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I. INTRODUCTION 

An essential design feature of demographic 
surveys conducted by the U.S. Bureau of the Census 
is stratification of their Primary Sampling Units 
(PSUs). Stratification clusters PSUs into strata, 
from which a subset of (sample) PSUs is selected. 
Survey costs are reduced by interviewing only in 
sample areas. However, strata produced during 
stratification need to be "homogeneous," so survey 
estimates derived from sample areas will also 
accurately reflect non-sample areas. The degree of 
stratum homogeneity and the achieved reduction in 
survey costs both depend upon the capabilities of 
the PSU stratification system. 

During both the 1980 and 1990 Redesigns of 
demographic surveys at the U.S. Bureau of the 
Census, PSU stratification was accomplished almost 
entirely by using the Friedman-Rubin ("F-R") 
stratification system [1], built around a core 
algorithm called the hill-climbing pass by Friedman 
and Rubin [2]. Consideration is now being given to 
the use of alternative stratification approaches in 
designing future surveys, due to (1) needs for 
increased survey reliability and reduced survey costs, 
(2) advances in search and optimization methods 
used in stratification algorithms, (3) the use of 
computer-intensive methods and knowledge-based 
processing for solving complex problems, and (4) 
favorable experience at the U.S. Bureau of the 
Census with a prototype stratification search 
program ("L"), described in this paper. 

L, using a different search algorithm than that of 
F-R, was developed by the author during the 1990 
Redesign stratification of Current Population Survey 
(CPS) PSUs. It originated to stratify CPS PSUs for 
Alaska, since the F-R algorithm could not account 
for the widely-varying interviewer travel costs among 
Alaska PSUs. L randomly generated over five 
million stratifications to minimize Alaska's expected 
interview costs. This initial version of L became the 
basis for the current L sub-routine RANDOM, used 
to randomly enhance the initial stratification for 

each interactive search session. L now also includes 
a MOVE sub-routine (to minimize an unconstained 
criterion) and a SCREEN sub-routine (to find 
constrained solutions). In limited tests on actual 
Redesign data, L has demonstrated its operational 
comparability to F-R. However, the purpose of this 
paper is to initiate, through discussion of the L 
algorithm, the development of future stratification 
search algorithms, with sophisticated "learning" 
capabilities, that exploit modern computational 
power and are flexible enough to adapt to diverse 
survey stratification needs. 

L has been tested on Minnesota CPS 1990 
Redesign data, and one L interactive search session 
(described in Section V) found 85 better 
stratifications than any found during all F-R 1990 
Redesign search runs for Minnesota. L's interactive 
sessions are flexible, allowing backtracking and the 
use of user input during the search process. 
Relatively few L search sessions seem required to 
find an acceptable final stratification for a state. L 
is written in Base SAS (a product of SAS Institute 
Inc.) and has only 264 lines of code. It is flexible to 
modify and easy to use. A VAX minicomputer was 
used for all search sessions, system resources were 
shared with other users, and no special priority 
processing or storage requirements were necessary. 

Section II overviews the CPS PSU stratification 
process. Section III describes search concepts that 
underlie stratification search algorithms. L's four- 
phase search algorithm is given in Section IV. 
Section V compares the results of the best L 
interactive search session for Minnesota to the best 
F-R Minnesota results from all of its 1990 CPS 
Redesign search runs. Section VI outlines research 
directions for developing advanced stratification 
algorithms and their software implementations. 

II. STRATIFICATION OVERVIEW 

The stratification of Primary Sampling Units for 
demographic surveys at the U.S. Bureau of the 
Census occurs primarily during decennial survey 
redesigns as a multi-survey, time-constrained 
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application on the Friedman-Rubin stratification 
system. Redesigns begin by defining, stratifying, 
and selecting survey PSUs. Then the redesign focus 
shifts to within-PSU sampling. 

