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1. INTRODUCTION 

Suppose the observations in 
a stratified simple random 
sample can be post-stratified 
into more homogenous groups, 
but one has no auxiliary 
information about the popu- 
lation sizes of those groups. 
It is difficult to effectively 
incorporate the post-strati- 
fication into the conventional 
design-based framework for 
estimating a population total. 
Chapman and Biemer (1984) 
provides an example of an 
unsatisfying attempt. If one 
is willing to assume the 
obvious model, however, it is 
easy to develop an estimator 
that is combined unbiased (its 
model expected design bias is 
zero) and has less combined 
variance (model expected 
design variance) than the 
conventional estimator. 

The combined unbiased esti- 
mator proposed here is by no 
means new. A variant of it is 
used, for example, by the U.S. 
Census Bureau for its Quar- 
terly Financial Report (QFR). 
The original impetus for the 
research described in this 
paper was an internal memo- 
randum (Vogel 1990) at the 
National Agricultural 
Statistics Service (NASS). 
There are doubtless other 
users and potential users as 
well. The goal here is to 
introduce a theoretical 
framework under which this 

estimator is unbiased and has 
an estimable variance. More- 
over, since this framework 
requires that a model be 
assumed, a test for the model 
is proposed and briefly 
discussed. 

2. NOTATION 

We begin with a stratified 
simple random sample that has 
been post-stratified into more 
homogenous groups. Let 
h = i, ..., H index the 
original sampling strata, and 
k = I, .... , K index the 
groups into which the sample 
has been post-stratified (and 
the population could, in 
principle, have been post- 
stratified) . 

Furthermore, let u denote a 
particular sampling unit, 
C k denote the set of all 
population units in group k, 
N k denote the size of Ck, 
c k denote the set of those 
units from C k in the sample, 
n k denote the size of Ck, 
T h denote the set of all popu- 
lation units in sampling 
stratum h, 
M h denote the size of Th, 
t h denote the set of those 
units from T h in the sample, 
m h denote the size of t h 
(which we assume to exceed i), 
and Yu denote the value of 
interest for unit u. 

We will assume that n k is 
greater than unity for all k. 
Since the n k are random 
variables, this means that 
Prob(n k > i) ~ I. For 
simpllcity, we will treat this 
near equality as an exact 
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equality from now on. 
The total we wish to esti- 

mate is 

K K 
Y = ~ ~ Yu = ~ NkYk- ( i )  

k=l  u(C k k=l  

Note- Yk is implicitly defined 
by equation (i)). 

3. THE COMBINED UNBIASED 
ESTIMATOR 

Consider the following 
estimator for Y- 

K 
= Nk Yk, (2) 

k=l  

where Yk = ~ YJnk, Nk = ~ Wu, 
u~c k u~c k 

and W u = Mh/m h for u ~ T h is 
the sampling weight of unit u. 
For simplicity, we are 
ignoring the possibility of 
nonresponse. 

Under traditional design- 
based sampling theory N k is an 
unbiased estimator for Nk, but 
Yk is not, in general, an 
unbiased estimator for Yk" 
This is because not all of the 
sampling units in c k neces- 
sarily have the same selection 
probability. 

There is an obvious model 
under which Yk is an unbiased 
estimator for Yk" Suppose the 
Yu can be treated as if they 
satisfy the stochastic 
equation- 

Yu = ~k + eu f o r  u (~ Ck, (3) 

where the e u are independent 
random variables with EM(eu) = 
0 and Var M(eu) = o 2 for u E Ck, 
and the subscriptkM on the 
expectation (variance) 

operator denotes expectation 
(variance) with respect to the 
model. It is easy to see that 
Yk is an model unbiased esti- 
mator for Yk in the sense that 
EM(Yk -- Yk) = 0. 

We will be combining design 
and model-based sampling 
theory in this analysis. 
S~rndal (1978) provides an 
excellent introduction to the 
twin topics of design and 
model-based inference. 

As already noted, N k is a 
design unbiased estimator for 
N k. We can write this for- 
mally as ED(Nk) = N k. If the 
model in (3) holds, then the 
combined model and design bias 
of ~c is zero in the sense 
that 

E(~ c - Y) = EM[ED(Y c - Y)] 

= ED[EM(Y c - Y)] 

= P'D [ P'M NkYk - Zk NkYk ] 

= ED ( ~  1~Ik /~k - ~k Nk/~k) 

=0. 

The proof is trivial once you 
realize that N k and N k are not 
random variables with respect 
to the model in (3). Conse- 
quently, we will say that ~c 
is "combined unbiased. " 
(Technical note- since we have 
assumed Prob(n k > i) ~ 1 for 
all k, there zs no need to 
condition the E o operator on 
nk > I.) 

4. THE COMBINED VARIANCE OF ~c 

Let us call the combined 
model and design expectation 
of (~c _ y)2 the "combined 
variance" of ~c. The combined 
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variance of ~c  is then 

Vaz(~c) = E[(~e _ y)~] 

(4) 

2 
E D [~k 2 (lln~ - lin k) ]ok 

= V I + V 2 . 

