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ABSTRACT 
An estimator of a finite population quantity of a small 

area based only on data from this area is likely to have 
an unacceptably large standard error which can be 
reduced by using data from other areas. Thus given data 
from I similar areas we obtain an interval estimator for 
the finite population mean of a small area. We assume 

that the individuals of the population of the i th area have 
values which are a random sample from a normal 

distribution with mean ~ and variance a~. Then given 

2 ai, the ~ are a random sample from a normal 

distribution with mean 0 and variance a2r while the 

2 ~r i are a random sample from an inverse gamma 

distribution with index 77 and scale (rt---1)L The 
parameters 0,r,~i and r/ are all assumed fixed and 
unknown. We construct an empirical Bayes confidence 
interval for the finite population mean and investigate its 
asymptotic properties (as l-, ®) by comparing the 
center, width and probability content of the proposed 
empirical Bayes interval with the highest posterior 
density interval. 

1. INTRODUCTION 
Many Federal government agencies are required to 

obtain estimates of population counts, unemployment 
rates, per capita income, health needs, crop yields, and 
livestock numbers for states and local government areas. 
For example, the National Health Planning and 
Resources Development Act of 1974 has created a need 
for accurate small area estimates. The Health Systems 
Agencies, mandated by the Planning Act, are required to 
collect and analyze data relating to the health status of 
the residents and to the health delivery systems in their 
health service areas. Consequently, there is a growing 
demand for reliable statistics for small areas. 

Typically there is great variability among the sample 
sizes for the small areas with small sample sizes 
dominating. Since estimators based only on statistics 
from each area are likely to yield unacceptably large 
standard errors, alternative estimators which "borrow 
strength" from other small areas are normally used. In 
particular, empirical Bayes methods have been proposed 
for use in such situations (see, e.g., Ghosh and Meeden 
(1986)). 

Fay and Herriot (1979), Dempster, Rubin, and 
Tsutakawa (1981), and Battese, Harter, and Fuller 

(1988) have proposed three small area models when there 
are covariates. Prasad and Rao discussed best linear 
unbiased (BLU) estimator (or predictor) for the finite 
population mean and described how to estimate the mean 
squared error of the estimator of a small area. They also 
described asymptotic properties of their estimators. 
Hulting and HarviUe (1991) described frequentist and 
Bayesian methods for constructing approximate 
prediction intervals for a small area population mean 
when possibly a mixed linear model holds. We share 

their concern that interval estimation has received 
rdatively little attention in the small area literature. 

As a natural extension of the model proposed by 
Ghosh and Meeden (1986), and a basis for inference, we 
assume for the N i individuals in the population in area 

i the superpopulation model 

¥il,Yi2,...,YiN. l~,o.2 i.i.d._ N(~,a~) 
1 

(1.1) 
with independence over i = 1,2,...,L Next, we specify 

(1.2) 
i = 1,2,...,I with independence across areas. For small 
area estimation, since the sample sizes are usually small, 
it is not entirely unreasonable to assume that the 
variances share an effect (i.e., they have a common 
distribution). In addition, because of small sample sizes 
it is difficult to assess whether the variability across 
small areas is homoscedastic. Thus finally we specify 

a21,o.2,...,o.~ i.i.d.. IG(r/,(rt---1)b') (1.3) 

where the inverse gamma density in (1.3) is given by 

2 ~+i --(~116/~ 
f(a'~) = ((r t - t )b ' ) r / [ l /a i ]  e IF(r/), a'~ > 0  

f(a 2) = 0 otherwise. We assume O,r,6 and 17 are and 

fixed but unknown parameters. Since E(a~) = and for 

r/> 2 var(a 2)- = ~2/(r/---2), 77 > 2, for fixed d~, small 

values of r/ express a belief that the variances are very 
different whereas large values express a belief that they 
are very similar. 

