreement is required at the EA level 
for number of persons and number of households. 
Characteristics that are used as constraints appear in 
published Census tabulations. Inconsistencies between the 
sample estimates and population counts for these 
characteristics cause concern to users of Census data. 

The constraints can be represented by the n 

x I matrix x = [Xghi ] where n equals the number of 

sampled households in the WA, I equals the total number 

of constraints and Xghi represents the value of the i th 

constraint for the h th sampled household in the gth EA. For 

example, if the i th constraint is number of males, then 

Xghi =3 indicates that there are 3 males in the hth sampled 

household of the gth EA. Also, let 

X(°)=diag(W(°))x=[W;°)xghi]~ ~ ~ where 

d i a g ( W  (°)) is a n x n matrix with W (o) running down 

the diagonal with zeros elsewhere. Here W (°) is a n x 1 
~ 

vector with Wg (°) the vector entry for each sampled 

household of the gth EA. 

The one step GLS estimator is derived by determining the 

c r#(°) adjusted weights Wgh= gh"g such that the distance 

function 

D=(C-ln) IV(C-ln ) 

is minimized subject to the constraints 

2(O)'c=x 

where c = [cgh] is a n x 1 vector of weighting adjustment 

factors, i n  i s a n x l v e c t o r o f l ' s ,  X = [ X  i ]  is an I x 
~ • o G Ng ~ 

1 matrix and X. " i = ~  ~ Xghi is the known population 
g=l h=l 

value for the i th constraint. V has to be positive definite to 

ensure that the distance measure  D is non-negative. In the 

Canadian Census, V = d i a g ( X ( ° ) l z )  , where l z  is 
~ ~ , ~ ,  

an I x 1 vector of l 's .  This is consistent with the 

recommendation of S&rndal, Swensson and Wretman (1989) 

that V=diag(.,~~ (0)y~) where ~ is an I x 1 vector 

which does  not result in any of the e lements  

of X ( ° ) y  becoming zero. The solution to this problem is 
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c= o+ `o, - ,  

It can  be seen  t h a t  the  GLS e s t i m a t o r  
G ng 

~'= ~--I ~ Wgh'Vg h (where Wgh = C gh W; O) ) 
g=l h=l 

is a r e g r e s s i o n  e s t i m a t o r  by  n o t i n g  t h a t  

f=9(°"i '! _ . . n + ~ / ( X - ~  (°) n) where ygh is the value °f  the 

sample characteristic of interest for the h th sampled household 

in the gth EA, ~ (o )=  [wg(O)Ygh] is a n x 1 vector and 

~=  ( ~ ( O ) , v - Z ~ ( o ) )  - z~ (O) , v -Z~(o )  isan I x 1vector. 

It can easily be shown, using a Taylor series approximation, 

that E ( Y )  = Y where Y is the true population value for the 

sample characteristic of interest. It can also be shown, using 

a Taylor series approximation, that 

MSE(Y) = V ( Y )  = V ( ~ ( ° ) )  where 
G n~/ 

e '° '  = E  , z=y-x = [ ] Z gh . . . .  Z gh , 

g=l h=l 
_V=[yqh]  and ~ = E ( ~ )  An estimator of M S E ( Y )  

can be determined by replacing the ~ with ~ when 

calculating z andthen substituting the z into the standard 

estimator for the variance of a stratified Horvitz-Thompson 

estimator. Hidiroglou, Fuller and Hickman (1978, p.37) and 

S&rndal, Swensson and Wretman (1989) suggest that a more 

accurate estimate of the variance is produced if 
# 

z = [CsrhZg h] is used instead of z . 

3. THE TWO STEP GLS ESTIMATION TECHNIQUE 

3.1 An Overview of the Technique 
One of the objectives of the Census weighting system is to 

have reasonably small differences between sample estimates 
and population counts at the EA level for WA level constraints. 
Because of the relatively small size of the EAs, it is not 
practical to eliminate the differences entirely at the EA level. 

