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i. Introduction 
In survey sampling, practitioners are often 

faced with the problem of not being able to take 
measurements on some of the units, or on some 
items for some units, that are in the chosen sample. 
This is called the problem of nonresponse or 
missing data. When nonresponse is present, there 
can be serious problems with bias in estimators of 
population quantities if nothing is done to adjust 
the responding parts of the sample for the 
nonresponse. Random imputation is one form of 
adjustment for nonresponse. Our work on random 
imputation is an extension of work by Hansen, 
Hurwitz, and Madow (1953), Kalton (1983), and 
Little and Rubin (1987). These authors studied the 
variance of the usual estimator of the population 
mean constructed with imputed values in the place 
of missing values. They derived the variance of the 
usual estimator for the population mean for simple 
random sampling without replacement. Different 
authors employed different models. We extend the 
results to general designs, under the nonresponse 
model of Little and Rubin (1987). 

Let there be a finite population of N units, 
where N is known. Let the population be divided 
into H exhaustive and mutually exclusive 
imputation classes of size N h , h=l,...,H . Let 

there be a characteristic associated with each unit, 

_ _~Yhi~h=1,..,H, i=1,..,N h , and let 

H Nh 

Y= X: ~ Yhi (1) 
h=l i=1 

be the overall finite population total for the 
characteristic. 

Assume a probability sample of size n is 
selected from the population, where the only 
conditions on the sample are that the probabilities 
of inclusion are greater than zero for all units in the 
population and that the joint probabilities of 
inclusion are greater than zero for all pairs of units 
in the population. 

Let n h denote the number of units in the 

sample that fall in imputation class h .  Suppose 
that, within imputation class h ,  we are able to 
measure the characteristic for r h of the units and 

unable to measure the characteristic for m h of the 

units. Let m h = k h r  h + t h , w h e r e  k h and t h 

are nonnegative integers and t h < r h . Let 

R -  

r In 
1 1 

r H m H 

(2) 

be the matrix of the number of units that 
responded and the number of units that are missing 
for all of the H imputation classes. 

Let the portion of the sample that is in 

n h 
imputation class h be written ~Yhi ~ i--1 ' where 

Yhl,...,Yhr h are the values for the units that 

responded and Yh,rh+l,. . . ,Yhnh are the values 

for the units for which there was no response. Let 
the augmented sample in imputation class h be 

, 

* nh , where - -Yhi  for i--1,...,r h and ~Yhi ) i =I Yhi 

Yhi is an imputed value for i - rh+l , . . . ,n  h . Let 

~rhi , h-1,.. . ,H, i-1,. . . ,n h be the probability that 

sample unit hi is chosen in the random sample. 
Let ~r(hi)(gj) , h-1,.. . ,H, i-1,.. . ,nh, g -  1, ..., H, 

j=l,.. . ,ng, hi $ gj be the probability that both 

sample units hi and gj are in the sample. 
Assume that, within a given clam, the missing 

values are missing at random. 

Defi~tiom Missing values are miming at 
random within an imputation cla~ if the 
mechanism by which they are missing is equivalent 
to the selection of an equal probability sample from 
the intended sample within the imputation elms. 
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Let the imputation method be as follows. 
Each respondent in imputation class h is used at 
least k h times for imputation and t h of the 

respondents in imputation class h are used 
k h + 1 times. The t h of the respondents that 

are used k h + 1 times are chosen by simple 

random sampling without replacement from the 
respondents in imputation class h .  The donor 
respondents are assigned to the missing units 
randomly. 

2. The estimator and its expected value in a 
fln;te population 
In this section we consider the random 

imputation procedure using imputation classes. Let 

n 
H h 

-1 
~r = }] ~ XhiYhi 

h=l  i=l  
(3) 

be the Horvitz--Thompson estimator of the 
population total based on the original complete 
sample. Let 

n 
H 1_ 

. ,  n - I  * 

Y = ~ ~ ~rhiYhi 
h=l  i=l  

(4) 

be the Horvitz--Thompson estimator of the 
population total constructed with the augmented 
sample. We now find the conditional expected 

value of Y for the finite population under the 
assumption that the missing values are missing at 
random within imputation classes. 

