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This is a report of the first step in a 

multiphase project to estimate the components 
of variance of the Consumer Price Index (CPI) 
for the period January 1987 to December 1991. 
This covers the period since the last major 
revision of the CPI in December 1986. The 
estimates of components of variance are 
conditional on December 1986 expenditure 
weights derived from the 1982- 1984 Consumer 
Expenditure Surveys. These variance 
components are estimated by a Hierarchical 
Bayes (HB) method as well as the usual anova 
type estimators. 

1. Introduction 

The Bureau of Labor Statistics (BLS) 
is currently making preparations for the 1997 
revision of the CPI. Decisions must be made on 
methodology and allocation of resources for the 
upcoming revision and relative sizes of the 
components of variance will be a factor in this 
process. For example, selection of Primary 
Sampling Units (PSUs), which will be defined 
in section two, for the 1997 revision has been 
scheduled for the summer of 1992. The relative 
size of the PSU component of variance gives 
information about the importance of such 
activities as selection of variables for 
stratification of the PSUs. Similarly, as other 
selections arise, the relative size of the 
corresponding component of variance should 
give an indication as to the relative importance 
of each activity. 

In this paper, the relative size of the 
PSU component of variance is estimated for the 
indices from January 1987 to December 1991. 
This estimation is made first by a Hierarchical 
Bayes (HB) method and then compared to the 
usual anova type of estimator. The relative size 
of the component of variance due to PSU is 
seen to be consistently small. Furthermore, in 
order to give an idea of the accuracy of the 
estimates, these estimates are jackknifed. This 
method produces an estimate of the variance of 
the aforementioned estimators. The HB 
estimators are seen to have a similar estimate of 

error to the usual type estimators. Also 
simulations are presented which support the 
effectiveness of the HB estimator. 

2. The Consumer Price Index 

For a full discussion of the CPI the 
reader is referred to Chapter 19 of the BLS 
Handbook of Methods, (1988). However, the 
following features of the CPI are important for 
the present discussion. 

According to the Handbook, p 154, 
"The CPI is a measure of the average change in 
the prices paid by urban consumers for a fixed 
market basket of goods and services." It is 
calculated monthly for the population of all 
urban families and also for the population of 
wage earners and clerical workers. This paper 
calculates estimates only for the all-urban 
index. The CPI is estimated for the total US 
urban population for all consumer items, but it 
is also estimated at other levels defined by 
geographic area and groups of items. Pricing for 
the CPI is conducted in 94 PSUs in 91 
geographic areas (New York city consists of 3 
PSUs and Los Angeles consists of 2 PSUs). In 
the CPI area design there is random selection of 
PSUs according to a stratified design in which 
one PSU is selected from each stratum. There 
are four classes of PSUs. The 34 A PSUs are 
metropolitan statistical areas (MSAs) which 
because of size or unique characteristics are 
selected with certainty. Other MSAs are 
classified as either large (L) PSUs or medium 
(M) PSUs. Of these MSAs, 22 L PSUs and 24 
M PSUs were selected for the CPI during the 
1987 revision. Urban areas not included in 
MSAs are classified as R PSUs. The 1987 CPI 
contains 14 of these sampling units. The 
boundaries of these PSUs were defined by BLS. 
A description of the PSU selection can be found 
in Dippo and Jacobs(1983). The 34 A PSUs are 
referred to as certainty or self-representing 
PSUs. These 34 PSUs are the largest 
metropolitan areas. For the remaining strata, the 
selected PSUs are referred to as non-self- 
representing PSUs. The next step is to divide 
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the universe of goods and services into item 
strata. Then, within each PSU, a selection of 
Entry Level Items (ELls) is made from the item 
strata. A single ELI is chosen from each item 
stratum. Examples of item strata are 1) fruit 
juices and frozen fruits, 2) boys apparel and 3) 
eyeglasses and eyecare. Examples of ELls in 
the item stratum fruit juices and frozen fruits are 
1) frozen orange juice, 2) other frozen fruits and 
fruit juices, and 3) fresh canned/or bottled 
juices. Note that some item strata, such as the 
item stratum white bread, contain only one ELI, 
in this case again white bread, so that these 
ELIs are certainties. Further sampling occurs to 
determine outlets in which to price the selected 
ELls. Most of the sample frames used in outlet 
selection are derived from the Current Point of 
Purchase Survey (CPOPS). For each PSU a 
selection of outlets is made corresponding to 
CPOPS category. Finally, there is sampling, by 
field representatives, within an outlet and 
within a previously selected ELI in order to 
determine the particular product to be priced. 
These four stages of sampling lead to the idea 
that the total variance of the CPI can be 
decomposed into four components of variance 
corresponding to these four stages. 