The f i n a l  C e n s u e  w e i g h t s  t a k e  the  f o r m  
(A) (0) Wqh=CghCg h Wg The first step weighting 
_ (A) 

adjustment cg h is done to reduce population/estimate 

differences at the EA level. The second step weighting 

adjustment Cgh is done to eliminate population/estimate 
differences for the constraints at the WA level as well as for the 
two constraints (number of households and number of 
persons) for each EA. 

3.2 First Step We ight ing  Ad jus tment  
For each EA, the WA level constraints are listed in 

descending order based on size. The size of a constraint for 
an EA is defined to be the number of households in the 
population for which the constraint applies. For person and 
family constraints, a household is included in the size count if 
it contains one or more persons or families to which the 
constraint applies. For example, the size of the constraint 
number of males equals the number of households in the 
population that contain at least one male. Next, these 
constraints are partitioned into two groups. The first group 

contains the first, third, fifth, etc. constraints from the list 
ordered by size. The second group contains the remaining 
constraints. Separate weighting adjustment factors are 
calculated for each group and then averaged together. This 
results in the population/estimate differences being generally 
reduced but not eliminated at the EA level for the WA level 
constraints. This approach is taken because the sample size 
is not large enough at the EA level to have all the constraints 
applied at once. The partitioning was done on the basis of 
size so that similar partitionings would result for all possible 
samples in that WA. This is discussed further in Section 4. 

More specifically, for each group (where r = 1,2 represents 

the first and second group respectively), adjusted 
. .  _ . . ( o )  

weights Wghr-CghrWg (where Wghr equals the adjusted 

weight for the h th sampled household in the gth EA for the r th 

group of constraints) are determined where 

-z (o) 9(O)'v-ag(o))-lly 9(0)' 

= [%h,] 

l g  i s a n g x  l v e c t o r o f  l 's, V g r = d i a g ( @ ( ° ) l  ) is .. -.--gz .- Ig~ 
a ng x ng matrix, ! I g  z is an Igr  x 1 vector of l 's 

and I g  r is the number of constraints in the r th group of the 

gth EA. Also, -9 (°) = [ Wg (°) ". . 'gr Xghz i ] is a ng x Ig  r matrix, 

Xghr i represents the value of the i th constraint for the r th 

group and the h th sampled household in the g th EA, 

Xgr=  [Xg. r i  ] is an Zg z x 1 vector and 
N, 

X g . r i = ~  Xghz i is the known population value for the i th 
h=l 

constraint in the r th group in the gth EA. 

The weighting adjustment factors C ghr based on these 

two groups of constraints are then averaged together to 
r,7 (A) _ (A) (0) produce ,,gh =Cgh Wg where 

c(A) _ (A) g = [ c g  h ] =[(CghI+Cgh~ . ) / 2 ]  is a ng x 1 vector. 

(a) usually The averaged weighting adjustment factors c g 

reduce but do not eliminate the population/estimate 

differences for the gth EA. 

3.3 Second  Step We igh t ing  A d j u s t m e n t  
r,z CA) The final Census weights Wgh=Cgh,g h are determined 

by calculating 

C = ! n + F i l , ( A )  ( 8 ( A ) / v i l ~ ( A ) ) - 1  (X_a(A) /! n) 

" ~ = r,r (A) where x (A )  = d i a g ( W  (A)) x , W (A) ["gh ] is a n x 1 

vector and V_ a = d i a g ( ~  (A) I_ z) 

it can be shown, using two successive Taylor series 

approximations, that 
G ng 

MSE( Y) =V( Y) =V(Z(°) ) ~ 9=~ ~ WghYg h , 
g=1 h=l 
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G ng 

e'°' E E = zgh and 
g=l h=l 

1 " +Xg2~g2) is a ng x ' 

vector. Also, u=y-x~=[Ug h] is a n x 1 vector, 

U g= [ Ugh] iS a ng x 1 vector containing the e lements  

of U for thegth EA, ~ = E ( ~ )  , 

i~ = ( ~ ( A , ' v ; I ~ ' A ) )  - l g ( A , ' v ~ I ~ ( A )  and 

" = r,r (A) y(A) [ " g h  Ygh]  is a n x 1 vector. 