The Current Population Survey has participated 
in recent decennial survey redesigns. CPS PSUs 
designated as self-representing (SR) are always in 
sample. However, CPS non-self-representing (NSR) 
PSUs are stratified, using the F-R multivariate 
clustering algorithm that searches for best (lowest- 
criterion) constrained stratifications. One sample 
CPS PSU is selected from each NSR stratum. CPS 
PSU stratification seeks to reduce CPS costs and 
the variances of CPS estimates, while optimizing 
interviewer workloads. The criterion to be 
minimized is between-PSU variance on each state's 
stratification variables (scaled to ensure their 
proportionate influence). The total population of 
each CPS NSR stratum is constrained, so a self- 
weighting sample can be used. Stratum workloads 
are constrained to provide acceptable interviewer 
workloads for CPS sample NSR PSUs, and the 
estimate of each state's level of unemployment is 
subject to a fixed reliability requirement. 

The Current Population Survey has a state-level 
design. Its PSU stratification occurs one state at a 
time and much of its stratification data is state-level 
data. Each CPS PSU is one or more contiguous 
counties or minor civil divisions within a state, and 
some CPS stratification data is collected at the PSU 
level. Stratification data is used to compute 
criterion values, stratum sizes, sampling intervals, 
and workloads for all stratifications evaluated. 
Research is used to select stratification (criterion) 
variables that are correlated with key state CPS 
estimates and that are stable over time. Most data 
is for the current redesign period (1990), although 
some data pertains to the last redesign (1980). 
Housing units, population, and labor force 
participation rates are projected to the 
implementation year (1995). 

The stratification process repeatedly clusters a 
state's NSR PSUs into strata, uses the criterion and 
constraints to evaluate each generated stratification, 
and selects the best state stratification. Since most 
states hav.e too many potential stratifications to 
evaluate them all, search strategies are used to 
determine which subset of a state's potential 
stratifications to examine. Algorithms representing 
these search strategies are coded into program sub- 
routines. Searches are formed by linking together 

these program sub-routines. Each search evaluates 
a (randomly-initiated) subset of the state's potential 
stratifications. Within each search, processing is 
controlled by user-supplied search parameters and 
by information the program "learns" while evaluating 
stratifications. A number of searches are generally 
required for each state to calibrate search 
parameters (including the number of strata to form) 
and to ensure that the best constrained evaluated 
stratifications are close in criterion value. 

To select the final stratification for a state, the 
single best (lowest-criterion) stratification satisfying 
state stratum-size constraints is identified from 
search output. Stratum workloads for this 
stratification are equal to the (rounded) ratios of 
pro-rated stratum housing units to the average 
sampling interval for the ten best constrained 
stratifications, plus any sample used to supplement 
insufficient workloads. If all of its stratum work- 
loads are acceptable, this best stratification is 
selected as the state's final stratification. Otherwise, 
one of the other top stratifications may be selected, 
or more searches may locate additional candidates. 
Final CPS stratifications for all states are 
transmitted to the PSU-selection phase of CPS 
Redesign, where a single sample PSU is selected 
with pps from each stratum of NSR PSUs for each 
state. 

III. SEARCH CONCEPTS 

Exhaustive evaluation (the only known method 
guaranteed to find optimal stratifications of a state's 
NSR PSUs) cannot evaluate the many potential 
stratifications for most states, so search is used to 
find acceptable stratifications. Search methods are 

. . . . .  " " " "mixed" classified as weaK, "application-specific, or 
[3]. Weak search is generic, with no reference to a 
specific problem domain. Application-specific 
search uses knowledge about a specific problem to 
constrain the number of alternatives considered. 
Mixed search is a combination of generic and 
application-specific methods. Search methods can 
also be classified as "blind" or "heuristic." Blind 
search performs an orderly evaluation of all 
alternatives until a solution is found. Heuristic 
search uses an evaluation function (criterion) to 
direct search toward the most-promising 
alternatives. Hill-climbing (the primary search 
method for both F-R and L) is a weak (heuristic) 
search method. However, both programs apply 
stratum-size constraints (specific problem 
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information) and therefore have "mixed" search 
algorithms. 

A state's potential stratifications (for a fixed 
number of strata) can be represented by a search 
space that assigns one NSR PSU to each axis. 
Integer coordinates represent stratum assignments, 
and each search point with all-integer coordinates 
represents a unique stratification. Distinct points 
that switch labels for entire strata represent 
equivalent stratifications. Feasible search points 
satisfy all stratification constraints. If a search space 
has no feasible points, then a different search space 
with more strata needs to be used. The criterion 
and all stratification constraints are real-valued 
functions defined on the search space. A 
stratification search algorithm determines the 
appropriate search space for each state (one with 
feasible points and the fewest possible strata), 
evaluates a subset of this space during search runs 
or interactive sessions, and identifies a final 
stratification for each state. 