While (1.1), (1.2) and (1.3) provide a simple 
specification, the results might provide insight about the 
appropriate methodology for small area estimation. 
However, the model specifications are expected to hold 
within strata (or clusters) of the entire population of 
small areas. Nan&am and Sedransk (1992) used a model 

of the form (1.1) and (1.2) with a z fixed but unknown 

to construct an interval estimator of the finite population 
mean on the current occasion. They studied the 
asymptotic properties of the interval and using an 
extensive sampling experiment they showed that the EB 
interval has reasonable coverage properties for moderate 
sample sizes. 

/ 

Letting -Yi = (YiI""'YiN.) be the vector of all 

values from the i th area, i = 1,2,...,I, and 
I • / 

Y- = (-YI' -Y2"'"-YI ) be the vector of all values, we want 

N! 

a 100(1--a)% interval estimator for ?(Yt) = ~ Yij/N/. 

j= l  
Letting s i denote the set of n i individuals sampled 
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from the i th area, Y"'i- ~, Yij/ni ' 

jes i 

! S i = ~ (Y i j -Y i )2 / (n i -1 )and  ~o i = ( l+nir)--I  

j~s i 
t 

i = 1,2,...,L Also letting p = (O,r,6,rl) be fixed, a 

I00(i-a)% highest posterior density (HPD) interval for 
~(.vl) is 

e B * ~Bt2r/,a/2 (1.4) 
where 

e B = V l - (141)w~Y{'-~, 

2 l-fl) r/>l u B = ( 1-'7 ''I)'X {f~(l-fl) (l-~l) }/ne 
and t27/,a/2 is the lO0(l-a/2) percentile point of the 

Student t distribution with 277 degrees of freedom. 
Under squared error loss, e B is the Bayes estimator of 

"~.Yl). However, since e is unknown, our objective is to 

construct a 100(I-a)% EB confidence interval for "~Yl) 

by "substituting" point estimators of the components of 

- -  2 
e based on Yi and S i into(1.4). (The interval is 

evaluated over the marginal distribution of the Yij in 

(1.1), (1.2) and (1.3).) 
The literature about empirical Bayes confidence 

intervals provides little guidance about the present 
problem. For example, Morris (1983 a,b) gave a general 
definition of an EB confidence interval, but only 
investigated in detail relatively simple cases such as the 
existence and construction of EB intervals for the ~ in 

when the a 2 in (1.1) are fixed, unknown and (1.2) 
equal. He prodded empirical evidence that these 
intervals have approximately the correct probability 
content. Laird and Louis (1987) described a sampling 
based method and showed how the bootstrap can be used 
to adjust an empirical Bayes confidence interval for 
uncertainty in the estimated prior distribution. They 

a special case of our model with equal a z. It discussed 

seems difficult to implement the approach of Laird and 
Louis (1987); see Morris' comments and the rejoinder on 

the unequal a z case. Carlin and Gelfand (1990) 
proposed and studied a method to improve the coverage 
properties of naive EB confidence intervals. 
Unfortunately, while the method of Carlin and Gelfand 
(1990) is potentially useful, it is also difficult to 
implement their methodology for our specification (i.e., 

# 

unknown e = (0,v,6,r/) and unequal ni). Laird and 

Louis (1989) compared the empirical performance of 
classical, Morris-type and bootstrap intervals on a 
random sample of bioassays from the National Cancer 
Institute data base on potential chemical carcinogens. 
We prefer a Morris-type approach. 

Henceforth, maintaining the EB spirit, all analyses are 
based on the marginal distribution of the Yij" That is, 

the parameters ~ and a~, i = 1,2,...,l are eliminated 

by integration) in the model given by (1.1), (1.2) and 
1.3); p is fixed but unknown. In section 2 point 

I 

estimators for p = (0,T,77,6) are obtained and their 
. 

asymptotic properties are described. In section 3 we 
develop a two stage empirical Bayes confidence interval 
for 7(Yl) and, using asymptotic theory, we compare it 

with the HPD interval in (1.4). Section 4 has concluding 
remarks. 
2. PARAMETRIC POINT ESTIMATORS 

