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I. INTRODUCTION 
The research for this paper began in connection with the 

need to measure the central tendency of hourly wage data 
from the Occupational Employment Statistics (OES) survey 
at the Bureau of Labor Statistics (BLS). The OES survey is 
a Federal-State establishment survey of wage and salary 
workers designed to produce data on occupational 
employment for approximately 700 detailed occupations by 
industry for the Nation, each State, and selected areas within 
States. It provided employment data without any wage 
information until recently. Wage data that are produced by 
other Federal programs are limited in the level of 
occupational, industrial, and geographic coverage. To 
address this critical void in the Federal statistical efforts, the 
OES program tested the feasibility of incorporating wage 
questions into the survey in 1989 and 1990 pilot studies. 

The 1992 OES survey collects data in 15 States on 
occupational hourly wage by industry in nonagricultural 
establishments. The data are collected in eleven intervals, 
rather than in exact dollar amounts, with the lowest and 
uppermost intervals open. 

Research was conducted to f'md a suitable estimate of 
central tendency for the occupational wage data of the OES 
survey. It was determined that both mean and median 
would be measured. Each has advantages and disadvantages 
which will be discussed. 

The first part of the research focused on the problem of 
estimating the overall occupational wage mean for each 
industry, according to the OES survey's objective. The 
second part of the research explores the best method for 
estimating the wage mean of an upper open interval. This 
would be useful for analyses such as regression where 
interval wages are used as dependent variables. 

The two measures of central tendency are described in 
Section II. The empirical studies and results are given in 
Section III. The conclusions are presented in Section IV. 
Section V contains plans for future research. 
IL MEASURES OF CENTRAL TENDENCY 
A. MEDIANS 

In elementary theory the median has considerable claims 
to be used as a measure of location for unimodal 
distributions. It is readily interpretable in terms of ordinary 
ideas. What gives the arithmetic mean the greater 
importance in advanced theory is its superior mathematical 
tractability and certain sampling properties. The median has 
a compensating advantage in that it is less sensitive to the 
configuration of the outlying parts of the frequency 
distribution than is the mean. This is especially important 
with earnings data and in particular, with the censored data, 
the median is a logical choice. However, the median is 
sensitive to the way the data are grouped and operating with 

medians can lead to misleading results. This paper tested 
the linear interpolation method to estimate the median. 
First, the interval that contains the median was determined, 
and then linear interpolation is applied. The occupational 
minimum wage is used as the lower limit of the lower open 
interval. If the median falls in the uppermost open interval, 
all that can be said is that the median is equal to or above 
the upper limit of hourly wage. 
B. MEANS 

A measure of central tendency with desirable properties is 
the mean. In addition to the usual desirable properties of 
means, there is another nice feature that is proven by West 
(1985). It is that the percent difference between two means 
is bounded relative to the percent difference between 
subgroup means, if the proportion of units in each subgroup 
remains the same for the two groups. Since the problem 
considered in this paper deals with grouped data that have 
lower and upper open intervals, it is not possible to compute 
an exact mean. The problem will be considered from the 
point of view of computing a population mean from fight 
and left censored data. First the problem will be formulated 
and two methods for computing the mean will be discussed. 
One method results in the Winsorized mean and the other 
method uses a classical Pareto distribution. 

The population of true earnings data are denoted by 

x, ,x~ ..... x~. 

The mean of the population is desired; that is, 

X = 

The data actually observed are the frequencies of each of 

the intervals 11, 12 ..... I t ,  which are mutually exclusive, and 

exhaustive of the earnings scale. I~ and I r are open 

intervals where 11 contains all xj less than some fixed 

number U~ and Ir contains all xj greater than or equal to 

some fixed number U(~_1). For i=2 ,3  ..... ( r - l ) ,  I i are 

bounded intervals containing all xj between some fixed 

numbers U(i_l) a n d  U i . 