The CPI is a modified Laspeyres index, 
which is a ratio of the costs of purchasing a set 
of items of fixed quality and quantity in two 
different time periods. Let IX(i,m,t,0) denote 
the index at time t, in pricing area m, for item 
stratum i, relative to base period 0. Then 
IX(i,m,t,0)= 100*CW(i,m,t)/CW(i,m,0) 
where CW(i,m,t) and CW(i,m,0) denote cost 
weights, which are estimates of expenditures in 
index area m on item stratum i for times t and 
base period 0 respectively. Cost weights for 
item strata are updated on a monthly or 
bimonthly basis depending on the particular 
item and index area. They are summed to 
estimate cost weights for higher level item 
aggregates (HLIAs) such as all items and major 
groups, e.g., food, medical or transportation. 

3. The Model 

The CPI, as mentioned in the previous 
section, can be considered to have four 
components of variance corresponding to the 
four stages of sampling. In order to model 
variance components it is typical to write the 
random variable of interest as a sum of fixed 
components and random components with a 

random component corresponding to each 
component of variance. However, since the 
present work is attempting to estimate only the 
PSU component of variance, which comes only 
from the non-self-representing PSUs, relative to 
the rest of the variance, it will suffice to 
consider the index as a sum of two random 
components, one corresponding to PSU variance 
and the other corresponding to the rest of the 
random components. Thus we can write 

IX(i,m,t,0) = mean(t) + a(m,t) + e(i,m,t) 
where the mean is a fixed factor, a(m,t) is a 
random factor corresponding to PSU selection 
and e(i,m,t) is a random factor corresponding to 
the rest of the randomness. The assumptions on 
{a(m,t)} and {e(i,m,t)} are that they are 
mutually independent with mean 0, the a(m,t) 
are identically distributed with variance ~a2(t) 
and the e(i,m,t) are identically distributed with 
variance ae2(t). No attempt will be made to 
model this as a time series so the dependence of 
the variance components on the parameter t will 
be suppressed. 

Our current work is to estimate the size 
of the PSU component of variance, Oa 2, relative 
to the rest of the variance, ce 2. This ratio, which 
will be denoted by A = Ca 2 / c~e 2, is convenient to 
calculate. It should be pointed out that the ratio 
of the PSU component of variance to the total 
variance is a 1-1 function of A so that if A is 
known, then Oa2/O 2 can be calculated. 

The following notation will be useful 
in what follows. Let IX(+,m,t,0) denote the sum 
of the indices IX(i,m,t,0) over the item strata 
and let IX(.,m,t,0) denote the mean of the 
indices over the item strata. Similarly, let 
IX( .... t,0) denote the mean of IX(.,m,t,0) over 
the PSUs. The usual anova estimators of C~a 2 and 
ce 2 are based on what are referred to as the 
between sum of squares (BSS) 

= ~ - "  " "LtlXt.,m.t.O) - BSS I X ( . ,  . , t ,  0 ) )  2 

m~M 

where M is the set of index areas in the HLGA, 
and the within sum of squares (WSS) 

WSS = ~ ~ ( I X ( i , m , t , O ) -  I X ( . , m , t , 0 ) )  2 
rn(~M iel  

where I is the set of item strata in the HLIA and 
M is the set of index areas in the HLGA. 

The only level at which the sampling 
for the CPI can be considered balanced is at the 
item strata level, because the number of item 
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strata in each nonself-representing PSU is the 
same. Thus the estimate of ce 2 is 

" 2  c~, = W S S  / IMI x (1II - 1) 

and the estimate of C~a 2 is 

" 2  (~o = ( B S S / ( I M I - 1 ) ) - W S S / ( I I I  x IMI x (111-1)) 

where IMI denotes the number of elements in M 
and III denotes the number of elements in I. 

The form of the last estimator allows 
the estimate of the PSU component of variance 
to be negative, although the probability of this 
happening is guaranteed to converge to zero as 
the sample size increases. A discussion of this 
can be found in Searle, Casella and McCulloch 
(1992). As can be seen from the estimates 
actually produced, this unfortunate phenomenon 
does actually occur so other methods of 
estimation are needed in this case. First of all, if 
the anova estimates are negative in a balanced 
model, maximum likelihood and restricted 
maximum likelihood do not help. Among the 
limited options are taking the positive part of 
the anova estimator or using a Bayesian 
estimator. A Bayesian estimator under squared 
error loss (or any quadratic loss) is guaranteed 
to be nonnegative. We investigate in the present 
work, a Bayes estimator of the variance ratio 
derived under a hierarchical normal model for 
balanced data proposed in Datta and Ghosh 
(1989). This HB estimator has the desired 
property of being a smooth nonnegative 
estimator of the variance. Simulations have also 
shown that it performs satisfactorily for small 
and moderate sample sizes and for a variety of 
distributions including heavy tailed 
distributions. 

