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I. Introduction to the Problem 
The Bureau of the Census is responsible for 

collecting information about the country's business 
establishments under a pledge of confidentiality and 
for publicly releasing this information without 
disclosing individual responses. The Bureau 
publishes the information in the form of two-or 
three-dimensional additive, non-negative tables. 

There are sometimes cell values in the tables 
that the Bureau cannot publish without risking a 
violation of the confidentiality pledge. For 
example, if there is only one firm contributing to a 
cell, the Bureau cannot publish that cell's value. 
The actual formula used for deciding which table 
cells cannot be published is confidential, however, 
in general, cell values that are highly dominated by 
a small number of respondents are considered to 
possess a high risk of disclosure. The Bureau's 
current practice is to suppress any cell where n or 
fewer respondents make up k or more percent of 
that cell's value. The values of n and k are 
confidential. Any cell values that violate this 
criterion are called primary suppressions. 

Because the tables that the Bureau publishes are 
additive, it is usually not enough to suppress only 
those cell values that violate the n-k rule. An 
outsider could obtain the suppressed values through 
addition and subtraction. Therefore, the Bureau 
must suppress other cell values in the tables. The 
other values that are chosen for suppression for this 
reason are called complimentary suppressions. 
Although network methodology handles the problem 
of choosing complementary suppressions quite 
nicely for two-dimensional tables, linear 
programming (LP) methodology has some advant- 
ages for three-dimensional tables. This paper 
describes the technique of using linear programming 
to find complimentary suppression patterns for 
three-dimensional tables. 
II. Minimizing the Total Value Suppressed While 

Providing Sufficient Protection 
The Bureau's goal is to publish as much 

valuable information as possible without violating 
the confidentiality pledge. Thus the Bureau 
attempts to choose complimentary suppressions in 
such a way that the sum of the values chosen for 

complimentary suppression is minimized while still 
ensuring that the suppressions are large enough so 
that the individual responses in primary 
suppressions are protected. 

Consider the two-dimensional additive table 
below. 

100 12 5 250 

12 12 5 5 

40 200 90 300 

5 70 50 5 

157 294 150 560 

367 

34 

630 

130 

1161 

Suppose that the cell in the first row and first 
column is a primary suppression. We identify it as 
such in the table below. 

P 12 5 250 

12 12 5 5 

40 200 90 300 

5 70 50 5 

157 294 150 560 

367 

34 

630 

130 

1161 

If the table above were published, an outsider 
could determine the exact value of the primary 
suppression by subtraction. 

P = 3 6 7 -  1 2 - 5 - 2 5 0 =  100 

Suppose we add some complimentary 
suppressions to the table as seen below. 

P 12 C13 250 

12 12 

40 200 90 300 

C41 70 50 C .  

157 294 150 560 

367 

34 

630 

130 

1161 
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Using some simple algebra, an outsider could 
now estimate that the primary suppression value 
was between 95 and 105. (From Column 3 we 
know that 0 <= C-.a3 <= 10. Using this information 
and the non-negativity constraint, Row 1 implies 
that 95 <= P <= 105). This may or may not be 
enough protection for this primary suppression. 
Whenever a cell has been designated as a primary 
suppression, the Bureau calculates a value, prot, 
such that if an outsider can use algebra to say at 
best that P could lie anywhere in the interval 
between P - prot and P + prot then the individual 
responses contained in that primary suppression are 
considered sufficiently protected. As stated before, 
the values of n and k are confidential. The method 
of calculating prot is also confidential. Say that for 
this primary suppression, prot = 15. Thus, we need 
to add more complimentary suppressions, as in the 
table below. 

P C C 250 

C C C C 

40 200 90 300 

C 70 50 C 

157 294 150 560 

367 

34 

630 

130 

1161 

The best that an outsider can do with algebra 
or linear programming techniques is to estimate 
that the primary suppression value was between 83 
and 117. This amount of protection would now be 
considered sufficient since 83 <= 100 - 15 
and 117 >= 100 + 15. 

To ensure that our primary suppression in the 
example above was sufficiently protected, we had 
to suppress a total cell value of 5 + 5 + 5 + 5 + 5 + 
12 + 12 + 12 = 61. Note that we could have 
chosen a different set of complimentary 
suppressions as shown below. 

P 12 5 C 

12 12 5 5 

C 200 90 C 

5 70 50 5 

157 294 150 560 

367 

34 

630 

130 

1161 

This pattern provides the necessary protection, 
is simpler, and suppresses fewer table cells. But 
the total value of our complimentary suppressions 

(which is what we are attempting to minimize) is 
250 ÷ 40 ÷ 300 = 590. 