Let f denote the observed frequency of interval I i for 

i = 1,2 ..... r and let M~ be the mid-point of the i-th interval, 

then the usual estimator of X is the grouped mean, Xg • 

_ r M/I//lV 
X = Z 

g i=1 
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Since intervals 11 and I r are not bounded, M~ and M r 

will need to be estimated. 1 ! has a natural lower bound, 

either 0 or the minimum wage; for this study the Federal 

minimum occupational wage , We1 ) , was used. Thus the 

estimate for M I is: 

/~1 ---- (W(1) +Vl ) / 2 .  

An obvious estimate for M r is: 

~'Ir. w = U(r_l) ' 
which would lead to the Winsorized group mean: 

r--] / N  
Xg,w -- {/~lJ~ + Z M i f i  + U(r -1) f r  } " 

i=2 

Clearly,/¢/,.w will underestimate M, . With the Winsorized 

mean a straight line is used for the missing values; a natural 
extension, now to be considered, is to fit a curve for the 
missing values. 

For the estimator Of M, , consider fitting a theoretical 

distribution to the (r-1) mid-points, and take/17/r as the mean 

of the conditional distribution, P (  X < xl  X > U(r_,) ). 

That is, 

M, = x dP(X < x l X  >_ U(r_l)) = f X f(xlU(,_,)) dx 

where f(xlU(r_~) ) is the conditional density of X given that 

X is greater than or equal to the fixed number U(r_~). 

Another possibility for /~/, is the median of the 

conditional density. Parker and Fenwiek (1983) found that 
this estimator performed better than the mean, but this was 
not the ease with the method and data considered in West 
(1985). 

Many distributions have been proposed for earnings data, 
but the literature indicates that the researchers are satisfied 
with the Pareto distribution as a fit to the upper portion of 
the earnings curve. Consider the Pareto distribution: 

F(x)  = P ( X  < x)  = 1 - ( K [ x )  ~ f o r  x > K > O, a > 0 

= 0  f o r  x < K .  

Noting that, 

P(X >_ xlX >_ V(,_1) ) = P(X >_ x)/P(X >_ U(r_1)) = (V(r_l)) tt x -t* 

then 

f(xlU(,._,)) = -dP(X > xlX > U(r_,))ldx 

= a ( u ( , _ , ) y x - : - ' ,  

THUS, 
f o r  x )_ U(r_l ) . 

M r = ~ x f (x l  Uir_,))dx = U(,._I)o~l(a- 1). 
U{,-i) 

Note that for the mean to be positive, a > 1. 
Many methods exist for estimating the parameter tZ. The 

one most used and recommended in the literature is the 
quantile method, which is described next. 

Let Mp and Mq denote the p - t h  and q -  th quantile 

respectively; that is, 

F(Mv)  = P ( M  <_ My)= 1- (K iMv)  °< = p. 

Similarly, for Mq. 

My and it~/q be estimators of Mp and M Letting q 
respectively, leads to the following estimator of a :  

q ll,.I,aql ,l. 
Most researchers seem to use this method with either the 

mid-points of the last two bounded intervals or the last 
bounded interval and the upper open interval. Specifically, 
if the mid-points of the last two bounded intervals are used, 
the estimator of t~ becomes: 

d< = ln [ ( f , ) / ( f r  + ir_l)]/ln[Mr_~lMr_,]. 
^ 

This will lead to Mr,q, 2 and Xg,q,2 as estimators for M r 

and Xg, respectively. That is, 

A r-! / N  
= + Z M,,, + 

7=2 

where 

= t4 r - , )  1). 

This method is referred to as the quantile II method, and 
^ 

Xg,q,2 is referred to as the Qnt II estimator in this paper. If 

the lower bounds of the last bounded interval and the open 
interval are used, then the estimator of ~ becomes: 

07o = ~ l ( / , _ ,  + i , ) l ( i , ) V l , l  u<,_,)lU(,_~> i. 

In the literature the estimator , d  o seems to be the one 

most recommended, for example, see Shryock (1975), 

Parker and Fenwick (1983). This will lead to 34r,q. ~ and 

^ 

Xg.q,l as estimators for M r and Xg, respectively. The 

method is referred to as the quantile I method and Xg,q. 1 is 

referred to as the Qnt I estimator in this paper. 

