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A b s t r a c t  

Microdata (data records fi'om individuals) are re- 
leased by the Bureau of the Census to the public after 
they have been stripped of geographic and other iden- 
tifiers. Users in the public would like to know relative 
geographic information about the records to be able 
to perform spatial analysis on the data. Contextual 
variables provide the user with local information such 
as averages of surrounding or neighboring individu- 
als. Contextual variables must be assigned carefully 
to avoid compromising the exact location of the data 
records. This paper examines some computationally 
efficient methods of calculating and assigning useful, 
but non-compronfising, contextual variables, focusing 
on a do-it-yourself technique based on taking moving 
averages of a nicely sorted data set. 

W h a t  is C o n t e x t ?  

Users of Census Bureau microdata have requested 
that  additional information be computed and placed 
on the data  records to permit the users to perform 
spatial data  analysis. Attaching detailed geographic 
identifiers to the data  records is out of the question 
because protecting geographic location is a key el- 
ement of the Bureau's confidentiality strategy. An 
alternative to disclosing a record's geographic loca- 
tion is to summarize certain values of variables of all 
of the record's geographic neighbors and attach that  
summary to the record itself. The summary datum, 
for example, the average income of all wage earners 
on the same block, is called a contextual variable. The 
neighborhood used to compute that  variable is called 
the context. There axe several immediately obvious 
concerns with creating contextual variables: 

*This paper  repor ts  the general results  of research under-  
taken by Census Bureau  staff. The  views expressed are at- 
t r ibu tab le  to the au thors  and do not necessari ly reflect those 
of the Census Bureau.  

1. What are the alternative definitions of neighbor- 
hoods of interest (contexts)? 

2. When might summary variables implicitly reveal 
or compromise geographic location? 

3. What (new) disclosure protection methods may 
be applied to contextual variables? 

4. How difficult and costly is the computation of 
contextual variables7. 

There are two fundamentally different ways to 
build contexts; and each approach has its advantages 
and disadvantages. 

1 . 1  P a r t i t i o n s  V e r s u s  W i n d o w s  

A partition of space is a decomposition of space 
into mutually exclusive, non-overlapping component 
pieces. The counties of the US form a partition of the 
country. The states form another partition. We may 
sub-divide tile country into non-overlapping rectan- 
gles (or parts of rectangles along the national bound- 
ary) by laying a rectangular grid over the nation to 
create yet another partition of space (see figure 1). If 
we partition our space, then all data  points belonging 
to a cell component will have that  cell as their con- 
text. The contextual variable for all points belonging 
to the same component will have the identical value. 
If the contextual variable is the state average, for ex- 
ample, then all Illinois residents will have the same 
value for that  contextual variable. Partition contexts 
are computationally e~ ie r  to generate, but they en- 
gender special disclosure problems that must be ad- 
dressed. 
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Figure 1" Partitions are Non-Overlapping 
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A window is a context that  is defined for each data 
point; and windows may overlap and need not be mu- 
tually exclusive (see figure 2}. "All neighbors within 
one mile of a data  point" constitutes a window-based 
neighborhood. Points which are close will have sim- 
ilar, but not necessarily identical, neighborhoods. 
Window contexts are computationally more complex, 
but they afford bet ter  disclosure protection than par- 
tition contexts. 
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Figure 2" Windows May Overlap 

1.2 S tandard  Geography  

Often summary data  are presented by common ge- 
ographic units--counties,  census tracts, blocks, con- 
gressional districts. A data  user may desire that  sum- 
mary contextual variables also correspond to these 
same units to ensure data  comparability. Many of 
these geographic units are too small to be identified 
explicitly on Census Bureau microdata files. It would 
not be acceptable, therefore, to reveal these units in- 
advertently through a partitionhlg scheme that  per- 
mits a user to recover a small unit 's identity or, 
equivalently, its location. A partitioning scheme that  
uses small but s tandard geographic units presents too 
many disclosure risks to be acceptable for building 
contexts. A partitioning scheme that  builds non- 
standard geographic regionsmfor example, a heuris- 
tic procedure that  groups blocks according to some 
randomized (or at least non-replicable) m e t h o d - -  
offers somewhat more protection and is slightly more 
acceptable. 