An algorithm's search performance is determined 
by the quantity and "quality" of the search points it 
evaluates (including its balance between quantity 
and quality) and its use of randomization to redirect 
the search process. The quantity of points 
evaluated is determined by the available 
computational power, the design of the algorithm to 
exploit that computational power, the number of 
independent searches performed, and the size and 
criterion-topography of the search space. L exploits 
current computational power to evaluate a large 
number of search points during each interactive 
search session. 

The "quality" of search points refers to their low 
criterion values, feasibility, and usefulness in 
generating high-quality "children." To increase 
search quality, effective algorithms "learn" useful 
information as they evaluate points, such as the 
PSU combinations that compose strata, PSU 
contributions to the criterion and sampling interval, 
stratum contributions to the criterion, stratum sizes, 
and changes in these items as successive 
stratifications are evaluated. Since a single search 
can evaluate hundreds of thousands of 
stratifications, a vast amount of useful search 
information is processed. Search algorithms vary in 
the amount of search information they can store 
and effectively use. Both F-R and L have 
elementary "learning" capabilities, storing "reference 
points" (previously-evaluated, high-quality 

stratifications) and evaluating a subset of points no 
greater in distance from them than '2' (where 
"distance" equals the minimum number of their 
PSUs requiring stratum reassignments to transform 
the points into equivalent stratifications). 
Evaluating nearby points exploits the "continuity" of 
the criterion and constraint functions over the 
search space (where "continuity" means simply that 
nearby points, having many function components in 
common, tend to have close function values). Thus, 
by evaluating points close to high-quality reference 
points, F-R and L expect to generate other high- 
quality points, the best of which are then selected as 
new reference points. 

Randomly-generated points usually have low 
quality (since high-quality points are very scarce). 
However, random points are useful (1) as initial 
stratifications for independent searches, (2) for 
enhancing initial stratifications (as discussed in 
Section IV), (3) for sampling search space 
topography around reference points (particularly 
local minima), (4) when combining stratifications 
(within a single search) that optimize distinct 
characteristics, and (5) when combining the best 
stratifications from multiple independent searches. 

IV. THE "L" SEARCH ALGORITHM 

L is run through interactive sessions. Each 
session progresses through four general search 
phases. In Phase 1, stratification data (identical to 
that used by F-R) is accessed, stratification variables 
are scaled, and useful data sub-totals are computed. 
Also, users enter values for search parameters in 
Phase 1 of each interactive session. These 
parameters include the number of strata to form, 
the seed to use in randomly generating 
stratifications in the RANDOM sub-routine, the 
minimum criterion value and stratum size for 
stratifications output by RANDOM, and final 
minimum and maximum stratum size constraints. 
(Stratum sizes are measured, approximately, in 
terms of 1990 civilian non-institutional population of 
persons at least sixteen years of age.) 

Phase 2 (a single call to the RANDOM sub- 
routine) randomly generates an initial stratification 
for each session and randomly transforms this 
stratification into one whose criterion value and 
minimum stratum size satisfy the user-supplied 
constraints entered in Phase 1. The criterion is 
between-PSU variance on a state's stratification 
variables. Placing a lower limit on minimum stratum 
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size also tends to lower the maximum stratum size, 
as all strata converge toward the average stratum 
size. To form the initial stratification, RANDOM 
uses the user-supplied seed to generate one random 
number for each NSR PSU. Each random number 
is multiplied by the number of strata and rounded, 
to convert it to the PSU's initial stratum assignment. 
If this initial stratification satisfies the above 
constraints, it is output and RANDOM terminates. 
Otherwise, the initial stratification is used as a 
"reference point" for generating other stratifications, 
by randomly selecting one of its NSR PSUs and 
randomly changing its stratum assignment. Any 
derived stratification with a minimum stratum size 
no lower than that for the current reference point 
becomes a new reference point. The first reference 
point with acceptable criterion value and minimum 
stratum size is output and RANDOM terminates. 
If two million stratifications are generated without 
finding an acceptable one, then RANDOM 
terminates and the user must enter looser 
constraints. RANDOM can range widely over the 
entire search space to find acceptable constrained 
stratifications. By comparison, F-R randomly 
generates, but does not randomly enhance, the 
initial stratification for each of its search runs. 