An alternative estimator for t;t is a modified maximum 
likelihood estimator developed in West (1985). A brief 
description of the estimator will be given here. Since the 
Pareto distribution is considered a good fit for the 
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distribution of higher earnings, the parameter will be 
estimated from the left truncated distribution. Let 

M., M.+, ..... M._, 

be the left tnmcated mid-points of the bounded intervals, 
then the modified maximum likelihood estimator is: 

r-I I r-I r-I 

dm's =[~-'~fi]/t~a(filnMi)-(Efi)lnMs-frln(Ms/U(r-1,)]. 
i=s i=s i=s 

Note that in the case of a Pareto distribution, truncation is 
equivalent to rescaling. 

It was found in West (1985) that if the earnings 
distribution was tnmcated at the mid-point of the interval 
containing the truncated mean, then the resulting estimate of 
the mean came closest to the true mean. The tnmcated 

mean is defined as the mean of the data below U~,_~). 

Consistency is easily verified for the quantile estimator 
and it is resistant to outliers. Quandt (1966) found that the 
performance of the quantile estimators were not much 
inferior to that of the maximum likelihood estimators. A 
Monte Carlo study reported by Koutrouvelis (1981) 
supported that view. However in West (1985), where small 
household data were used, it was shown that the quantile 
method depended heavily on the grouping of the population, 
could lead to gross errors, and at best did as well as the 
modified maximum likelihood estimator. In West (1986), 
the quantile and the modified maximum likelihood 
estimators were compared over time on household data. 
The results were similar to the ones in the 1985 study. In 
this paper, occupational earnings data from establishments 
will be used to evaluate the different estimators: the 
Winsorized estimator, the two quantile estimators, and the 
modified maximum likelihood estimators, using four 

different rules for choosing M s. The four rules are to 

choose M s to be the: 

1. mid-point of the interval that contains the tnmcated mean. 
2. mid-point of the interval following the one that 

contains the truncated mean. 
3. mid-point of the interval that contains the median. 
4. mid-point of the interval following the one that 

contains the median. 
The modified maximum likelihood estimator of gt will be 

denoted by din, k , a n d  the corresponding mid-point and 

grouped mean estimators by ~"~r,m,k and X-'~g,m,k, 

respectively, where k=l, 2, 3, or 4, corresponding to the 
above rule of tnmcating. The grouped mean estimators are 
also referred to as Max I, Max II, Max III, or Max IV, 
corresponding to the rule of trtmcating. 
HI. EMPIRICAL STUDIES 

In this section, the methods and results of two empirical 
studies are described. The first study concentrated on the 
overall industry/occupational wage mean and the second 
study concentrated on the upper open interval mean. The 
same measures of evaluation as described below were used 
for each study. 

We define the error of estimation to be the difference 
between the estimated value and the true value, which is 
assumed to be known. The relative error is defined as the 
ratio of the error of estimation to the true value. We 
compare different estimators by looking at the absolute 
values of the relative errors of their estimates. The relative 
errors may be expressed in percentages and be called 
percent errors. Absolute percent errors are the absolute 
values of percent errors. For example, if the true mean is 
50, the estimated mean is 48, then the relative error is -.04 
and the absolute percent error is 4 percent. 

For the median, the error in estimation is due to grouping 
the data, whereas, for the mean, the error is due to grouping 
and to the upper open interval estimation. Sampling error 
was not considered in the studies since wage data in exact 
dollar amounts were used and regarded as the population. 
A. OES RESEARCH 

This part of the research is called the OES research 
because it is designed to meet the objective of the 
Occupational Employment Statistics (OES) survey. That is, 
to fred the best estimators for the median and mean of 
occupational hourly wage for each industry. Estimates were 
computed for each industry/occupation level. 
1. Data 

The data used are from the 1989 and 1990 White-Collar 
Pay (WCP) surveys. The WCP survey collects wage data 
from establishments employing 50 or more workers in 
industries throughout the United States, except Alaska and 
Hawaii. The survey collects actual wages in dollar amounts. 