Finally, ~gr  = E  ( (J gr )  , 

, .~(0)' -1 "(o) -19 (O) ' v - l r~ (0 )  and _ gr = ( %'gr Y gzXgz ) %'gr ... gr r.g 

0(go)= [ w  (°),,g Ug h ] is a ng x 1 vector. An estimator of 

M S E ( Y )  c a n  b e  d e t e r m i n e d  by  r e p l a c i n g  

the ~ with ~ when calculating u and replacing 

t h e  ~gr  w i t h  ~gr w h e n  c a l c u l a t i n g  z g  . 
, - . -  , . . .  

Then Z/= [Z/lZ/2 ---z~] can be substituted into the standard 

estimator for the variance of a stratified Horvitz-Thompson 

estimator. Alternatively, following the approach of S&rndal, 

SwenssonandWretman(1989), Z*= [ CghC(~ ) Zgh] instead 

of z can be used. 

4. DISCARDING CONSTRAINTS 

4.1 An Overview of the Technique 
When ca l cu l a t i ng  the w e i g h t i n g  a d j u s t m e n t  

factors Cg r and c , the matrices 
! - 1  -. (o) ~ _ are inverted. Linearly X~r ~.d 2 I,,) v,, 2 (A )  x g ,  v~ ,  ^ (ol , - ,  

dependent constraints will cause these matrices to be singular. 

Thus, the smallest constraint (with size defined as the number 
of households in the population to which it applies)in each set 
of linearly dependent constraints is dropped. 

Next, the cond i t ion  number  of the matr ix 
)? (O) ' v - l .~  (o) is checked. The condition number is 
, . .  , - . .  , . . .  

defined as the absolute value of the ratio of the largest 
eigenvalue to the smallest eigenvalue. Large condition 
numbers are of concern because small variations in the sample 
can cause large variations in the weighting adjustment factors. 
These large variations, in turn, tend to increase the variance of 
the estimators based on the adjusted weights. Large condition 
numbers are usually the result (see Pizer 1975, p. 92) of some 
columns of the matrices being inverted representing 
hyperplanes that are nearly parallel or, equivalently, the 
columns are nearly linearly dependent. One technique for 
identifying groups of nearly linearly dependent columns is 
described in Chapter 8 of Montgomery and Peck (1982). 
Another method, described in Subsection 4.2, was found to be 
more effective at reducing the condition number of the matrix 
to be inverted without eliminating a large number of 
constraints. 

Having discarded constraints for being nearly linearly 
dependent, the weighting adjustment factors are calculated. 

If they result in the adjusted weights falling outside the range 
[1, 25] (these will be called outlier weights), additional 
constraints are discarded as described in Subsection 4.2. 

Before discarding constraints for being linearly dependent, 
nearly linearly dependent or causing outlier weights, some 
constraints are discarded because their size (as defined earlier) 
is less than 60. This is done to save computational resources 
since these small constraints are frequently discarded later in 
processing for one of the other three reasons. In addition, 
discarding constraints on the basis of size ensures that the 
same constraints will be discarded for every sample. This is an 
advantage because the estimator of the variance of the GLS 
estimator does not take into account the variability introduced 
by somewhat different constraints being dropped for different 
samples. This can cause a downward bias in the estimator of 
the variance as shown in the Monte Carlo study of Section 5. 
For similar reasons, the two groups of constraints used in the 
first step weighting adjustment are defined based on size so 
that similar partitionings will result for all possible samples in 
that WA. 

Because constraints of size less than 60 are discarded, it was 
decided to combine any EAs with a population of less than 60 
households with the smallest EA having a population of 60 or 
more and treat them as a single EA when calculating the first 
step weighting adjustment factors. 

4.2 Details of Methods Used to Discard Constraints 
First, all constraints of size less than 60 are immediately 

discarded. Next, the matrix , ~ ( ° ) ' V - I X ( ° )  is calculated. 

Then this matrix is assessed for linearly dependent constraints. 