The example above shows possible compli- 
mentary suppression patterns for a table with one 
primary suppression. Many of the Bureau's tables 
have several primary suppressions. If that is the 
case, the current practice is to choose compli- 
mentary suppressions for one primary suppression 
at a time. We call this processing one primary 
suppression at a time. Each time we process a 
primary suppression, we suppress all cell values in 
the table that are chosen as complements for that 
primary. As one could imagine, large tables with 
many primary suppressions have very complicated 
complimentary suppression patterns. 
III. Linear Programming Methodology versus 

Network Flow Methodology 
Linear programming methodology can be used 

to find complimentary suppression patterns in two- 
and three-dimensional tables (Lougee-Heimer 1989). 
Network flow methodology may also be used to 
find complimentary suppression patterns, but in 
two-dimensional tables only (Cox 1987; Cox 1980; 
Cox, Fagan, Greenberg, and Hemmig 1986; 
Sullivan and Zayatz 1991; Rowe 1991). In fact, 
algorithms based on network flow methodology 
work faster than those based on linear programming 
methodology for this application. Since the 
algorithms yield the same suppression patterns, we 
recommend using network flow methodology for 
finding complimentary suppression patterns in two- 
dimensional tables. 

Unlike linear programming methodology, 
network methodology cannot consider all of the 
additive relationships in a three-dimensional table 
simultaneously. One could use network 
methodology to examine every two-dimensional 
table contained within a three-dimensional table and 
apply complimentary suppressions to each one 
independently, reprocessing some of those two- 
dimensional tables as necessary. In other words, 
for each level, complimentary suppressions are 
applied to the two-dimensional table containing the 
cell values in that level for all rows and columns. 
Then, for each row, complimentary suppressions are 
applied to the two-dimensional table containing the 
cell values in that row for all columns and levels. 
Then, for each column, complimentary suppressions 
are applied to the two-dimensional table containing 
the cell values in that column for all levels and 
rows. After processing each of these two- 
dimensional tables, it may be necessary to 
reexamine some of them and possibly apply more 
complimentary suppressions. This is because when 
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processing a certain two-dimensional table, we may 
apply a complimentary suppression to a cell 
contained in another two-dimensional table(s) that 
was previously processed. If this happens, we must 
reexamine the previously processed table(s) to see if 
more complimentary suppressions are necessary. 
When all of the two-dimensional tables have been 
processed, and reprocessed if necessary, we are 
finished. 

As tedious a task as this may seem, it is usually 
still faster than using linear programming 
methodology. For tables with many cells and many 
primary suppressions, the difference in time is 
substantial. As one might guess, the network 
method also results in more cells being chosen for 
complimentary suppression, but adjustments to the 
cost function can compensate for this problem. A 
more serious problem with this repetitive network 
flow approach is that even after applying the 
technique, some primary suppressions may remain 
unprotected. Consider the three-dimensional table 
below. 

Level 1 

R1 

R2 

R3 

R4 

K5 

Total 45 

10 

50 

7 

11 

55 

12 

Total 

10 

42 

58 

74 

210 

Level  2 

R1 

R2 

R3 

R4 

R5 

Total 

29 

P 

P 

145 

P 

P 

30 

P 

150 

23 

27 

31 

P 

P 

155 
, 

24 

28 

32 

160 

Total 

9O 

106 

122 

138 

154 

610 

Level 3 

R1 

R2 
, = ,  

R3 

R4 

R5 

Total 
~ , ,  . .  

P 

P 

13 

17 

45 

10 

14 

18 

50 

11 

55 

4 

12 

P 

P 

60 

Total 

10 

26 

42 

58 

74 

210 

Level 4 

R1 

R2 

R3 

R4 

R5 

Total 

P 

P 

29 

33 

P 

145 

P 

30 

34 

38 

150 

P 

P 

31 

P 

P 

155 

32 

P 

P 

160 

Total 

90 

106 

122 

138 

154 

610 

Total  Level 

R1 
, =  

R2 
, ,  j 

R3 
, ,  J 

R4 

R5 

Total 

44 

60 

76 

92 

108 

380 

48 

64 

80 

96 

112 

4OO 

52 

68 

84 

100 

116 

420 

56 

72 

88 

104 
, ,  

120 

440 

Total 

200 

264 
, ,  

328 

392 

456 

1640 

If we separately examine every two- 
dimensional table contained within this three- 
dimensional table, every primary suppression 
appears to be protected with a prot value of at 
least 1. However, using linear programming 
techniques which look at the three-dimensional 
table as a whole, one can conclude that the value 
of the primary suppression in row 5, column 1, 
level 4 is exactly 37. 
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For three-dimensional tables, we recommend 
using the linear programming formulation described 
in Section IV for finding complimentary 
suppression patterns. However, if time constraints 
render this method unusable, we recommend using 
network flow methodology repetitively as described 
above for finding complimentary suppression 
patterns. A much smaller and faster linear program 
may then be used to locate any primary suppress- 
ions that are not sufficiently protected. This smaller 
linear program is described in Section V. More 
complimentary suppressions may then be added to 
protect those primary suppressions. 
IV. Cell Suppression LP Formulation for Three- 