Nine industries from different major industry groups were 
selected. The nine industries and their standard industrial 
classification (SIC) codes were: oil and gas extraction (SIC 
13): food and kindred products (SIC 20), chemicals and 
allied products (SIC 28); stone, clay, and glass products 
(SIC 32); transportation by air (SIC 45); miscellaneous 
retail (SIC 59); security and commodity brokers (SIC 62); 
hotels and other lodging places (SIC 70); and educational 
services (SIC 82). 
2. Method 

We adjusted the collected WCP data by their weights and 
the weighted data were considered the true population, from 
which we computed the true mean and median. We then 
grouped the data into wage interval categories by industry 
and occupation. For each set of grouped data, we estimated 
the median by the linear interpolation method and estimated 
the mean by the methods outlined in Section II. For the 
modified maximum likelihood method, we only used the 
interval that contained the tnmcated mean as the left 
truncated point. That is, the only estimator examined was 

Xg~n,1 (Max I). The 1989 Federal minimum wage of $3.35 

was used as the lower limit of the lower open interval. 
3. Selecting the Interval Categories 

The pilot OES interval categories specified $35.00 as the 
lower limit of the uppermost interval. It was found that this 
figure was too low to provide good estimates. Out of a total 
of 792 occupations over the nine industries chosen, 81 
percent (639) did not have records in the uppermost interval. 
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Of the 153 occupations that did have some records in this 
interval, as many as 53 did not have records in any other 
interval. For these 53 occupations, there were no data to fit 
any distribution; the Winsorized mean was the only 
alternative for computing a mean. For these cases, the 
Winsorized mean could underestimate the true mean as 
much as 53 percent. Many other occupations had only a few 
observations in the previous bounded interval and the rest in 
the uppermost interval. For these occupations, there were 
not enough data to fit a Pareto distribution. In order to use 
the Pareto distribution, the wage distribution should be a 
decreasing function after a peak and should have a small 
"tail." The "tail" for our purpose is the upper open interval 
itself. Of the 153 occupations that have records in the upper 
open interval, only 29 (19%) have "tails" less than ten 
percent; 8 (.5%) have "tails" of ten to twenty percent; 24 
(16%) have "tails" of twenty to fifty percent; and 92 (60%) 
have "tails" over fifty percent. Attempts to fit a Pareto 
distribution to these occupations of "large tails" lead to 
gross errors. In addition, there could be no median 
estimates for the occupations with "tails" over filly percent. 

Based on the above observations and on the distribution of 
the true mean of the uppermost interval over industries, a 
modified version for the interval categories was proposed 
and accepted for future OES surveys. The modified interval 
categories increased the lower limit of the uppermost 
interval from $35 to $60 and widened the middle intervals, 
while leaving the two lowest intervals the same as before. 
The number of interval categories was kept at eleven for 
administrative purposes. Now more Pareto distributions 
could be fitted, allowing different methods for computing 
the mean for the upper open interval. The pilot versus the 
future interval categories are given below. 

Interval Category Pilot Future 
A <5 <5 
B [5-6.5) [5-6.5) 
C [6.5-8) [6.5-9) 
D [8-10) [9-12) 
E [10-12) [12-16) 
F [12-14) [16-20) 
G [14-17) [20-25) 
H [17-21) [25-35) 
I [21-25) [35-45) 
J [25-35] [45-60) 
K >35 > 60 

4. Results 
The modified interval categories gave us 23 occupations 

with observations in the uppermost interval. Of these, 
twelve had "tails" between ten and fifty percent, and six had 
"tails" of fifty percent or more. There were no median 
estimates for these six occupations. Four of these six 
occupations only had observations in the uppermost interval 
and did not have alternative measures of the mean besides 
the Winsorized method. 

The estimates for overall means improved significantly 
from the pilot interval categories as the following tables 
show. We were able to estimate more medians using the 
new interval categories. 