In this section we construct point estimators for p 

and investigate their asymptotic properties. Like Ghosh 
and Meeden (1986) we assume throughout that 
inf n i = 2 and sup n i = k < ®. Both assumptions are 
i>l i> 
realistic in many applications including small area 
estimation. The assumption in f n. = 2 can be relaxed 

i>l 
since a few n i could be unity but the presentation is 

more difficult. Using the marginal distribution of the 
Yij we construct point estimators of p and provide 

relevant asymptotic properties. 
2.1 Point Estimators 

- -  2 We note that while for each i Yi and S i are not 

2 independently distributed, Yi and S i are respectively 

independently distributed over i, i = 1,2,...,/_ Moreover, 

{(1--c0i)/(1--~"1)6T}1/2(7i--0 ) - t2r / (2.1) 

2 i = 1,2,...,L Although the distribution of S i can be 

written down, it is relatively complicated. 
First, assuming that r,6 and 77 are known, we 

construct an estimator of 0. Using (2.1) it is easy to 

show that the best linear unbiased estimator of e is e, 

where 
t ! 

e , =  ~ ('-wi)Yi/~. (1---~i). (2.2) 
i = l  i= l  

l 

Note that 0. depends only on r. Let n T = ~. ni, 

i= l  
! 

Y = nTl~ .  niY i. 
i=1 

! 

BMS = ( l - l )  -1  ~, ni(Yi-Y)2 

i= l  
and 

1 

- w M s  = (ni- lS ( 2 . 3 /  

i= l  

We note that in (2.3) 6 is an unbiased estimator of 6. 
Using arguments similar to ones in Ghosh and Meeden 
(1986), an estimator of r is 
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r = max(0,~',) (2.4) 

where 

; .  = s - , j ,  
[ i = z  j 

Formula (2.4) is exactly the same as (2.8) in Ghosh and 
Meeden 11986). T h ~ w e  use the estimator 

: ~ ( z - ~ ) v i / ~  (~-~i), ~ > o 
i= l  i=l  

m 
m 

- -Y,  v = 0  

" )-I where ~ = (l+n ir . We need a separate estimator 

when r = 0 because in this case wi = I, i = 1,2,...,I, 

1 l 

_ _  e n, o and 

i=1 i=I 

second estimator is sensible because I i m 

I"-~0 

l l 

i= l  i=l  
Next we construct an estimator for r/. Consider 

l 
hi(S~-~ 2 where h i = (ni-1)(nT-~ -1, i = 1,2,...,/ 

i=l  
and 6 is defined in (2.3). Then it is easy to show that 

1 
z h~(s~ - - 

1 
l 

~ (n , r - / ) - I  ~ (1-hi){2+(ni+l)/(rr-2)} ,7 > 2. 
i=l  

Thus as an estimator of r/ we consider 

where c > 0 and 

1 -1 l 

i~ l  h~]} [[(l-1)-1 (nT-~i ~= lhi(S~ 6"1-1)2] -21" 

It is necessary to have a truncated estimator of the form 
y in (2.6) because 7/ could be negative and 
indeterminate. A suitable truncation point is a sequence 
in l which vanishes as l-, ®. A simple choice is f-c, 
c > 0 (e.g., c = 1 or 1/2). However, we prefer to choose 
c in (2.6) in such a way that ~.1 dominates /--c when 

~.1 is positive. A suitable choice of c can be obtained 

by a sampling experiment. 

2.2 Asymptotic Properties 
We present in Lemma 1 asymptotic properties of the 

I 

point estimators of p = (0, 5,r,77) . 

Lemma 1. Assume inf n i = 2 and sup n i = k < ®. 
i>l i>1 

Then as l --, ® 
. a.s. ~--- o") (a) 6----- 6 and E( 2_ . . ,  0 

(b) r~ r and max [wi--~[ ~ o 
i=1,2,  ...,l 

• . a . S .  

