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1. INTRODUCTION 

The U.S. Bureau of the Census has the 
responsibility to collect data regarding economic 
sectors and to publish these data without violating 
confidentiality laws. Collected data contain sensitive 
data values that if directly published could identify an 
individual establishment's data. There are a number 
of methods available that prevent compromising the 
sensitive cells. These disclosure avoidance 
techniques include rounding, perturbation, and cell 
suppression, and are outlined in Cox, et al. 
(1986a).The Bureau's current practice is to protect 
any cell where n or fewer respondents make up k 
percent or more of a table cell's value (Zayatz, 
1992). (The values of n and k are confidential.) 

Since rounding and perturbation are unsatisfactory 
for economic aggregate magnitude data (Cox, et al. 
1986b), the Economic Divisions have always chosen 
a cell suppression technique to protect published 
tabular data. Instead of the sensitive data value 
appearing in the publication, a "D" appears in its 
place. However, in most cases, the sensitive data 
values could be derived from non-sensitive data 
because most data items are published in additive 
tables. Therefore, additional data values must be 
suppressed. These additional suppressed data values 
are commonly referred to as complementary 
suppressions. The objective adhered to by the 
Census Bureau in applying complementary 
suppressions is to minimize the sum of the data 
values chosen as complementary suppressions. 
Minimizing the cost incurred through complementary 
suppressions produces a publishable table with 
maximum data utility; that is, the greatest amount of 
usable data is provided. 

Furthermore, the Bureau uses complementary 
suppressions to ensure that a data user cannot 
estimate the value of a sensitive data cell within a 
predef'med interval. That is, when choosing 
complementary suppressions for some primary 
suppression with true value X, we ensure that it 
cannot be estimated within a smaller interval than [X- 
L,X + U] where L is the amount of lower protection 
required by X, and U is the amount of upper 

protection required by X. Kelly, et al. (1991) 
discusses protection levels in greater detail. 

In recent years, the Economic Divisions of the 
Bureau have employed a cell suppression technique 
that utilizes network flow methodology. The origin 
of using graph theory in the disclosure avoidance area 
lies in Cox (1980), and Gusfield (1984). More 
recently, Cox, et al. (1986a) has outlined this 
methodology, and a more complete history is given 
in Greenberg (1990). A general outline of the 
minimum cost network flow problem and related 
methodology appears in Bazaraa & Jarvis (1977), and 
Gondran & Minoux (1984). 

The network flow system currently employed is 
implemented using the commercially available 
Minimum Cost Flow (MCF) program of Glover, 
Klingman and Mote. As described in its 
documentation, "MCF is a highly refined 
implementation of the upper bounded, revised primal 
simplex algorithm for linear programming." With 
this refined implementation, the primal simplex 
method can be performed directly on a network. 
Kennington and Helgason (1980) refer to this 
procedure as the "simplex on a graph" algorithm. 

Although M CF is computationally fast, it often 
oversuppresses due to the structure of the objective 
function (See Section 3). The ideal technique for 
choosing complementary suppressions is the integer 
programming routine outlined in Section 2. This 
routine, however, is computationally impractical for 
census tables. This paper discusses a hybrid 
technique outlined in Section 4 (using M CF and 
integer programming)  that lessens the 
oversuppression problem without adding substantial 
computation time (see Section 5). 

2. THE IP FORMULATION 

The cell suppression problem has a theoretical 
integer programming (IP) statement that produces an 
optimal solution (Greenberg, 1986). In this routine, 
there is an indicator variable, Iij, that is restricted to 
be zero or one. Thus, we consider decisions in 
which just two outcomes are possible: we either 
assign a complementary suppression to a particular 
table cell or we do not. Consequently, the IP 
formulation minimizes the sum of the values chosen 
as complementary suppressions while maintaining the 
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confidentiality of the primary suppression within a 
specified tolerance level. The formulation follows: 
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where ~j is the value of the entry in row i column j 
of the table that requires complementary 
suppressions, 1~, is the amount of lower protection 
required by the primary cell, Ud~ is the amount of 
upper protection required by the primary cell, f~j is 
the amount of uncertainty e~j contributes to achieving 
Ida, gij is the amount of uncertainty ~j contributes to 
achieving Ud~, m is the number of internal rows in the 
table, n is the number of internal columns in the 
table, S is the set of cells that are suppressed, Iij is 1 
if e~j is suppressed, and 0 otherwise. 