1.3 Other  Par t i t i on ing  Schemes  

A space may be partitioned into uniform regions 
(gridded) or into regularly shaped regions whose size 
depends on the density of data  points in such a way 
that  each component region contains (approximately) 
the same number of data  points. Two such adaptive 
partitions are the quadtree and the k-d-tree, shown 
in figure 3. 

Both circumstances offer better  disclosure protec- 
tion than recognizable standard geographic parti- 
tions. Every partitioning scheme, however, has two 
inherent weaknesses. The first is that  all elements of 

l l  
I. 

-!. 

Figure 3: Adaptive Partitions 

the same component share identical context values, 
thus linking all elements of a single component to- 
gether geographically. The second weakness is called 
boundary effects. Points near to a partition bound- 
ary have no effect or influence on points just across 
the boundarymthey  belong to a different context by 
definition. 

J 
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Figure 4" Boundary Effects 

The context of point A in figure 4 does not in- 
clude points B and C, for example. The placement 
of context boundaries plays an enormous role in the 
determination of local effects. These effects disappear 
under windowing methods. 

1.4 S a m p l i n g  a n d  C o n f i d e n t i a l i t y  

The Bureau of the Census recognizes that  samples en- 
joy additional measures of confidentiality protection. 
The uncertainty of inclusion ill the sample makes an 
intruder's activity more difficult, especially when the 
intruder is looking for a specific population member 
(who may fail to be in sample!) A unique combi- 
nation of some characteristics among sample data  
points (or even a match on those characteristics) by 
no means isolates all individual from the rest of the 
total population" there may be several out-of-sample 
individuals with the same traits; and an intruder has 
no access to the values for the whole population. 

Sampling was not instituted to protect data  con- 
fidentiality, however. Its main benefit lies in greatly 
reduced cost of surveys coupled with the useful mea- 
sures of uncertainty that  the users have grown to ac- 
cept and incorporate into their analysis. Information 
can be compiled quickly from samples; and only a 
satisfactory level of precision is required for analy- 
sis and decision-making. Because users have learned 
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to work with statistical uncertainty, the Census Bu- 
reau should not hesitate to introduce similar uncer- 
tainty into new census data  products, such as contex- 
tual variables. Sampling data from partition contexts 
can eliminate the linking effect of identical context 
values. Very large subsets can be used as samples 
to introduce perturbations that are of little signifi- 
cance for analytical procedures, but sufficiently large 
to reduce the potential for data linkage. Finally we 
note that sampling from a data file can be accom- 
plished very efticiently~no costly field operations are 
involved whatsoever. 

We are suggesting the use of sampling in this sec- 
tion as a deliberate, independent, and final operation 
in the series of steps to generate a context from which 
to compute contextual variables. We will see in sec- 
tion 5 that  a kind of sampling may occur naturally at 
other stages hi our context-building operations as we 
try to increase their efficiency. We will nonetheless 
try to exploit the disclosure protection effects of this 
embedded sampling to the fullest. 

C o m p u t a t i o n a l  Issues  

We assume that  contextual variables will be com- 
puted by building contexts. In other words, we must 
successively create groups of records that form the 
neighborhoods in question. The number of different 
neighborhoods and the efficiency with which we can 
move from one neighborhood to another will deter- 
mine the complexity of our context-building strategy. 
For example, to build a state-level context set, we 
merely create 50 abuffers" in which to store records. 
Then we read through our microdata file once, copy- 
ing each record into the buffer that  corresponds to 
its state. When we are finished, we have a subtile 
for each context, and we compute summary variables 
for each subtile. We could also have been carrying 
out 50 accunmlation processes (one for each state) 
as we read the microdata records the first time; or 
we can do that as soon as each context is built. For 
efficiency, we would like to attach the contextual vari- 
able to the record while we are processing its context. 
This is generally straightforward since each record be- 
longs to its context (for the most intuitive definitions 
of context, anyway). 