M 

( ~  0 a-:-L °- 
P (a) S ince2< in fn  i < s u p n  i<_k<® and 

i>_l i_>I 

var(S~)--[(2+(ni+l)/(r}--2)182/(ni-1) <_ [(k+l)/(rt--2) 

+ 2]82 = A, by the Kolmogorov strong law of large 
- a . S .  

numbers (SLLN), 6 --~ 6; see Settling (1980, pg. 27). 
Also since E([)---o")2 < A/"-l, E(~'--5) 2 ------~ 0 as l------, ®. 

(b) By using (a) ~ d  applying the SLLN to each term 
l 

m 

i=l  
, a . s .  ~, a . s .  

r ---, r. Thus, by continuity, max(0, ) ~ r as 

1-~ ®. Also since I~i-~il <_ [x-~rr--zl i -- 

z,2,...,l, max I w i -~ i l  ~ o as l - ,  ®. 
i=l ,  2 ,...,1 

.. & . S .  

(c) Appendix A shows that 77,1 ~ (~--2) -1 as l--~. 

Since r/= 2 + {max(/-c,~,l)} -1 by continuity, 

- &.S. 
17-'-' r/ as l-,®. 

l 

(d) If r=0, #-0=nT1 ~ ni(Yi-0), and by 

i=i 
a.S. 

SLLN, 0-0~0 as l-~. 
1 1 

If 7" > O, [~--0[ = [ ~  (1--~i)(Yi-O)l / ~ (1-wi) 
i=l  i=1 

l 
<_ (k+ ; -1 ) [ I / -1  ~ (l--~i)(Y i - O)l + 

i - I  

{ 
i=1,2 ,t 

' "'" i=i 
1 a.s. 

By SLLN /--I ~. (l_wi)(Vi_O) ---, 0 as !---, ®. Since 

i=l 

1 
E(C -I ~, IVi-01) < 6v(1-{-kv) 1/2 < ®, it follows that 

i=1 
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! 

C'1 ~ l Yi - al is finite a.e. Using/emma l(b) and 
i---i 

- a . S .  

assuming r > 0 , 8 - 8 - - ~ 0  as 1--,®. 

3. EMPIRICAL BAYES CONFIDENCE INTERVAL 
In section 3 we approximate the HPD interval of 

~Yl)  in (1.4) by an EB confidence interval. In section 

3.1 we construct the EB confidence interval using a 
two-stage procedure. In section 3.2 we compare the EB 
with the HPD interval using asymptotic theory. 
Approximation, construction and comparisons are made 
under the marginal distribution of the Yij in (1.1), (1.2) 
and (1.3). 
3.1 Construction of EB Interval 

Suppose p_ is known. Then under the marginal 

distribution of the Y.. 
U 

(9~.Y l) - eB)/V B - t277 (3.1) 

where e B and u B are given in (1.4) 

At the first stage we assume r,6,r/ are known, and 
consider the pivotal quantity 

( ~ y l )  - eB)/UBa (3.2) 

where 

eB = Y1 (1 - fl)wt~Vl- 8,) 

8, 

l 

,2 = (1_--1)6(1_f l )24/  ~. niwi 
8, i= l  

k given by (2.2) and v 2 by (1.4). Acting as while is 

if the pivotal quantity in (3.2) has a Student t 
distribution with 2r/ degrees of freedom, an approximate 
100(I-a)% confidence interval for ~Y1) is 

"* 2 .1/2 
e B * ( v2 + v-O,) t2r/,a/2 (3.3) 

where t2r/,a/2 is the.100(1-a/2) percentile point of the 
Student t distribution. 