To illustrate, suppose Table 1 depicts 4 (m) 
products produced in 3 (n) counties. 

Prtxluet 1 

County I County 2 C¢:mmy3 Total 

146 444 

Product 2 675 

Product 3 P 312 

Product 4 19 

Toad 1152 

395 

346 

1193 

Table 1 

803 

991 1674 

561 12,68 

11 376 

1776 II 4121 

Suppose that the table entry in row 3, column 1 
(e-31) is a primary suppression; i.e., e31 is considered 
too sensitive to be released. Further, suppose we 
want to protect eqi by an upper and lower protection 
of at least 46 units. That is, we want to prevent 
users from estimating the value of e31 anY finer than 
the range 262 < P < 358. If the above integer 
programming formulation is applied to this problem, 
the cells shown with a "C" in Table 2 are chosen as 
complementary suppressions. 

Cotmty i County 2 County 3 Total 

Product I C 146 444 C 213 803 

Product 2 675 8 991 

Product 3 P 312 395 C 561 

Product 4 19 346 1 i 
. . . . .  

1674 

12158 

376 

4121 

Table 2 

This result is optimal. However, Kelly (1990) has 
shown that the cell suppression problem is NP-hard; 
that is, there is no known polynomial time algorithm 
to solve the problem with optimal results every time, 
and all known methods take exponential time. This 
implies that for large tables, as many census tables 
are, the IP formulation is an impractical choice. 

3. THE MCF FORMULATION 

Due to the unreasonable amount of time used by 
the IP formulation, the Bureau utilizes a heuristic 
known as the M CF program that employs network 
flow methodology. A key idea is to transform a two 
dimensional table, like Table 1, into a network 
diagram. The transformation from table to network 
is described in Sullivan and Zayatz (1991), and Rowe 
(1991). 

Figure 1 presents a general network diagram. In 
this figure A~j and 6~j represent the amount of 
uncertainty that the table entry in row i, column j (eij) 
contributes to achieving an upper and lower 
protection required by the primary suppression. 

To illustrate the M CF approach, again suppose that 
e31 is a primary suppression. Then finding a 
suppression pattern to protect e31 in the table 
corresponds to finding a set of closed paths (cycles) 
containing A31 in the network. All other cells, 
represented by arcs in the chosen cycles, would then 
be suppressed as complements in the table. Our 
objective is to choose the set of cycles through the 
network that suppresses the least amount of data 
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Figure 1. Network Diagram 

value while protecting the sensitive cell. We do this 
by solving a minimal cost flow problem. 

Each suppression problem can be viewed as a 
specialized linear programming problem of the 
general form: 
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where aij is -99999 if % is the primary suppression 
being protected, and e~j otherwise; Aij for i from 1 to 
m and j from 1 to n, and i equal to m + 1 and j equal 
to n+  1, 61,n+l for i from 1 to m, and 6m+1~ forj from 
1 to n is the amount of uncertainty eij contributes to 
achieving the required upper protection; /i~j for i 
from 1 to n and j from 1 to n, and i equal to m+ 1, 
,j equal to n+  1, Ai,n+ ~ for i from 1 to m, Am+l, i for 
j from 1 to n is the amount of uncertainty ~ 
contributes to achieving the required lower 
protection; p~j is the maximum amount of uncertainty 
% could contribute to achieving either the upper or 
lower protection; c~, is the amount of upper and 
lower protection required by the primary suppression. 

Applying the MCF formulation to Table 1, (again 
protecting e3,1 by an upper and lower protection of at 
least 46 units) the cells shown with a "C" in Table 3 
are chosen as complementary suppressions. 