Consider the following hierarchical 
model as presented in Datta and Ghosh (1989). 
Y~ ..... Yk will denote the indices for PSUs 1 ..... k 
and S will denote the within sum of squares 
WSS. These random variables will depend on 
the unknown parameters "~, b, r, ~.. 
I. Conditional on T=x, B=b, R=r, A=k 
Y1 ..... Yk and S are mutually independent with 

Y = (Y1 ..... Yk) r distributed as N('c,(nr)lI) 
and S distributed as r ~ X2k(n_ 1)" 

II. Conditional on B=b, R=r, A=k, 
T is distributed as N(Xb,(~)-~I) where X is a 

known kxp matrix of rank p < k. 
III. B, R, and Z=AR are marginally mutually 
independent, with B distributed as uniform(Rp), 
Z has pdf f(z)OCz -2 and R has pdf f(r) cx: r(g -2)/2. 
Thus B, R, and Z have improper pdf's. 

Stages I and II of the above 
hierarchical model can be identified as a 
balanced mixed effects model. To see this let 

Y o  = x r b  + a ~  + e o 

for i=l ..... k and j=l  ..... n. In the above x~ ..... x, 
are known vectors, b is the vector of regression 
coefficients, ai's and eij's are mutually 
independent with ai's i.i.d. N(0,Ca 2) and eij's 
i.i.d. N(0,ae 2) where aa 2 = (Lr) "1, ae 2 = r 1 and 
aa2 / oe2 = ~-1. The minimal sufficient statistic 
for this problem is (Y1 ..... Yk,S) r where 
Yi=EYi~n is the mean of the Yij and S = E E 
(Yij-Yi) . Then (Y1 ..... Yk, S) T has a distribution 
specified in I. and II. 

We are interested in finding the 
posterior distribution of the variance ratio A -1, 
and more particularly, the mean of the posterior 
distribution of A 1 given Y=y and S=s. From 
Datta and Ghosh (1989) we see that for U = 
M(n+A) the posterior distribution of U given 
Y=y and S=s is 

f ( u l y , s )  ~ u ( k - P - 4 ) / 2  (1 + uZ )-0/2 
where ~ = nk - p - 2 + g, Px denotes the 
projection onto the column space of X, and Z = 
nyT(I - Px)Y /S is a multiple of a usual F 
statistic. In our case, where X is a column of all 
Is, Px is a k by k matrix with every element 
equal to 1/n so Z=nBSS/WSS. Then the HB 
estimator of the ratio is 

eHB = E(A-11y,s)= { E(Ully,s) - 1 }/n 

where E(Uly,s)= 

I U ( k - p - 2 ) / 2  (1 + uZ ) - 0 / 2  du 

~u(k-P-4)/2 + uZ ) - , /2du (1 
This estimator, while it has many nice 

properties, must be evaluated by numerical 
integration. It can be shown by tedious 
algebraic manipulations that the HB estimator is 
equal to the usual estimator plus a nonnegative 
term which converges to zero rapidly. 

4. Findings 

The HB estimate of the ratio of the 
PSU component of variance to the rest of the 
variance is seen to be consistently small for all 
major groups and all items. The anova estimator 
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clearly has problems because it produces 
negative estimates of variance for the major 
groups apparel, medical, entertainment and 
other. The variance of the HB estimator is also 
seen to be quite good in comparison to the 
anova estimator since they agree to three 
decimal places. One positive point for the anova 
estimator is that even in situations where the 
estimator was producing negative estimates the 
jackknifed version would sometimes correct this 
deficit. 

For the month of January 1987, which 
was in the first year of the revision, the anova 
estimates produce nonnegative estimates for the 
major groups of apparel, medical, entertainment 
and Other. Possibly the most important estimate 
is for all items, in which case the estimate is not 
negative. This pattern continued for all years. 
The HB estimates are all small and it appears 
that the variances of the HB estimator indicate a 
well behaved estimator. These values are 
presented in Table 2. 

Considering how the variances change 
over time, Table 2 seems to indicate that the 
variances are showing a slight increase over 
time. There are previously reported results from 
Leaver (1990) in which the total variance is 
seen to increase over time. It appears that all 
items has the largest relative size for PSU 
component but in all cases the relative size of 
the PSU component is very small. The width of 
the confidence intervals are seen to generally 
decrease over time with the notable exception 
of medical which has an increase in recent 
months. 

The most important thing to observe is 
that the confidence intervals always contain 
zero so that zero can never be rejected as a 
value for the PSU component of variance. In 
any case it appears that the actual estimate of 
the PSU component of variance for all items is 
always very small with a maximum of 2.6% of 
the total variance in January of 1987. Among 
the major groups food always has the largest 
relative PSU component of variance with a 
maximum of 7.5% of the total variance in 
January of 1987. Transportation has the next 
largest estimate with 4% of the total variance in 
January of 1987. All other estimates for major 
groups and all collection periods are at most 1% 
of the total variance. Plots of the confidence 
intervals are presented in Figure 1. 

5. Conclusions 

The HB estimate of the relative size of 
the PSU component of variance appears to be 
the best estimate of this component. It seems to 
give fairly stable estimates over time. It 
produces nonnegative estimates and the 
variance of the estimator seems to be very good. 
Using the results of the HB estimator we see 
that the relative size of the PSU component of 
variance is very small in most cases, especially 
for the groups in the index which are more 
highly weighted, such as food and housing. 
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