At the second stage we substitute estimators r,6,r/ 
from (2.3), (2.4), (2.6) into (3.3) to obtain the proposed 
100(I-a)% EB confidence interval for ~Y1) 

e B • vBt - • (3.4) 
2~,~/2 

In (3.4), 

eB = Y1-(1- f l )Wl(Y1-  0) 

#, 

u 2 _. (1-~ l )~( l_f l ) { f l  + (1---[1)(1-Wl)}/n l 
and 

l 
"2 1_~/-1) ~(l_fl)2 ~ / " ~. = (  ~ ni~i" 

0,  i=l  

3.2 Asymptotic Properties of EB Interval 
Now we consider how well the EB interval (3.4) 

approximates the HPD interval (1.4) as l-,m. As a basis 
of the asymptotics, using the marginal distribution of the 
Yij obtained from (1.1), (1.2) and(1.3), we compare the 

centers, widths, and probability contents of the two 
intervals. Let W denote the width and P probability 
content of an interval. Then 

W B=2t2~7,a/2u B and W B=2t . v B. Also 
2v,~/2 

letting 

PB-- "9"{(eB--eB "i- t2~7,a/2VB)UB1} - ff 

{ (eB-eB-t2 r/, a/2VB)UB1}, 
the probability content of the EB interval is 

PB = Ey(PB) where expectation is taken over the 

marginal distribution of Y obtained from (i.I), (1.2) 

and (1.3) and 3(-) is the cumulative distribution 
function of a Student t on 217 degrees of freedom. The 

centers of the two intervals are e B and eB, which are 

the Bayes and the empirical Bayes estimators of ~Yl) 

respectively. 
First, we present Lemma 2. 

Lemma2. Assume inf n i = 2 and sup n i = k < ®. 
i>_l i_>l 

Then as 1-,® 

(a) ~ a -~0  and E(;,2.) ,0 
O, O, 

(b) ~B-~B~'O 
, ,b 

(c) Z l v B -  ~BI -' 0. 
Proo£ (a) Using Lemma 1 and the inequality 

~t <_ 6(~+k~)/2~ ~2 ~=~ 0 as l~ ®. Now 
O, O, 
ZCu 2 ) < (E~(l+kr))/2?. Thus by Lemma" 1 again there 

tt 

exists A < ® s.t. ~ ( l + k r ) <  A a.e. Thus E(u 2 ) - ,0  
0, 

as 1--, ®. 

(b) Using the triangular inequality I~,~ - v~l <_ 

~2 + I ~  - ~ l -  Thu. by Se=n~ 2(~)it is only 
0,  

required to show that u~ - v 2 ~ 0 as l-~. Using 

Lemma 1 and the inequality, 
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max I ~i-~il ,  
i=l,  2 ,...,~ 

(c) It is easy to show that El u B - VBl <_ 

V!I{EIvB-VBI } . Since E IVB-VBI _< 
+ E(u 2 ), by Lemma 2(a)it is only required to show 

0, 

that E(u~-- - u~) 2- - 0 as l-, ®; see Appendix C. 

Theorem 1 gives a neat summary of our main results 
and it establishes that for a large number of small areas 
the EB interval is expected to be approximately the same 
as the HPD interval for the finite population mean. 
Theorem 1 

Assume inf n i = 2 and sup n i = k < ®. Then as 1--, ® 
i>l i>l 

(a) Z]eB--eBl ---,0 

(b) EIWB-WB[ ---,0 

(c) ECPB) ~ 1-a.  

Proof. (a) Since Z l e B - e B I  < { Z ( e B - e B ) 2 }  1/2, we 

,, . eB)2 show that e B-e B ~ 0 as 1-,® and (e B- is 

uniformly integrable; see Settling (1980, Section 1.4). 

Because (e B -eB)-~lO-Ol + 

I Yt,--ol max l'i - <"ii and I Y l -  01 is (i~ite a.e., 
i=l ,  2 , . . . , l  

by Lemma lb,d e B - e  B ~ 0 as 1-~. Appendix B 

shows that (e B- - e B  )2 is uniformly integrable. 