Theorem I: Assume that a sample is taken 
from a finite population, as described in Section 1. 

Let Y and Y be as defined in (3) and (4). 
Assume that the finite population is made up of H 
mutually exclusive and exhaustive classes and that, 
within a class, the nonrespondents are missing at 
random from the portion of the sample that falls in 
that class. Let the imputation be done as described 
in Section I. Then 

A ,  

E(Y [FP, S, 11) - "Y 

n 
H m h h - 1  - 

+ ~ n ' h ' '  I '  ~ l rh i (Yh--Yhi) '  (5) 
h=l  i=l  

where FP denotes the finite population, S stands 
for the intended sample, R is the number 

responding and missing as defined in (2), and Yh 

is the mean of the intended ~ample in imputation 
class h .  

Proof: If the set of respondents and the set of 
nonrespondent~ is held constant, the expected value 
of the estimator over all possible imputation 
patterns is 

E(Y I FP, S, rp) 

- 1  - I  - 
- ~ fhiYhi + ~ ~rhi Y r ' 

h=l  i 1 i=r h+l  

(6) 

where rp stands for the response pattern and Yrh 

is the mean of the respondents in imputation class 
h .  Because the probability of a response is equal 
for all elements within a cell 

r h  
-1 Rt E ~l~rhiYhilFP, S, 

i= 

n h 
--1 -1 

= n  h r h ~ ~'hiY~ 
i=l  

and 

(7) 

f nh__ , - . . 1 -  
E ~] Wh YrhlFP' S, 

i rh+ l  

h - I  - I  
= E  ~r r, :E Y, [ F P ,  S,  

g i n .  1 nj 
Li=rh+l  j= 

- I  - I  --I 
= r h rhmhn h (n h -- 1) 
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n h n h 

x ~ -1 Z Y h j  
i 1~rhi j= l  

i ,j  

nh - i  _ --i 
-1 ~ ~rh i (nh 1) = nh mh i = l  (nhY h -- Yhi ) . 

(8) 

Therefore 

r h n h 
- 1  - 1  - 

E i~]=l ,rhiYhi + ~] xhiYrhJFP, S, 
i = r h + l  

nh m h I] -I 
*rhiYhi + n h - 

i=l  

nh -1 - 

...... Z ~rhi(Yh--Yhi ) . 
i= l  

(9) 

By Theorem 1, we see that the imputation 
procedure is unbiased for the finite population total 
for simple random sampling. Since 

n 

E[Z~= l(nh--1)--lm h I] i =lh ~hi-1 (~h_Yhi) j FP] is not 
M ,  

generally equal to zero, Y is not generally an 
unbiased estimator of the population total in a 

finite sample. To derive unbiasedness for Y , we 
add the assumption of an underlying 
superpopulation to our set of assumptions. 

A ,  

3. The expected value and variance of Y under 
the tmpert~pulation modal 
Assume that there is a superpopulation made 

up of tt subpopulations. Assume that within 
subpopulation h , h=l,...,H, the elements of the 
subpopulation are identically and independently 

2 
distributed with mean /~h and variance a h . 

Assume that between subpopulations, the elements 
are independent. Assume that equal probability 
samples from the subpopulations of sizes Nh, 

h=l,...,H , form the H imputation classes of the 
finite population. 

Let 

# =  
H 

N--INh~ n 
h - I  

(10) 

be the mean of the finite population under the 
superpopulation structure. The estimator (4) is 
unbiased under the superpopulstion model. 