(It can be shown that if a set of columns for the 

matrix . ~ ( ° ) ' V - l . ~ ( ° )  are linearly dependent that the 
corresponding columns of the matrix ,~(o) are linearly 

dependent.) The smallest constraint in a set is dropped. 

Next, constraints are discarded in order to lower the 

condition number of the matrix ,~ (°) ' V -  zX (o) To do this, 

the matrix X ( ° ) ' V - 1 X ( ° )  is recalculated based on only the 

two largest constraints (number of households and number of 

persons at the WA level), resulting in a 2 x 2 matrix. If the 

condition number of the .X (°) ' V - l X  (°) matrix exceeds 

1,000, the constraint number of persons is discarded. 

Otherwise, both constraints are retained. Then the next largest 

constraint is added, the matrix X ( ° ) ' V - I , ~ ( ° )  is 

recalculated and its condition number is determined. If the 
condition number increases by more than 1,000, the constraint 
just added is discarded. Otherwise, it is retained. This process 
continues until all constraints have been checked in this 
fashion. The number 1,000 was selected because it was found 
to retain a large number of constraints while at the same time 
significantly reducing the size of the final condition number. 
If, after dropping these nearly linearly dependent constraints, 

the condition number of the matrix ,~ ( O ) ' v - l ~  (o) exceeds 
, . . .  . . . .  . . .  

10,000 (which rarely happens with Census data), additional 
constraints are dropped. Constraints are dropped in 
descending order of the amount by which they increased the 
condition number when they were initially included in the 
m a t r i x .  T h e  c o n d i t i o n  n u m b e r  o f  t h e  
matrix )? (°) 'V- I . ,Y (o) is recalculated each time a constraint 

is dropped. When the condition number drops below 10,000, 
no more constraints are dropped. Any constraints dropped up 
to this point are not used in the weighting calculations which 
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follow. 
Before calculating the first step weighting adjustment 

factors cg z for the gth EA, the remaining constraints are 

dropped as necessary because they are small for the gth EA. 

The constraints which remain are partitioned into two groups, 
( o ) t  - z~ (o )  

as described in Subsection 3.2. Then L-gr Vgr~g  r is 

calculated and linearly dependent constraints are identified and 
dropped (constraints which are linearly dependent at the EA 
level may not be linearly dependent at the WA level). Based 
on the remaining constraints, the first step weighting 
adjustment factors cg r are calculated. If any of the first step 

adjusted weights Wghr fall outside the range [1,25], 

additional constraints are dropped. A method similar to that 
used to discard nearly linearly dependent constraints is applied 
here except that a constraint is discarded if it causes outlier 
weights. 

Next, the second step weighting adjustment 
factors c are calculated based on those constraints that were 

not discarded for being small, linearly dependent or nearly 

linearly dependent based on the initial analysis of the 

matrix .~ (o) 'V -  z.~ (o) If any of the second step adjusted 
- . - - w ( A  ) weights Wgh=Cgh gh fall outside the range [1,25], then 

add i t i ona l  cons t ra in ts  are d ropped  f rom the 

matrix )( (a)'V,~Z,~ (A) using the method outlined for the first 
, . . .  . . , .  . . .  

step weighting adjustment. 

5. A MONTE CARLO STUDY 
A Monte Carlo study was done to assess the size of the bias 

of the two step GLS estimator as well as the bias of different 
estimators of the variance. In addition, it was used to finalize 
the criteria for discarding constraints for being small or nearly 
linearly dependent. The majority of the constraints are 
discarded based on properties of the sample rather than the 
population. Consequently, different constraints can be 
discarded with different samples. This might cause an 
increase in the variance of the two step GLS estimator which 
would not be accounted for in the estimates of variance (and 
hence downward bias them). Thus the criteria for discarding 
constraints were chosen to maximize the consistency of the 
constraints discarded from sample to sample while at the same 
time retaining as many constraints as possible. 

A WA was created for this study from five similar 1986 
Census WAs. It contained only sampled households. A 
random sample of 250 systematic samples for use in the 
Monte Carlo study was selected without replacement from the 
WA. 