(b) It is easy to show 

E I V i B - W B I  <- E[  ' t ' 2 r l , a / 2 l l v B - v B l ]  

+ VBEit - - t2rha/2[. 
2~I, a12 

By using Lemma I and the continuity of the inverse 
cumulative distribution function of the Student t on a 

degrees of freedom (i.e., .~al(1-a/2) in a, any positive 

real number) 

t . = f f T l ( l _ a / 2 ) a _ ~  ff2~l(l_a/2) = t2r/,a/2 as 
2~/,a~2 2r/ 

b~.  ut since t217,a/2, t2~,a/2 < t4,a/2 = A < ®, 

t - -t,~..~#,~ is uniformly bounded and 
2rl, a/2 " # ' ' # "  

E(t - . -t,~,, ,~/~)-,0. Thus, by Lemma 2(c) 
2thai2 - . I , , ~ 1 "  

EIWB-WBI- .0  as 1-+®. 
(c) By l~n~ l(c) 

and since PB is uniformly bounded, E(PB) ---. 1 - ~ 
A 

Finally, we present Corollary 1. The Bayes risk of any 

estimator, e, of 7(.Y'l) under squared error loss, r(e), is 

r(e) = Zv{e -~Vl ) )2  where e~pe~t~tion is taken over 

the marginal distribution of Y obtained from (1.1), (1.2) 

and (1.3). As in Lemma 3 of Ghosh and Meeden (1986), 

we have r(e) - r(eB) = Z(e-eB )2. 

Corollary 1 
Under the conditions of Theorem 1, 

A 

r(eB) - r(eB) --. 0 as 1 ~ ®. 

The proof follows immediately from Theorem l(a]. 
M 

Corollary 1 shows that e B is asymptotically optimal 

in the sense of Robbins (1955). This adds credence to the 
center of the EB interval as an approximation to the 
center of the ttPD interval. 

4. CONCLUDING REMARKS 
Although our specification in (1.1), (1.2) and (1.3) is a 

simplification of the structure of a typical finite 
pulation, it extends the reslts in Ghosh and Meeden 
86) in three ways. First, here, the sampling variances 

are assumed to be unequal (with a common inverse 
gamma distribution). Second, an interval estimator, 
rather than a point estimator, is obtained. Third, we 
obtain for our estimators almost sure convergence rather 
than convergence in probability. 

Also one can construct an interval estimator for the 

1% 1 st area which has not been sampled. Thus assume 
observations are obtained from l small areas, all 1% 1 
areas follow~l.1), (1.2) and (1.3), and interest is on 

" ' t + l  

) =  ~ Yl+l,i/N. l + l  where Nl+ l  ->1" Then ~(Yl+ 1 
j = l  

as an approximation to the 100(1-a)% HPD interval 

{6(1-C1)r)l/2t2,7,~/2 fo~ ~(Yl+l) w~h~v~ 

1 . 
,~{(1-~7-1)"- i  - 1 / ~  niwi} 1/2 i r t2~,a12.,, and Theorem 

i=1 
1 still holds. 

For further research, it is informative to carry out a 
sampling experiment to assess the coverage property of 
the EB interval for small to moderate number of areas. 
One can also assess the parametric point estimators, in 

A 

particular, ~7 of 1/. Comparison of the EB interval with 
other intervals under (1.1), (1.2) and (1.3) can also be 
made. One "natural" interval estimator of 7(_Yl) is 

which uses data from only the area of interest. A second 
interval estimator, which "borrows strength," is 

* ~ {ft nl~ + (1-2f?n¥ ~ ÷ 
1 

(1-2neT~+nT 2 ~ "~);)~/2"<~/2 
i - 1  

where Zal 2 is the 100( i -a /2 )  percentile point of the 
standard normal distribution. Comparisons can also be 
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made with appropriate versions of the intervals given by 
Hulting and Harville (1991). 