Tables of error profile for all occupations are displayed 
below. The numbers in the body of the table denote the 
number of times a specific method resulted in errors that fell 
in a specified error range. The error ranges are absolute 
percent errors. 

Error profile using pilot interval categories 
Error Range Qnt I Qnt II Max I Winsorized Median 

0 - 4.99 591 596 608 602 570 
5 - 9.99 84 81 83 108 110 
10 -14.99 21 24 20 24 18 

_> 15.00 43 38 28 58 3 
N/A* 53 53 53 0 91 

Error profile using future interval categories 
Error Range Qnt I Qnt II MaxI Winsorized Median 

0 - 4.99 626 626 634 631 566 
5 - 9.99 112 112 113 115 156 
10 -14.99 41 41 38 40 56 
> 15.00 9 9 3 6 8 
N/A* 4 4 4 0 6 

* Estimates could not be computed. 
The two quantile methods performed similarly. These 

estimates were not as good as the maximum likelihood or 
the Winsorized estimates. They had more errors in the 
"> 15%" range. Additionally, the errors by the quantile 
methods in this range were extremely high. The Winsorized 
estimate had more errors in the "> 15%" range than the 
maximum likelihood estimate. However most of these 
errors resulted in the cases in which the maximum 
likelihood estimator could not be computed. We 
recommended the Winsorized mean for the OES survey 
since it is easy to understand and to implement. 

The median also performed well. Under the pilot interval 
categories, the median for 91 occupations could not be 
computed compared to six occupations under the future 
interval categories. 

Empirical results also suggested that the absolute percent 
error tends to be high when the number of unweighted 
workers in an occupation is small. For the median, 19 
percent of the occupations that have less than ten 
unweighted workers have percent errors of the magnitude 
ten percent or higher compared to three percent of the 
occupations that have at least ten unweighted workers. For 
the mean, the comparison is 15 percent versus .8 percent. 
Based on these results, we recommended that publishability 
criteria include the provision that all published figures come 
from occupations with at least ten unweighted workers. 
5. Validation of other data sets 

The White Collar Pay surveys are not completely 
representative of the OES survey. The survey does not 
cover Hawaii and Alaska and does not include small 
establishments of less than 50 workers. It does not target 
production workers and therefore its wage distribution is not 
the same as the wage distribution of the OES survey which 
includes all occupations. 
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However, we feel that the mean and median estimators are 
robust and should work as well on OES data. We validated 
the recommended estimators on two additional sources of 
data that collected hourly wages in exact dollar amounts: 
the Alaska data and the Industry Wage Survey data. 

In the State of Alaska a Wage Rate survey was conducted. 
The hourly wage data from this survey was sent to the 
Bureau of Labor Statistics to be tested with the 
recommended procedures. The staff in Alaska indicated that 
the following industries should be tested: metal mining 
(SIC 10); general building contractors (SIC 15); food and 
kindred products (SIC 20); depository institutions (SIC 60); 
hotels and other lodging places (SIC 70); and engineering 
and management services (SIC 87). The Alaska minimum 
wage of $4.75 was given and was used in the research. 

Since we recommended that all publishable means and 
medians have at least ten unweighted workers, we only 
considered the percent errors of the occupations with at least 
ten workers. Out of 89 occupations, five (6%) had absolute 
percent errors for the median exceeding ten percent and two 
(2%) had absolute percent errors for the mean exceeding ten 
percent. These numbers are thought to be small enough to 
be acceptable. 

The Industry Wage Survey (IWS) collects wage data for 
production workers only. Wage data from this survey do 
not have as many observations in the upper intervals of 
either the pilot interval categories or the future interval 
categories. In order to see the effect of the future interval 
categories on data sets with lower wages, we tested the 
procedures on two IWS data sets using both sets of interval 
categories. The data sets available were the 1987 Men's and 
Boys' Shirts (SIC 2321) and the 1984 Millwork (SIC 2431). 
The Federal minimum wage of $3.35 at that time was used 
as the lower limit of the lower open interval. 