For each selected sample, the two step GI_S weights were 
calculated and applied to produce estimates for 31 EA level 
and 39 WA level person and household characteristics known 
only on a sample basis in the Census. All characteristics 
applied to 60 or more households in the population. For each 
characteristic, its estimated relative bias (the difference 
between the average estimate and the population count, 
expressed as a percentage of the population count) was 
calculated. The absolute value of the estimated relative bias 
for the characteristics ranged from almost zero to as high as 
4.7%, although it was less than 2% for most characteristics. 
It was less than 1% for the majority of the characteristics with 
a population count greater than the median value for the 
characteristics considered. The bias is similar for EA and WA 
level characteristics. The estimated standard errors for the 

estimates of the relative bias were all below 0.2. 
For each sample and each characteristic, the estimated 

variance of the two step GLS estimator was calculated in four 

ways. First, z and z were calculated as described in 

Subsection 3.3. They were then substituted into the standard 

estimator for the variance o f  a stratified Horvitz-Thompson 

estimator. The estimates of the variance which resulted will be 

labelled v h ( z )  and v h ( z * )  respectively. These two 

estimators of the variance were calculated under the 
assumption that a simple random sample was selected from 
each EA while in reality, a systematic sample was selected 
from each EA. Wolter (1985, p.250) suggests regarding the 
systematic sample as a stratified random sample with two 
households selected from each successive stratum of ten 

households, z and z can be substituted into the 

variance formula which results from making this assumption. 

The estimates of the variance generated in this way will be 

labelled v s ( z ) and v s ( z * )  respectively. The 

estimated relative bias of each of these four estimators of the 
variance was calculated as the difference between the average 
value of the estimated variance and an unbiased estimate of 
the mean square error of the two step GLS estimator, 
expressed as a percentage of the estimate of the mean square 
error. 

Tables la and lb  provide the 10 th, 25 th, 50 th, 75 th, and 90 th 

percentiles of the distribution of the estimated relative bias of 
the variance estimators for WA and EA level characteristics 
separately. It can be seen that the relative bias is negative for 
the majority of the WA level characteristics. This is particularly 

for v s ( z )  and v s ( z * )  . The relative pronounced 

biases of v h ( z )  and v h ( z * )  are both relatively small 
. . , .  , . . .  

with the bias of v h ( z * )  being generally slightly less 

negative (or more positive) than v h (2 )  The biases for the 

characteristics at the EA level are evenly distributed between 

positive and negative for v h ( z )  and v h ( z * )  , while 
, . . .  , . . .  

they are mostly negative for v s ( z )  and v s ( z * )  . 

v h ( z )  will be used in the numerical example of Section 

6 since it is so similar to v h ( z * )  , and is much less 

downward biased than v s ( z )  and v s ( z * )  The 

estimated standard errors of the estimated relative bias of all 
four variance estimators ranged from 2.3 to 8.6 at the EA level, 
and from 3.1 to 11.0 at the WA level. 

Note that since the estimates of variance at the WA level are 
just sums of EA level estimates, the pattern of the bias should 
be similar for both EA and WA level characteristics. The fact 
that downward bias was found for more WA level than EA level 
characteristics is due simply to the fact that different 
characteristics were studied at the two levels. This was done 
to maximize the diversity of the characteristics examined. 

The negative biases are not unexpected because the 
variance estimates do not account for the variability introduced 
by somewhat different constraints being dropped in each 
sample. Also, Rao (1968) has shown that the estimated 
variance for a regression estimator can be badly downward 
biased when the sample is small. 

Estimates of the variance were also calculated regarding the 
systematic sample as a stratified random sample with 4 
households selected from each successive stratum of 20 
households. This estimator was as badly downward biased 

as V s ( { )  
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The above results were achieved by dropping constraints 
less than 60 in size for smallness and by dropping constraints 
for near linear dependence if they caused the condition 
number to increase by 1,000 or more. The Monte Carlo study 
was repeated using other values for these two parameters. It 
was found, however, that the values 60 and 1,000 tended to 
minimize the bias of the variance estimators while retaining a 
reasonable number of constraints. 