Appendix A. Proof of Lemma l(c) 
a.s. 1 

We show ~.1 --~ (r t---2)- as b-,~. 
First note that 

~ , I _  62~--21HI(6,~)_ H2(6,6 ) -I-(rt--2) -1} 

where 

H1(6,~=6 ''2 ~, hi(S~-5) 2 
i=l 

(At) 

- E [ i ! l  hi(S~-6)2]}(nT-/)(l-1)1A/~ 

H2(6,6 ) = 2(62~-2-i)A1 
and 

1 

Al= ( l - l ) / ~  (l-hi)(ni+l). 
i=1 

Now both A 1 and (nT-0(1-1)-I are bounded. It 

, .  a.s. ,~. . .  ~ a.s. 
foUow, by L e m ~  X(~) H2(~,0 ~ 0 ~ d  r ¢  -~ - - -  1 
as l --, ®. Thus in (A1) we only need to show 

hi(S _ ~ ) 2 _ Z  hi( , --~ 0 as l-re. 
i=l  i - I  

i=l 
where 

Now 

2_~)2 hi(S 2 _ ~)2 _ Z ~ hi(S i = Q)--Q2 (A2) 
i=I 

his -E his , 
i=1 i=1 

and 
Q2 = ~2 _ 62 _ var(~). 

By SLLN, provided t'hat r/> 4, Q1 ~ 0 as l- ,  ®. 
a . s .  

Also by lemma l(a) Q2 ~ 0 as 

l-, ®. Thus %1 a.s. -1 ----~ (~2)  as 1-,®. 
Appendix B. Proof of the Uniform Integrability of 

(e B -eB )2 
Since 

(e B _eB)2 < 2{(Vg._0)2 + (~.._8)2} (B1) 

we show that - (Y[--0) 2 and (0---0) 2 are both uniformly 

integrable (u.i.). 
First by (2.1), 

d 
(7[-6~2 = (1-~-"1) 6r(1-wt)-lF(1,2 r/) (B2) 

where F(1,217) has an f distribution. Then by (B2), 
recalling sup n i = k < ® 

i>1 
st 

( 7 c 0 ) 2  ~_ 6(kr+l)F(~,2,7)/2 

and since 7/> 1, (Yl-0) 2 is bounded by a random 

variable with finite expectation. Thus (Y/--0) 2 is u.i., 
see Serfling (1980, section 1.4). It follows that 

l 
/--1 ~, (yi_8)2 is also u.i. 

i=l  
Second 

l 2 
(0---0)2 <_ 2[nT1 ~ ni(Yi-a)} 

i=l 
l l 2 

Using (B3) it is easy to show that 
l 

(?- 0) 2 < k2[ "I ~ (7i-~ 2. (B41 

i - 1  
l 

Then because C "1 ~ (Yi-0) 2 is u.i., by (B4) (0---0) 2 is 
i=l  

u.i.. 
Appendix C. Completion of proof of Lemma 2(c) 

By Minkowski's inequality 

c c;g-,,gf: 
+ {z((~-;7-t) ~,:,l- (~-~)e,,,~12}lp] ~ (c~) 

Thus we show that each term on the fight hand side of 
( c E - , o  as l.®. 

First, by Minkowski's inequality 
E[ (1 -~- l )6 - (1 -~-1 )~  2 < [{E(~-6)2} 1/2 

+ 6{E(~-I-~-1)2}112] 2. 

Thus by Lemma 1(a) we only need to show 

E(~ - 1 -  ~'1)2-40 as l-~®. (C2) 

Since [~-1 _ ~--1[ < 1 by Lemma l(c) 

Z(~-I _ --1)2 -~ 0 as l - ,  ®. 

Second, using Minkowski's inequality twice 

Z{(l-~ -I )~i  - (l-Cl)ew~ 2 
< [1E((~-I-~-'1)262)} 112 + {E([)-'o02} I/2 

-I- 5{E(w ~I)2}112 ].2 
Thus by Lemma 1(a) and (C2) we must show 

- - - ' 0  as l--"*®. 
,.,. ,,,. 

Since Iw l-~oll _< 1 and 

(c3) 

max [~oi-~oil a-:~s'0 as 
i = l ,  2 , . . . , l  
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l -* ®, (C3) follows. 
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