There were 31 occupations in the Millwork data and 30 
occupations in the Shirts data to be tested. For each data 
set, the two sets of interval categories basically gave the 
same error distribution. 
6. Compare Percent Change Across Time or SlCs 

Of interest to the OES survey is the comparison of 
occupational hourly wages across time. As mentioned in 
Section II, the median or functions of median should not be 
used for this purpose. The difference in means of a 
characteristic of a population was found to be bounded 
relative to the means of its subpopulations when compared 
across time periods, provided the proportional size of the 
subpopulations tend to stay the same over time. 

Also of interest to the OES survey is the comparison of 
occupational hourly wages across populations and across 
their subpopulations. The population could be a major 
occupational group such as "Engineers." The 
subpopulations could be different pay levels (which reflect 
the different expertise and experience levels within one 
major occupational group) or different detailed occupations 
(which reflect the many different but related jobs, for 
example, different kinds of engineers). The size of the 
subpopulations relative to the size of their parent population 
may not be the same in different industries. 

We looked at the "bounded property" of true and 
estimated means and of true and estimated medians in the 
case of comparing different occupational pay levels. We 
found that true values or their estimates may or may not be 
bounded. Furthermore, the existence or lack of "bounded 
property" of true values does not can3, over to their 
estimates. That is, bounded true means or bounded medians 
do not lead to bounded estimated means or bounded 
estimated medians, and vice versa. For these comparisons, 
the median as well as the mean should be used with caution. 
B. INTERVAL MEAN RESEARCH 

This part of the research expands on the OES research by 
estimating the mean of the upper open interval. 
1. Data 

Data from the same 1989 and 1990 White-Collar Pay 
(WCP) surveys were used. Nine industries were added to 
allow additional coverage of industry groups: coal mining 
(SIC 12), special trade contractors (SIC 17), apparel and 
other textile products (SIC 23), electronic and other electric 
equipment (SIC 36), communications (SIC 48), wholesale 
trade (SIC 50), automotive dealers and service stations (SIC 
55), real estate (SIC 65), and legal services (SIC 81). 
2. Method 

As discussed in the OES research, the Pareto distribution 
is not always suitable for industry/occupational wage data. 
With occupational data by industry, using either set of 
interval categories, there is a high percentage of occupations 
with large frequency in the uppermost interval ("large tails" 
for Pareto distributions). In order to conduct research on 
estimating the mean for the upper open interval, we need 
data that are more suitable to the Pareto distribution. To 
bring smaller "tails," we grouped all the industrial 
occupations into professional, technical, and clerical 
occupational types as described in the WCP survey bulletin 
published by the Bureau of Labor Statistics. We estimated 
the median and the mean by industry/occupational type with 
the methods mentioned in Section II. When using the 
maximum likelihood method, the four rules for choosing the 
left tnmcated point were applied. Since there were 18 
industries, each with three different occupational types, a 
total of 54 populations were considered. 
3. Selecting the Interval Categories 

When we grouped the occupational type data according to 
the future OES interval categories, there were not enough 
data in the uppermost interval (in percentages) to do 
meaningful research. Based on the frequency distribution of 
workers in each occupational type, we decided to use the 
pilot OES interval categories with different lower bounds 
for the upper open intervals: $35 for the professional type 
data, $21 for the technical type, and $17 for the clerical 
type. These lower bounds were not chosen arbitrarily. They 
were lower bounds of the pilot OES intervals, but not 
necessarily of the upper open interval. These lower bounds 
were chosen with the aim for "tails" of less than ten percent. 
It was found from the research that the Pareto distribution 
gives best estimates with "tails" of this size. This gave the 
percentage of workers in the upper open interval from .4 to 
6.5 percent in the professional occupations (with one 
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exception of 18 percent), from .05 to 7.6 percent in the 
technical occupations, and from .04 to 3.4 percent in the 
clerical occupations. 
4. Results 