Dimensional Tables 
The model that can be used to find compli- 

mentary suppressions for a primary suppression in 
row r, column c, level 1 in a three-dimensional 
additive m x n x p table is as follows: 

Variables: 

Do~ ~ and D~jk:, for all i = 1,...,m, j = 1,...,n, k = 
1,...,p except when (i=r and j=c and k=l) 

Constraints: 

m 

~; (D0k~-D~k2) = 0 for all j = l,...,n, k = l,...,p 
i=l 

n 

E (Dijk1-Dijk2) = 0 for all i = l,...,m, k = l,...,p 
j=l 

P 
E (Dii~1-Dukz) = 0 for all i = l,...,m, j = l,...,n 
k=l 

Dijkl <= cell value in row i, column j, level k for all 
i = 1,...,m, j = 1,...,n, k = 1,...,p except when 
(i--r and j=c and k=l) 

D+jR: <= cell value in row i, column j, level k for all 
i = l,...,m, j = l,...,n, k = l,...,p except when 
(i---r sad j=c and k=l) 

D,~a = value of prot such that if an outsider can use 
algebra to say at best that the value of P could 
lie anywhere in the interval between P- prot 
and P + prot then the individual responses 
contained in the primary suppression are 
sufficiently protected 

D,~=0 

Objective Function: 

m n p 
Min Y- I; I;(D~, 1 + D~a ) * cost of suppressing 

i=l j=l k=l the cell value in 
row i, column j, 
level k 

where the cost of suppressing the cell value in row 
i, column j, level k is calculated according to the 
following function. 

i) 0 if the value is a primary suppression or if 
the value was suppressed as a complement when 
another primary suppression was previously 
processed 

ii) 999999999 (a very large positive number) if 
the cell value is zero (the Bureau does not want to 
suppress any zero valued cells) 

iii) the actual cell value for all other cases 

Results: 

If either Dijkl or Dij ~ is greater than O, the 
cell in row i, column j, level k is suppressed for all 
i = 1,... ,m, j = 1,...,n, and k = 1,...,p. 

This linear programming formulation can be 
used to find complimentary suppression patterns in 
tables with one or more primary suppressions. It 
does not yield optimal solutions in that it does not 
give a set of complimentary suppressions with 
minimum total value that sufficiently protect all 
primary suppressions in a table. To obtain an 
optimal solution, one could use integer programm- 
ing methodology (Sullivan and Rowe 1992), how- 
ever the use of such methodology is computa- 
tionally impractical. In fact, the cell suppression 
problem was shown to be NP-hard (Kelly 1990). 
This means that the cell suppression problem is in a 
class of problems for which there is no known 
computationally practical method for obtaining 
optimal solutions and little hope for finding such a 
method. Linear programming methods, however, 
do offer good solutions that provide sufficient 
protection. Three ways of improving the results are 
discussed in (Zayatz 1992). 
V. Location of Under-suppression LP Formulation 

for Three-Dimensional Tables 
As stated before, if time constraints render the 
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linear programming method unusable, we 
recommend using network flow methodology 
repetitively as described above for finding 
complimentary suppression patterns. A much 
smaller and faster linear program may then be used 
to locate any primary suppressions that are not 
sufficiently protected. The model that can be used 
to test whether or not a primary suppression in row 
r, column c, level 1 is sufficiently protected in a 
three-dimensional additive m x n x p table is as 
follows: 

Variables: 

S+jk for all i, j, and k such that the cell in row i, 
column j, level k is either a primary or a 
complimentary suppression 

Constraints: 

There are n * p additive row relationships, m * 
p additive column relationships, and n * m additive 
level relationships in a three-dimensional table. For 
each additive relationship that contains at least one 
suppressed value, we have one of the following two 
constraints. 

1. If the total is not suppressed, then the sum of 
the suppressed values (the Sijk'S) in that relationship 
must equal the total value minus the sum of the 
other published values. 

2. If the total is suppressed, then the total value 
minus the other suppressed values must equal the 
sum of the published interior values. 

Objective Function: 

When attempting to find an upper bound for a 
suppressed cell in row i, column j, level k, the 
objective function is Max S+jk. 

When attempting to find a lower bound for a 
suppressed cell in row i, column j, level k, the 
objective function is Min S+jk. 

Results: 

In each of the cases described directly above, 
the resulting value of the objective function is the 
desired bound. 

VI. Conclusions and Recommendations 
As stated previously, for three-dimensional 

tables, we recommend using the linear programming 
formulation described in Section IV for finding 
complimentary suppression patterns. However, if 
time constraints render this method unusable, we 
recommend using network flow methodology 
repetitively for finding complimentary suppression 
patterns. The linear program described in Section V 
may then be used to locate any primary suppress- 
ions that are not sufficiently protected. More 
complimentary suppressions may then be added by 
hand or by some other technique to protect those 
primary suppressions. 
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