Theorem 2: Let the assumptions of Theorem 1 
hold. Assume that the superpopulation structure of 
this section holds. Assume nh>2 for all h and all 

samples. Then 

A ,  

E(Y ) = N~, (11) 

A, 

E(Y - -Y) = 0 ,  (12) 

V(Y -- N~) = V(Y- N~) + Ah, (13) 

and, 

v(Y - Y) = v(+ - Y) + A h , 

(is~) 

where 

.% 

and 

H 

h=l  

In h n h 
2 -I -I 

% E B  hjI: I: "hi 'hj  ' 
i=l  j = l  

L ~J 
(14) 

B h = 
khn h + (k h + 2)t h 

nh(n h -- 1) 

Proof: Under the model, every element in the 
h--th class of the i'mite population (and, thus, the 
sample) has the same expected value when the 
expectation is over draws from the superpopulstion. 
It follows that expression, (11) and (12) hold. 

- O  

To fred the variance of Y , we use three 
levels of conditioning. At the lowezt level (level 3), 
we hold the choice of the tmnple (ca) , the 
response pattern (rp) , the choice, for imputation 
(ic) , and the choices of which donor goes with 
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which missing value (dm) constant, and take the 
expectations with respect to draws from the 
superpopulstion. At level 2 we hold the choice of 
the sample (ca) and the nh's and the rh's (It) 

constant and average over the possible response 
patterns (given R) and over the possible 
imputation choices and over the possible choices of 
which donors go with which missing values. At 
level 1 we average over everything left random in 
the expression. We never actually evaluate the 
variance at level 1. 

It is straightforward to show that 

] -1 
- N~) = v ~ .h~h V('i' ~ h i i= 

[! ~rhia h • + E1 h 1 i= l  

(z5) 

We now fmd the variance of Y --N~ in terms of 

V(Y--N~). We have 

v(Y 
M ,  , , ,  

--N~) = VI{E2[E3(Y )1)+ EI{V2[E3(Y )1} 

+ EI{E2[V3(Y )]}- 
(is) 

E3{Y ]cs, rp, ic, din) -- 
H n h  - 1  

]] ~ ~rhiP h , 
h= l  i= l  

(17) 

since the Yhi'S in the augmented sample are 

identically distributed in imputation class h. The 

Yhi'S are identically distributed in imputation class 

h since the missing values are missing at random 
and the imputed values are chosen and assigned 
randomly within the imputation classes and since 
the real values in subpopulation h are identically 
distributed. It follows that 

-1 
~] Xhi V ( Y * ) - V  1 h l i = 1  

-i- E l{E2[V 3(Y }ca, rp, ic, dm) I ca, R]). 

(18) 

The 

--1 * 
Z "hi Yhi lc'' rp, ic, lc~, E2 V3 h = l  i = l  

H nh n h - 1 - 1  * * 

= ~ ~ ~ *hiXhj E2{H3(Yhi' Yhj )[cs' R ) ,  
h= l  i= l  j= l  

where 

, • $ $ 

H3(Yhi , Yhj ) = Cov3(Yhi , Yhj [ ca, rp, ic, dm) ,  

(19) 

since the Yhi'S are independent between the 

imputation classes. Now the 

* * 2 
H~(Yhi, Yhi ) = a h 

(20) 

for all h i ,  since the units in the augmented sample 
in imputation class h are identically distributed. 
Also, because, given the choice of the sample, the 

H3(Yhi , Yhj)~s are identically distributed for i - 1, 

..., n h -- 1 , j - i+l ,  ..., n h , 

E2[H3(Yhi' Yhj )I~' R] 

[ n h  n h H 3 ( Y h g  Yhm)]cs ,  

1 n h(nh-- i )  
$ 

2 
= E 2 [B h ~h[~, Z] 

2 
--B h a h (21) 
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for i # j .  The last two expressions in (21) follow 
since each of the n h elements in imputation class 

h in the augmented sample appears at least 
(k h + 1) times in the augmented sample and 

(k h + 2)t h of the elements appear one more time 

and since we need to subtract out the n h of the 

elements that are represented by expression (20). 
The sum in expression (21) is independent of the 
sample (given R), the response pattern (given It), 
the imputation choices, and the choices of which 
donors go with which missing values. From 
expressions (19), (20), and (21), the 

E2[v3cY I cs, rp, ic, dm)Ics, 11] 

H nh 
= £ 

h=l  i=1 

-2 2 
Xhia h 

+ 
H 
£ 

h=l  

n h n h 
2 -1 -1 

a h B h ~ ~ x h i 1 j= l  iX hj 

(22) 

Expression (13) follows from expressions (15), (18), 
and (22). 