The estimated median and estimated truncated mean 
usually fell in the same interval. Therefore, the maximum 
likelihood estimate derived from using either the interval 
containing the median or the interval containing the 
tnmcated mean as the left tnmcated point usually was the 
same. For this reason, we will only discuss the left 
truncated point as in the interval containing the estimated 
truncated mean (Max I) or in the interval following the one 
that contains the estimated tnmcated mean (Max II). For 
the professional occupations, the quantile II method 
performed well, followed by the maximum II method. For 
the technical occupations, the Winsorized performed well, 
followed by the quantile II and maximum II methods. For 
the clerical occupations, the maximum II method is the best. 
Although the Max II estimate is not always the best over the 
occupational types, it is consistently one of the best. 

A third of the 54 occupational type populations did not 
have records in the uppermost interval. An error profile for 
those that had upper open interval estimates is shown below. 

Error Profile for the Mean of the Upper open Interval 
Error Range Qnt I Qnt 1I Max I Max lI Winsorized 

0-4.99 17 23 14 18 4 
5-9.99 12 7 12 15 10 

10-14.99 3 5 5 2 13 
>15 4 1 5 1 9 

The W insorized was not the best method. This method, 
along with the maximum I and both quantile methods were 
sensitive to different data sets and gave more errors in the 
"> 10%" range. The Max II is the one recommended. 
5. Effects of Grouping Data 

When the boundary of the two closed intervals preceding 
the uppermost interval was changed from $25 to $28 for the 
professional type data, the quantile II estimator did 
considerably worse. The other estimators were not affected 
much by the change. When we lowered the lower bound of 
the uppermost interval of the technical type data from $21 to 
$17, allowing larger "tails," the frequency of errors in the 
"0-4.99%" range decreased and the frequency of errors in 
the higher percent errors increased across industries. The 
quantile II method was the best this time. 

The quantile I method was affected most when Pareto 
distributions were fitted to "large tails." For example, when 
data of the gas and oil industry were grouped according to 
the pilot OES interval categories, the largest absolute 
percent error was over 400 percent for the quantile I method 
and just over 100 percent for the quantile II and for the 
maximum I methods. Most of these occupations have their 
truncated means fall in the bounded interval preceding the 
uppermost interval and could not have the Max II estimates 
computed. 

This is in agreement with West's findings (1986) that the 
quantile method is sensitive to the way the data are grouped. 

IV. CONCLUSIONS 
When data are grouped such that there are no suitable 

"tails" to the Pareto distribution, errors of the overall mean 
and of the upper open interval were large. In particular, the 
maximum likelihood and quantile methods could lead to 
gross errors. Furthermore, these estimates could not be 
computed when data only fell in the uppermost interval. In 
our research data, while other estimates could have absolute 
percent errors in the hundreds, the highest error for the 
Winsorized estimate was just over 50 percent with the pilot 
OES interval categories. The Winsorized estimator has 
another advantage that the direction of its bias is known. 

When the objective is to compute an overall mean, then all 
estimators produce large errors if there are "large" (>10%) 
tails, and all estimators perform fairly satisfactorily if there 
are "small" (<10%)tails. When "tails" are large, the Pareto 
distribution is not suitable for estimation purposes. When 
"tails" are small, the overall error is not affected much by 
errors in the small "tails." This was the case when the data 
were grouped according to occupational types. For the 
overall mean of OES data, the Winsorized estimator was 
recommended with the future interval categories where most 
occupations have small "tails," and a small percentage has 
large "tails." 

For the upper open interval, the Winsorized estimator does 
not perform as well as other estimators in "small-tailed" 
distributions. The maximum II estimator is recommended 
because it is more robust than either the quantile methods. 
V. FUTURE RESEARCH 

Variance estimators for the mean, using the Pareto tail 
with the modified maximum likelihood estimator for the 
parameter, will be derived and evaluated in the next study. 
Also, in this study it had been planned to fit theoretical 
distributions (mixture distributions) to the occupational 
wage data. Unfortunately the data were too thin to 
accomplish this. We hope a larger appropriate data set will 
be available for future research. 
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