We illustrate the importance of efficient data struc- 
tures and algorithms by analyzing the problem of 
computing contexts in one dimension (the data are 
points on a line). Our illustration highlights some 
techniques for building contexts as well as revealing 
the enormous difference in complexity between the 
1-D and 2-D problem formulations. 

Contex t s  in 1-D 

Suppose our data points reside on a line instead of on 
a two-dimensional surface. The mathematical  anal- 
ysis of neighborliness is extremely simplified" there 
are only two directions in which to search instead of 
infinitely many. We can even compute the contents 
of all possible windows of a fixed si~e in time propor- 
tional to the number of data  points in our set (once 
our data points have been sorted along the line). We 
do this by maintaining a right-sliding interval of the 
fixed size (keeping track of the interval's end points). 
Our sliding interval can only add points by adding 
on the next data point to the right of the active in- 
terval's rightmost point and can only lose points by 
removing the current leftmost data point within the 
sliding interval. If we consider the events that can 
change the contents of our right-slidhlg interval, they 
only occur when the left endpoint bumps into a point 
already in the interval, (in which case, we delete that 
point), or when the right endpoint of the moving in- 
terval bumps into a new point outside the interval, (in 
which case, we add the point to our interval}. This 
simple analysis also proves that for a given set. of n 
points on the line, there can be at most 2n distinct 
sets of contents of the infiuite number of possible in- 
tervals of a fixed size---contents can only change when 
there is an endpoint ~bumping" event; and there can 
be at most 2n such events. It is not difficult to con- 
struct examples that achieve this upper limit of 2n 
different neighborhoods or contexts. We suggest that 
the reader try this as an exercise. 
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Figure 5" Sliding Interval 

An alternative to constructing windows of a fixed 
size is to construct windows whose size depends on 
data density. An example of such a data-driven con- 
text is the window consisting of the k nearest neigh- 
bors. Ill 2-D (with the usual Euclidean metric), tile k- 
nearest-neighbors context would still be a round win- 
dow, but the window's size would vary with the den- 
sity of the data points. In I-D, the k nearest neigh- 
bors fill out all interval, but the interval's width varies 
with density. It is interesting to note that in 2-D, the 
strategies for attacking the fixed-size-window and the 
k-nearest-neighbors problems are quite distinct; and 
the k-nearest-neighbors problem is harder (compu- 
tationally more complex). In the 1-D case, the same 
approach that we outlined above becomes even easier 
to hnplement for the k-nearest-neighbors problem m 
since the neighborhoods all contain the same number 
k of points, and since they fill out whole intervals, 
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there can only be n-k+l such contexts. An algorithm 
to find all such contexts begins with the left-most k 
points, then successively adds a point to the right 
while removing one from the left. 

Various windowing algorithms in 1-D have linear- 
time worst-case complexity (~ te r  sorting the d a t a - -  
and the complexity of sorting is O(nlog n)). More- 
over, we can compute different sized contexts at the 
same time by sweeping through the data  just once 
(and updating different variables for accumulating 
the values corresponding to the different sized con- 
texts). We cannot do this simultaneous computa- 
tion in 2-D. Unfortunately, the easy windowing al- 
gorithms in 1-D do not generalize to 2-D. No linear- 
time complexity windowing algorithms are known for 
2-D. We can do fixed-size window context computa- 
tion in expected-time O(nx/rn}. The best known al- 
gorithms for solving the all-k-nearest-neighbors prob- 
lem (including the building of a complex data  struc- 
ture known as the kth-order Voronoi diagram) run 
in O(k(n-k)(V/nlog n + k))worst-case time (Edels- 
brunner, 1987). Our 1-D techniques, however, can 
find some application to 2-D data  if we can  com-  
p re s s  t hose  2-D d a t a  d o w n  to  I - D  in some  way .  
And we can, but not without some information loss. 
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Figure 6: Mapping 2-D data to 1-D 

In the next section, we discuss the extent of the 
information loss; and in section 5 we suggest how we 
might actually use that  loss to our advantage in terms 
of improving data  disclosure protection. 