Comparing the complementary suppressions chosen 
by MCF (shown in Table 3) with those chosen by the 
integer programming formulation (shown in Table 2), 

Product I 

Cc~aty i Cotmty 2 County 3 

C 146 444 C 213 

Product 2 675 

Product 3 P 312 

Product 4 C 19 

Total 1152 

C 395 

Total 

803 

991 1674 

C 561 1268 

C 346 C 11 376 

4121 

Table 3 

we see that MCF is guilty of oversuppression. Since 
the objective function in the M CF formulation 
minimizes the sum of the products of the data values 
chosen as complementary suppressions and their 
corresponding uncertainty variables, the solution is 
suboptimal; that is, there is potential for 
oversuppression. For the above example, the total 
data value lost to complementary suppressions is 1691 
for M CF, and only 920 for the IP formulation. 

4. The HYBRID FORMULATION 

Provided that the set of complementary 
suppressions generated by M CF is small enough, an 
IP routine can refine the MCF solution. The hybrid 
method performs the refinement operation using M CF 
and a variant of the IP formulation. We begin with 
the network shown in Figure 1. Applying MCF, it 
determines a complementary suppression scheme and 
produces a data structure tree that corresponds to the 
scheme. For instance, the suppression tree for the 
suppression pattern shown in Table 3 is given in 
Figure 2. The backedge (the arrow from 6 to 1) 
indicates the primary suppression and all other arcs 
represent cells in the suppression pattern. 

First, we identify all closed paths in the tree using 
a recursive algorithm that performs a depth-first 
search on the nodes of the graph (Cormen, et al. 
(1990)). We augment the algorithm to determine the 
cost of using each path and the maximum amount of 
protection each path can provide the primary 
suppression. (The maximum protection each path can 
give is the smallest value in the path.) From Figure 
2, we have three paths (excluding the backedge): 

path A: 1-2-4-6 cost: 760 max prot: 19 
path B" 1-3-4-6 cost: 591 max prot: 11 
path C: 1-3-5-6 cost: 92 max prot: 146 

Often the paths are not disjoint. As shown in 
Figure 2, path A and path B share the arc from 4 to 
6, and paths B and C share the arc from 1 to 3. 
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346 

395 

19 

11 

561 

146 

213 

Figure 2. Suppression Tree 

When two paths are not disjoint and the protection 
allowance of the arc they share is less than the 
protection needed for the primary suppression we call 
this a bottleneck. Bottlenecks are important since 
they limit the amount of protection a combination of 
paths can give to the primary. For example, in 
Figure 2, paths A and B used together supply 
nineteen units of protection, not thirty even though 
path A by itself supplies nineteen units of protection 
and path B by itself supplies eleven units of 
protection. This is because paths A and B use the 
common arc from 4 to 6 with a protection allowance 
of nineteen units. 

Using the information obtained from the 
suppression tree, we are able to construct a 
reasonably small set of constraints to be used in the 
Balas 0-1 IP algorithm (see Syslo, et al. (1983)). 
The resulting IP formulation then attempts to refine 
the MCF solution by removing a subset of 
complementary suppressions. The formulation 
follows: 

mi y --  jxj 
j = l  

subject to 
II 

ajlj > f (I) 
j = l  

ajIj (2) 
j~B(i) 
Ij = 0 o r  1 

where n is the number of paths, cj is the cost of 
suppressing path j, aj is the maximum amount of 
protection provided by path j, f is the amount of 
protection required by the primary suppression, Ij is 
1 if path j is to be suppressed, 0 otherwise, B(i) is 
the set of paths that share arc i, and b i is the amount 
of protection supplied by the bottleneck arc. 

In the above formulation, constraint (1) ensures 
that the cells in the paths chosen for suppression 
protect the primary suppression by the required 
amount. Constraint (2) accounts for the fact that the 
amount of protection given to the primary 
suppression by all paths that share an arc is not more 
than the protection allowance of the shared arc. 

Applying the hybrid formulation to Figure 2, we 
have: 

min y = 760 Ii + 591 I 2 + 920 13 
subject to 

19 1 i + 11 12 + 146 13 _> 46 
19 11 + 11 12 < 19 
Ij = 0 o r  1, for all j  

Note the reason we do not include 11 12 -I- 146 13 
< 561 as a constraint in the above formulation is that 
the protection allowance of 561 shared by the two 
paths is greater than the protection needed for the 
primary suppression, and thus does not constitute a 
bottleneck. 