Phase 3 uses calls to the MOVE sub-routine to 
search for the stratification that minimizes the 
unconstrained criterion. The number of required 
calls varies over the search space, and calls can be 
grouped into interactive entries. (About 30 MOVE 
calls were required for Minnesota sessions, and 
each call usually ran in less than 30 seconds.) The 
single Phase 2 output stratification is the input for 
the first MOVE call, and the lowest-criterion 
stratification evaluated during each call is the input 
for the next call. Each input stratification is a 
reference point, used to generate all possible points 
with a stratum reassignment for a single PSU or a 
stratum-exchange for a pair of PSUs. By 
comparison, F-R evaluates only stratum 
reassignments for individual PSUs during a 
maximum of thirty criterion-minimization calls 
(called hill-climbing passes by Friedman and Rubin 
in [21). Thus, each L Minnesota session evaluated 
more than four times as many stratifications as each 
F-R run, when minimizing Minnesota's 
unconstrained criterion. 

Phase 4 uses calls to the SCREEN sub-routine to 
search for low-criterion stratifications that satisfy 
final constraints on maximum and minimum stratum 
size. The user chooses the number and content of 

interactive entries to process, where each interactive 
entry consists of a number of SCREEN calls. 
Processing proceeds from one interactive entry to 
the next unless the user (monitoring search progress 
on a terminal screen) decides to return to the end 
of an earlier interactive entry. The single Phase 3 
output stratification is input to the first SCREEN 
call of the first interactive entry. Later calls input 
the ten lowest-criterion stratifications evaluated 
during the preceding call that satisfy that call's 
constraint on minimum stratum size. The user 
(based upon current search status) inputs a 
constraint on minimum stratum size at the start of 
each interactive entry. Each later call within each 
entry uses a revised constraint (computed by the 
program) equal to the average minimum stratum 
size for stratifications satisfying the last preceding 
call's constraint on minimum stratum size. Thus, 
within each interactive entry, constraints are 
gradually tightened. Input stratifications for all 
SCREEN calls are reference points, used to 
generate stratifications in the same manner as 
within the MOVE calls of Phase 3. By comparison, 
F-R evaluates only stratum-exchanges for PSU 
pairs, not stratum reassignments for individual 
PSUs, during its constraint-satisfaction phase (called 
the size-adjustment pass in [1]). Any Phase 4 
stratifications that satisfy the final constraints on 
both maximum and minimum stratum size are 
output, when encountered, to a single file. At the 
end of Phase 4, this output file is sorted by criterion 
value, and duplicate stratifications (those output by 
more than one call) are removed. This output file 
of feasible stratifications (along with similar files 
from any previous state search sessions) is examined 
to select a final state stratification, using the 
procedure described in Section II. 

V. SEARCH RESULTS 

L has been tested on 1990 CPS Redesign 
stratification data for Minnesota. Minnesota was 
selected as a challenging search task for L, since 
approximately 100 F-R search runs (over about a 
two-week period) were required to select a final 
stratification for Minnesota during the 1990 CPS 
Redesign. The best L interactive search session to 
date (using the final number of strata and constraint 
values used by F-R) took part of one afternoon and 
found 85 different stratifications that were better 
(had lower criterion values) than any of the best 
stratifications found by F-R during all of its 1990 
CPS Redesign search runs for Minnesota. 
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During this L interactive session, the RANDOM 
sub-routine generated 5196 stratifications, reduced 
the criterion value from 0.52425 to 0.41283 (below 
the constraint of 0.43), and increased the minimum 
stratum size from 78,619 to 124,264 (above the 
constraint of 124,000). The single RANDOM 
output stratification was input to the first MOVE 
call. Each MOVE call adjusted the input stratum 
assignment for either one or two NSR PSUs. The 
unconstrained stratification output by the final 
(twenty-eighth) MOVE call had a criterion value of 
0.13750, and this stratification was input to the first 
SCREEN call. 