Expression (13a) follows from expression (13), 

since Cov(Y, Y) equals Coy(Y*, Y) by the result 
in Theorem 1. n 

4. F~inmtion of the variance of Y - - Y  
We now look at the estimation of the variance 

of Y - - Y .  We start by noting that 

V(~ r -- Y) = E[V(~ r -- Y I FP)] , (23) 

since 

E(~ r- Y]FP) = 0. (24) 

Cochran (1977) gives 

~r(~ _ Y[FP) - 
H nh 

h=l  i=1 

- 2 
(1 -- ~rhi)Xhi2Yhi 

where 

+ 
H nh H ng 

h=l  i=1 g--1 j---1 
h i ~ g j  

whig j = 
X(hi)(gj) - ~rhi ~rSj. 

"hi Xgj , (hi  ) (gj) 
(25) 

as an unbiased estimator of V(Y--Y I FP) .  
In Theorem 2, we presented the variance of 

Y in terms of the variance of the estimator of the 
population total based on the intended sample and 
a term for the increase in variance due to 
imputation. From Theorem 2 and expression (23), 
under the superpopulation model, a natural 

estimator for V(Y --Y) is 

VI(Y - - Y ) = V  ( Y - - Y ] F P )  

+ 
H 
£ 

h=l  

I n  h n h 
s 2 £ 
rh Bh [i=1 j - 1  ! 

[ 

-1 -1 
~rhilrhj 

(28) 

2 
where Srh is the sample variance of the Y's for 

the responding units in clam h , h--1,...,H and 

where V*(~'--Y[ FP) is V(Y--Y[ FP) calculated 
using the augmented sample instead of the intended 

-1 
sample. If Whi = Whi is the design weight on 

unit hi, h=l,...,H, i-1,...,n h , then 

and 

. ,  H nh , 

Y = ~ ~ WhiYhi (27) 
h=l  i=1 

M ,,, 

Vl(Y - Y) = v (Y - Y[ FP) 
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+ H 2 2 W 2 
s B h Wh -- hi " 

h -1  rh - 1  i -1  
(28) 

Estimator (26)is biased because V (Y--YIFP) 
is a biased estimator of V(Y--YI FP ) . The bias is 
given in Lem_n~ 1. 

Lemma 1: 
hold. Then 

Let the assumptions of Theorem 2 

E[V~Y - Y I FP)] = V(Y - Y) 

+ 
H [ nhnh jl 

2 ~ ~ Whih " h -1  ah E B h i=l  j = l  

(29) 

Proof: See Tollefson (1992) for the proof. 

From the results in Theorem 2 and Lemma 1, 

an unbiased estimator of the V(Y -- Y) is 

V2(Y - - Y ) = V  ( Y - Y I F P )  

H nh nh 
+ ~ s2 Bh _~ ~ -1 

h=l  rh i 1 -  j= l  X(hi)(hJ) 

(30) 

Expression (30) is obtained from expression 
--1 --1 

(26) by replacing (XhiXhj) with (X(hi)(hj)) 

to take into account the bias in V (Y--Y[ FP) . In 
practice, it is preferable to use the inverses of the 
marginal probabilities of selection rather than the 
inverses of the joint probabilities of selection in 
calculations because marginal probabilities of 
selection are generally available in the data fdes, 
while joint probabilities generally axe not available 
in the data files. For most designs, the bias in 

estimating V(Y--¥) using an imputed sample is 
negligible in comparison to the increase in variance 
due to imputation. 
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