4 M a p p i n g s  from 2-D to 1-D 

Mathematicians have known about bijective contin- 
uous mappings or functions from a line (or line seg- 
ment) to a plane (or rectangle} for over 100 years. 
They know that the inverse of such a mapping can 
never be cont inuous~nearness  in the plane can never 
translate perfectly into nearness on any 1-dimensional 
representation of the plane. Computer  scientists have 
expanded the nlathematicians '  research in their prag- 
matic development of spatial da t abase s~ the  prob- 
lem of storing spatially referenced (planar) data  in 
sequential (linear} files to facilitate proximity queries 
can be solved by constructing a {preferably continu- 
ous) bijection ¢ from 1-D to 2-D such that  for every 

query set U in 2-D, there is a small, easily computable 
collection of intervals in 1-D which covers ¢ - 1 ( U ) .  

Two examples of such bijections, shown in their 
discretized versions in figure 7, are the Peano key 
(shown on the right}, used by the Census Bureau to 
provide locational access to its 19 gigabyte digital 
cartographic database known as the TIGER System, 
and the Hilbert curve, favored by some researchers at 
the University of Maryland (Faloutsos, 1989} because 
of its continuity, which is lacking in the Peano key. 

. . . . . .  ~ . . . ®  .. 
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Figure 7: Hilbert Curve and Peano Key 

Both the Hilbert curve and the Peano key are 
quadrant-recursive (Mark, 1990), which permits 
range queries to be covered by at most 4 interval ac- 
cesses to the linear representation of the Spatial data. 
These so-called space filling curves fill up space one 
quadrant at a time; they are recursive because, within 
any quadrant,  they fill up space one subquadrant  at a 
time, and within any subquadrant ,  they fill things up 
one subsubquadrant  at a time, etc. They differ only 
in the order in which the choose the subquadrants  to 
fill. 

The Hilbert curve, because it is continuous, will 
always move into an adjacent quadrant  or subquad- 
rant after exhausting a quadrant  or subquadrant.  If 
we compare the space filled by an interval of the 
curve with the smallest square neighborhood contain- 
ing that  space, we see that  the curve always fills at 
le,~t 50% of the square. This value will be important  
later when we try to regard the curve as sampling 
points from a neighborhood. 

4 . 1  O r d e r i n g  D a t a  f o r  S a m p l i n g  

In addition to tile computer science techniques for or- 
dering spatial data, the Census Bureau has examined 
some new procedures for numbering or ordering spa- 
tial data  to facilitate systematic sampling (Saalfeld, 
1991). One new procedure guarantees nearness, but 
not necessarily contiguity, for consecutively num- 
bered data  points. Nearness, it turns out, is sufficient 
to assure reduced travel costs for cluster samples ex- 
tracted from the linearly-ordered list. We observed 
earlier that  nearness cannot be preserved by both a 
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bijection from 1-D to 2-D and its inverse. The new 
ordering methods can generate (by taking a consecu- 
tively numbered interval of points) a non-probability 
sample of neighboring points whose expected sam- 
piing fraction may be estimated. We describe and 
illustrate here briefly the recently developed num- 
bering schenle for points in the plane. Details of 
its implementation may be found in (Saaffeld, 1991). 
The steps of the algorithm are depicted in figures 8 
through 12: 

® ® 

® ® ® ® 

® ® 

Figure 8" Start with n(= 8) labeled points 

Figure 9: Build an EMST connecting the points 

Figure 10: Walk a 2-sided Eulerian tour of the tree 

P o i n t  O r d e r i n g  A l g o r i t h m  

I n p u t :  n l a b e l e d  p o i n t s  in  the  p lane .  

O u t p u t :  h c y c l i c  o r d e r i n g  of the  n p o i n t s .  

I. Bu i ld  the  Euc l idean  Minimum Spanning Tree 
of the  p o i n t s .  

II .  T r e e - o r d e r  the  v e r t i c e s  of the  E~ST: 

1. Walk a 2 - s i d e d  E u l e r i a n  t o u r  of the  
EMST. 

2. Bui ld  a uniform weight  c i r c u l a r  
sampl ing i n t e r v a l  of l a b e l e d  
s u b i n t e r v a l s .  

3. S e l e c t  p o i n t s  from the  sampling 
i n t e r v a l ,  r e c o r d i n g  the  l a b e l s  of 
c o n t a i n i n g  s u b i n t e r v a l s .  