The screening process was divided into eight 
interactive entries consisting of a total of thirty- 
seven SCREEN calls. Each stratification generated 
within each call was evaluated against a minimum 
stratum size constraint of 149,000 and a maximum 
stratum size constraint of 187,500. During the 
screening, 85 different stratifications that satisfied 
these constraints and had lower criterion values 
than the best F-R Redesign stratification were 
found. The best constrained L stratification had a 
between-PSU variance on the four (scaled) 
Minnesota stratification variables of 0.15146, 2.18% 
lower than the best F-R constrained value of 
0.15483. The F-R criterion values increased rapidly, 
and the tenth best constrained L value of 0.15262 
was 16.54% below the comparable F-R value of 
0.18286. (Since a state's best stratification for 
stratum-size constraints may not satisfy the required 
workload range, it is important that criterion values 
be low for alternative stratifications.) The L 
statewide sample size was 834, a reduction of 3.47% 
from the F-R sample size of 864. Final Minnesota 
stratifications from both programs had satisfactory 
stratum workloads. 

VI. RESEARCH AGENDA 

To develop an "intelligent" stratification system 
for use by multiple surveys in diverse applications, 
a research program should (1) identify survey 
stratification objectives and applications, (2) design 
(modular) search algorithms in response to survey 
search requirements, and (3) develop flexible and 
efficient programs to implement the search 
algorithms. 

Survey stratification objectives (involving cost 
reduction, survey reliability, and efficient operations) 
should be clearly specified, including acceptable 
tradeoffs. Stratification is used in both the design 

of entire surveys and the design of samples for 
testing alternatives to current survey methods. 
Stratification objectives and applications determine 
search requirements, since they determine search 
space dimensions, criterion complexity, and the 
number of constraints to be satisfied. Additional 
screening constraints could include stratum 
workloads, statewide sample size, expected interview 
cost, expected overlap with a survey's old design (by 
approximating overlap probability [4]), and expected 
impact upon the distribution of households by 
interview mode. Survey requirements could be 
included as multiple goals (rather than as fixed 
constraints), and cooperative game theory might be 
used to select among highly-qualified alternative 
stratifications. 

Search-algorithm design matches search 
"demands" (from survey requirements) with search 
"supplies" (methods for finding acceptable 
solutions). Search algorithms should be based upon 
rigorous mathematical and statistical foundations, 
with precise definitions for the search space and its 
properties, search functions and their properties 
(especially concerning optima for nonlinear criteria 
and feasibility for multiple constraints), sample 
designs for selecting search points to evaluate, and 
search decision rules based upon conditional 
probabilities and expected values. Statistical pattern 
recognition (SPR) might yield fruitful insights. The 
discrete search space discussed in Section III may 
be extended to include points with non-integer 
coordinate values, for better representation of 
concepts of non-linear programming and use of 
surface-fitting approximations to the criterion. 

Search algorithms are sequences of search steps 
of various types. Decision rules (explicit or implied 
by interactive entries) determine the nature and 
scope of each successive search step. Research 
could expand the variety of search steps and 
decision rules used to select them. Random 
generation of points (outlined in Section III) could 
be incorporated into additional search step designs. 
Decision rules for selecting reference points could 
include explicit measures of the expected "quality" of 
their children (where "children" refers to the set of 
all derived search points, no matter how great their 
distance from the reference point). Weights, 
computed by correlating PSU combinations in strata 
with their stratification criterion values, could help 
select both reference points and their children. 
Interactive decision-making could be assisted by 
creating graphic representations of the multi- 
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dimensional search environment. Optimal control 
theory might assist in determining efficient 
"trajectories" through the search space for 
interactive search sessions. 

Development of intelligent search programs 
requires the use of appropriate software (such as 
LISP or Prolog) for the effective (knowledge-based) 
processing of search information. Areas of 
computer science that deserve examination include 
Artificial Intelligence (AI), Expert Systems, and 
Neural Networks (both for neural learning and 
forecasting). Parallel processing could be used to 
assign multiple independent searches to distinct 
processors. Program sub-routines, encoding search 
algorithms, would be combined into modules related 
to specific survey search requirements. Program 
search performance and operational characteristics 
should be thoroughly tested (including the balance 

between automatic and interactive processing) 
across a wide range of geographic areas and 
constraints. Performance differences should be 
correlated with differences in algorithm structure 
and program implementation. 
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