A repeat of the Monte Carlo study on a different WA (but 
only for 25 samples) indicated that the variance estimator for 
a given characteristic can be downward biased for one WA and 
upward biased for another. Also, the variance estimator for a 
given characteristic was often downward biased for one or 
more EAs and upward biased for one or more other EAs. 
Consequently, the bias should be smaller than that shown in 
Tables la and lb  for estimates at geographic levels above WA, 
since some of the bias should cancel out. 

6. APPLYING THE TWO STEP GLS ESTIMATOR TO 
CENSUS DATA 

To assess its performance, the two step GLS estimation 
method was applied to a sample of 79 WAs using 1986 
Census data. A total of 62 WA level constraints were applied 
plus the two EA level constraints for each EA. No EA level 
constraints were defined for the smallest EA in each WA, 
however, since they would have been discarded for being 
linearly dependent with the other EA level constraints. Since 
there were 7.4 EAs on average for the sampled WAs, an 
average of 74.8 WA and EA level constraints were initially 
applied to each WA. In the discussion which follows, all counts 
of constraints will be taken to be averages. 

First, 7.7 constraints were discarded for being small, 6.6 for 
being linearly dependent and 9.8 for being nearly linearly 
dependent. As a result, 50.7 of the original 74.8 constraints 
were retained, of which 40.4 were WA level constraints. The 

initial average condition number of vY(°) 'V-Z.~ (°) after 

discarding small and linearly dependent constraints was 

2,392,056. The average condition number of 

(o) ' V - I ~  (o) after discarding nearly linearly dependent 

constraints was 6,350. 
Then, at the EA level, before the first step weighting 

adjustments were calculated, 22.3 of the 40.4 WA level 
constraints were discarded for being small. This left 18.1 WA 
level constraints to be partitioned into two groups of 9.0 each 
at the EA level. After discarding 0.1 linearly dependent 
constraints per group as well as 1.0 constraints per group for 
causing outlier weights, the number of WA level constraints in 

each of the two groups was 8.0. The average condition 
~ (o )  t. -1.,-.(o) 

number of the --91- vg r~gz  matrix was 379 after 

discarding the constraints which caused outlier weights. 
At the second step weighting adjustment, 7.4 of the 50.7 WA 

and EA level constraints were dropped for causing outlier 
weights. This left 43.3 constraints that were used to determine 

the second step weighting adjustments. The average condition 
^ / - 1  ^ 

number of the X (m V A X (A) matrix was 4,855 after 

discarding the constraints which caused outlier weights. 
The differences between known population counts and the 

corresponding sample estimates for 68 selected characteristics 
appearing in Census publications were calculated at both the 
EA and WA levels, for all 79 WAs. The absolute values of the 
relative population/estimate differences are summarized in 

Tables 2a to 2d for two step GLS estimates, one step GLS 
estimates using the approach outlined in Section 2, raking ratio 
estimates based on the 1986 Census weights (see Brackstone 
and Rao 1979, for a description of the raking ratio weighting 
methodology), and Horvitz-Thompson estimates using the 
initial weights --W~ °) . The 10 th, 25 th, 50 th, 75 th, and 90 th 

percentiles of the distribution of the differences are given. 
Differences for each characteristic were only included for EAs 
and WAs in which the characteristic applied to at least 60 
households. All relative population/estimate differences are in 
percentage terms. The tables show that the two step GLS 
es t imato r  in genera l  p roduced  much smal ler  
population/estimate differences than the one step GLS 
estimator at the EA level, while producing differences of similar 
size at the WA level. Compared to the 1986 raking ratio and 
Horvitz-Thompson estimators, the two step GLS estimator in 
general produced much smaller differences at both the EA and 
WA levels. The constraints used with the two step (~LS 
estimator more closely represent those characteristics which 
appear in Census publications than the constraints used with 
the 1986 raking ratio estimator. This contributed to the smaller 
differences at both the EA and WA levels, while the first step of 
the weight calculations also contributed to the smaller EA level 
differences. Note that, in general, the differences are actually 
larger at the EA level for the 1986 raking ratio estimator than 
for the Horvitz-Thompson estimator. 