Table 4 shows the results of applying the hybrid 
method to Table 2. 

Pr~uet I 

County 1 County 2 County 3 

C 146 444 C 213 

Product 2 675 

Product 3 P 312 

Product 4 

Total 

395 

1152 

Total 

803 

991 1674 

C 561 1268 

19 346 11 

1193 ,77, II 

376 

4121 

Table 4 

Comparing the complementary suppressions chosen 
by MCF (shown in Table 3) with those chosen by the 
hybrid method (shown in Table 4), we see that the 
hybrid method lessens the oversuppression problem 
caused by M CF. In fact, in this example, the 
complementary suppressions chosen by the hybrid 
method are the same as those chosen by the IP 
formulation (shown in Table 2). 

As exemplified above, the hybrid method is 
frequently able to release some of the superfluous 
suppressions applied by M CF. Consequently, the 
sum of the data values suppressed by this hybrid 
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technique will lie between the sum of the suppressed 
values of an IP optimal solution and the 
corresponding sum of the MCF suboptimal solution. 

5. COMPUTATIONAL COMPARISONS 

The hybrid method would not be a worthwhile 
improvement if it added excessive computation time 
to the M CF method when used alone. However as 
described below, the hybrid technique takes only 
slightly more time, especially as compared to the IP 
formulation. Yet it substantially improves the total 
data value suppressed. 

Tables 5 and 6 show the results of an experiment 
using each technique on square (n x n) tables with 
one primary suppression. For each n from 5 through 
13, five tables of random numbers were generated, 
and the three techniques were applied to the table. 
Table 5 shows the average ratio of data suppressed 
by each technique as compared to the IP method. 

IP 

10.48 see 

6 

7 

10 

11 

12 

13 

24.8 sec 

1.14 min 

2.82 min 

3.38 min 

6.93 min 

18.76 min 

55.39 min 

1.34 hrs 

Table 6 

n ]] MCF/IP Hybrid/IP 

5 1.407 

6 1.503 

7 1.374 

8 1.910 

9 1.576 

10 1.777 

11 1.642 

12 1.319 

13 1.733 

1.035 

1.218 

1.015 

1.513 

1.269 

1.100 

1.446 

1.245 

1.169 

Table 5 

Table 5 shows that a significant number of MCF 
complementary suppressions were released using the 
hybrid technique. On average MCF suppressed 58 
percent more data than necessary, while the hybrid 
suppressed 22 percent more than required by IP. 

Table 6 shows the average CPU time (including 
disk time) used by the IP method. ~ The comparable 
averages for both the M CF method and the hybrid 
method were all less than one second. In fact, the 
MCF method and the hybrid method had average 

CPU times less than 1 second for tables where n _< 
50. Since the IP method quickly became intractable 
for n >  13, comparable times are not available. 
However, times for IP where n _> 15 can be estimated 
by first fitting an exponential function, T(n) = a n, to 
the IP times for n < 13, and then substituting n into 
the fitted function. 2 The fitted function predicts that 
the IP method would require 32 days for n=25 and 
2350 centuries for n = 50. 

6. CONCLUSION 

This paper showed that the M CF program 
currently used by the Bureau to apply complementary 
suppressions to economic data often oversuppresses. 
The IP routine, which is optimal, requires an 
exorbitant amount of computer time, and is thus 
impractical for census data. Thus, we have presented 
a hybrid technique using the suppression scheme 
produced by MCF, along with an IP routine to 
release superfluous suppressions. In an experiment, 
the hybrid routine oversuppressed 22 percent as 
compared to 58 percent by MCF, yet added no 
substantial computation time. 

ENDNOTES 

For all three methods, performance was 
measured on a Solbourne Series 5/605, 
using one of five 22 MIPS processors. 
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Q There is no guarantee that the time for the 
IP formulation is actually an exponential 
function. This is merely used to show that 
the IP formulation is impractical for census 
data. 
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