In order to evaluate the relative density of points 
in the plane that correspond to an interval on the 
lineax order (and thereby assess the sampling fraction 
that the interval represents), we may make use of the 
following properties of a minimum spanning tree. 

1121/4 1 114 1 1/4 1 114112 1/3 1 1/3 1 1/3 

Figure 11" Order weighted vertex visits 

Resulting Ordedng 
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Figure 12" Select a cyclic ordering 

1. A Euclidean minimum spanning tree is a subset 
of the Delaunay triangulation of tile data points, 
which in turn is the dual graph of the Voronoi 
diagram for the points. 

2. The Voronoi diagram breaks the plane into re- 
qions of influence consisting of all points which 
are closer to the data point that determines tile 
particular cell than to any other data point. The 
dual graph, tile Delaunay triangulation, simply 
describes the adjacency relations of regions. The 
EMST, a subgraph of the Delaunay triangula- 
tion, captures only some of the adjacency rela- 
tions. A data point may be weighted by the size 
of its Voronoi region, since that is the region of 
influence of the data point. 

3. As we suggested doing with Hilbert curves, one 
may compare the area of Voronoi regions of a 
consecutive sequence of data points to the size 
of the smallest circle containing those regions to 
obtain a measure of the sampling fraction defined 
by the interval. 

5 Sampl ing  Effects 

We have been trying to assess how 1-D to 2-D map- 
pings cover space in order to treat that embedding as 
a sample. All of our mappings have been determin- 
istic without any random element or randomization 
procedure. There are several opportunities for ran- 
domizing that correspond approximately to the no- 
tion of a random start in a list under systematic sam- 
piing. As with systematic sampling, our random start 
concept does not eliminate other theoretical short- 
comings of the procedure itseff (Kish, 1965). Never- 
theless, insofar as systematic sampling is used widely 
and successfully in spite of unverifiable assumptions 
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about randomness and independence, the following 
steps should elevate our 1-D ordering procedures to 
a similar kind of random sampling. 

5.1 Hilbert Curve Orderings 

We may randomize the coordinate axes upon which 
the Hilbert curve is split. If the origin is placed ran- 
domly in the plane of the data set; and if the coor- 
dinate axes are rotated in a random fashion, then if 
two quadrants are selected by an interval in the linear 
order, they can be any adjacent quadrants with any 
orientation. 

5.2 Tree Orderings 

The new orderings for sample selection described in 
section 4.1 depend on linking all of the data points in 
a tree (a minimal connected graph). There are many 
ways to introduce randomization to build a tree on 
those points, even a tree that is a subgraph of the 
Delaunay triangulation. Such a measure would, in 
effect, randomize the choice of which truly neighbor- 
ing point to visit on the Eulerian tour. 

In this instance, as in the section on randomizing 
the Hilbert curve, the randomization is done at the 
start of the process; and every step thereafter is com- 
pletely deterministic. A linear order is established; 
and the computation of moving averages gives con- 
textual variables whose interpretation as a sampled 
set will depend on the linear order used. 

6 C o n c l u s i o n s  

For publishing contextual variables, we recommend 
that an appropriate 2-D to 1-D mapping be selected, 
a l-D windowing context be coInputed, and an analy- 
sis of variance of the 2-D-to-l-D-mapping's sampling 
properties be conducted to permit the user to obtain 
or compute measures of uncertainty of the published 
contextual variables. 

We base our recommendations on the following ob- 
servations: 

1. Partitioning according to standard geography is 
unacceptable from a disclosure standpoint. 

2. Any partitioning scheme will have data grouping 
effects and boundary effects. 

3. Windowing in 2-D is computationally complex 
and costly. 

4. Windowing (even simultaneous computation of 
different sized windows) in 1-D is straightfor- 
ward, but not directly extensible to 2-D. 

5. Mappings from 2-D to I-D lose information, but 
that loss may be made systematic and sampling 
effects may be exploited. 

6. Sampled contexts can protect confidentiality and 
give the user a matlmmatically quantifiable mea- 
sure of uncertainty. 
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