For the 79 WAs, estimated coefficients of variation (CVs) 
were calculated for estimates of 507 EA level and 642 WA level 
characteristics (all of which applied to at least an estimated 60 
households in the population) known only on a sample basis. 
Selected percentiles of the distribution of the estimated CVs 
of two step GLS estimators are compared in Tables 3a to 3d 
to the percentiles of estimated CVs of corresponding 1986 
raking ratio estimators and Horvitz-Thompson estimators. All 
CVs are in percentage terms. The tables show that the two 
step GLS estimator generally had smaller CVs than both the 
1986 raking ratio and Horvitz-Thompson estimators, especially 
at the EA level. 

The two step GLS weighting procedure and the associated 
methodology for discarding constraints also worked well for the 
5,730 WAs in the 1991 Canadian Census. Compared to the 
1986 Census, population/estimate differences in the 1991 
Census were dramatically reduced at the EA level for most 
characteristics. At the C ensus Division level, 
population/estimate differences were reduced for two thirds of 
the characteristics examined. 

7. CONCLUDING REMARKS 
The two step GLS estimator worked well, with no manual 

intervention, on all 5,730 WAs in the 1991 Canadian Census. 
Adjusting the initial weights in two steps substantially reduced 
the population/estimate discrepancies and CVs for small areas 
compared to methods used in the 1986 Census. Discarding 
constraints to eliminate adjusted weights less than 1 and to 
lower the condition numbers of matrices being inverted also 
proved effective. The computational costs of determiningthese 
adjusted weights and estimating the variances of the resulting 
estimators were very reasonable. 
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0.4 1.7 4.5 8.9 14.7 

J[ Median Value 
Table 3a. Estimated CVs - WA Level Estimates > 
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Raking Ratio 2.7 3.9 5.6 7.6 9.4 
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I!, EA Level Characteristics 
Table lb. Relative Bias of Variance Estimators - 

Estimator 10 th 25 th 50 th 75 th 90 th 

V h (~ -64 -44 3 69 131 

V h ~*) -62 -41 16 85 138 

Vs~ ) -79 -61 -40 11 75 

Vs~*) -76 -58 -35 10 94 

Table 2b. Relative Population/Estimate Differences- 
WA Level Estimates _< Median Value 

Estimator 10 th 25 th 50 th 75 th 90 th 
, ,  

Two Step GLS 0.0 0.0 0.0 6.8 15.8 

One Step GLS 0.0 0.0 0.0 6.8 15.7 

Raking Ratio 0.0 0.5 3.5 9.2 16.1 

Horvitz-Thom. 1.5 4.0 8.7 15.7 23.9 

Jl Table 2d. Relative Differences Population/Estimate 
EA Level Estimates < Median Value 

Estimator 
, ,  

Two Step GLS 

One Step GLS 

Raking Ratio 

J,, Horvitz-Thom. 

10 th 25 th 50 th 75 th 90 th 

1.2 3.4 7.4 14.2 22.8 
| 

1.7 4.7 10.6 19.6 29.2 

1.9 5.0 11.0 19.8 30.1 

1.5 4.6 10.9 19.8 31.0 

Table 3b. Estimated CVs - WA Level Estimates < 
Median Value 

Estimator 10 th 25 th 50 th 75 th 90 th 
. . . .  

Two Step GLS 9.1 10.7 13.3 17.8 20.3 

Raking Ratio 10.6 12.3 15.2 19.7 23.2 

Horvitz-Thom. 12.9 14.7 17.6 21.7 24.3 

J Table 3d. Estimated CVs - EA Level Estimates < 
, Median Value 

Estimator 10 th 25 th 50 th 75 th 90 th 

Two Step GLS 10.4 12.4 14.9 17.9 20.2 

Raking Ratio 13.4 15.5 17.6 20.6 22.9 

Horvitz-Thom. 13.8 16.2 18.4 21.3 23.2 
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