(We have made repeated use of 
the equality EM[Yk(y k -- Yk)] = 
0.) The component V I essen- 
tially measures the contri- 
bution to the combined vari- 
ance^of estimating the N k with 
the N., while V 2 measures the 
contrlbution to the combined 
variance of estimating the Y k 
with the Yk" In most design- 
based and model-based analyses 
of stratified samples, the N k 
are fixed and known, hence 
there is no variance component 
like V I. It is important to 
realize that this is not the 
case here. 

An estimator for V 2 is 

v2 = ~k ( 1~k 2/nk - 1~k) Sk 2, 

where 

s/= yu 
u(c k 

( ~ Yu) Z/nk]/(nk-l)- 
u~c k 

Obse~e that^E (s 2)= E (o 2) 
2 M k M k t 

while Nk/n k - N k is a nearly 
design biased estimator for 
ED[Nk~(I/n k - i/Nk) ] (techni- 
cally, it is asymptotically 

unbiased; see Sarnal, Swens- 
son, and Wretman (1991). 
Thus, if anything, v 2 may have 
a s~ight combined bias because 
E D(Nk2/Nk) > E D(N k) = N k- 

Now 

V l  = VarD(~-e l~k Y k )  

= Var D(~ ~ WuY(u)), 
uEt h 

where Y.. = Yk when U EC k when _~q~ 
UEC k. ThiS sugges ts  t h e  
following estimator for V I- 

V I = ~ (Mh2/mh) (i -mh/Mh) (5) 
h 

[ Z (2 u) - ( ~ Y(u)) 2/mh ] / (mh - I )  , 
u( t  h u ( t  h 

where Y(u) = Yk when UEC k. 
Since E M (Yk) >- EM (Yk) implies 

EM [ ~ ~(2 -- 2/ u ) -  ( ~ Y(u)) mh] >- 
u( t  h u ( t  h 

EM [ ~ ~(2 u) - ( ~ Y(u))2/mh] , 
u( t  h u ( t  h 

v I may have a slight positive 
combined bias, but -- like 
v 2 -- it is nearly combined 
unbiased. 

5. THE DESIGN-BASED ESTIMATOR 

The conventional design- 
based estimator for Y is 

~D = ~ ~ WuY u = ~ iCik~k D, 
k uEc k k 

(6) 

where 
- D 
Yk = ~ Wu Yu / ~ Wu = ~ Wu Yu, 

u(c k u~c k uEc k 
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and w u = Wu/ ~ W v. 
vcc k 

Since ~D is design unbiased, 
it must also be combined 
unbiased. 

It is fairly easy to show 
that the combined variance of 
~D has the form VID + V2 D, where 
VID = V I from equation (4), and 

"2 2 2 
v2D = ~ ED[Nk( ~ Wu _i/Nk) ]Ok . 

k u~c k 

(7) 

The value of V2 ° in (7) is 
greater than or equal to the 
value of V 2 in (4) (since this 
is true for any sample, it 
must be true when averaged 
over all possible samples). 
Strict equality holds only 
when all the w u within each of 
the Ck~re ejual , in which 
case = Y~ 

As long as the model is 
correct, 9c is a better esti- 
mator than ~D in terms of 
combined variance. The advan- 
tage of ~D over ~c, of course, 
is that it need not rely on a 
model to assure its unbiased- 
ness in some meaningful sense 
(i.e., under the design). 

6. A STATISTICAL TEST 

As noted in the previous 
section, ~c is better than ~D 
if the model in equation (3) 
is correct; but is it? If the 
model were correct, then the 
difference ~c _ ~D = 

D 
~'k Nk(Yk - Yk ) would have a 
model expectation of zero and 
a model variance of 

VarM(~,c _ ~D) = 

= Z Rk2ok 2 ( 2- 
k u~c k 

This means that the 
statistic 

i/n k) . 

t m 
.~C _ ~D 

2 2 I/2 
[~ Nk 2 S k ( ~W u -i/n k) ] 

k uEc k 

(8) 

would have asymptotically a 
standard normal distribution. 

By calculating t from the 
sample, we can test the model. 
If |tl ~ i, then the model 
appears to be quite reason- 
able. Conversely, if Itl ~ 2, 
then belief in the model is 
very hard to sustain. If Itl 
is between 1 and 2, we are in 
a twilight region in which it 
is impossible to determine 
with confidence whether the 
size of the difference between 
~ c  and ~D can be wholly attri- 
butable to sampling error of 
not. Since we are equally 
concerned with type 2 error 
(accepting the model when it 
is false) as type 1 (rejecting 
it when it is true), it may be 
imprudent to adopt the conven- 
tional "reject the model only 
when Itl ~ 2" rule. 

7. SOME REMARKS 

The temptation to post- 
stratify a stratified simple 
random sample into groups and 
construct an estimator like ~c 
in equation (2) is often 
great. As Chapman and Biemer 
(1984) demonstrates, however, 
a purely design-based analysis 
of ~c is difficult and not 
very fruitful. More common, I 
suspect, are ad hoc and incom- 
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P~ ete model-based analyses of 
~c that ignore the randomness 
of the estimators of the popu- 
lation group sizes (the Nk). 

This paper used a combin- 
ation of design and model- 
based principles to explore 
the use of Y~ We saw that if 
one accepts the obvious model, 
then ~c is combined unbiased 
and has less combined 
variance than the design-based 
estimator, ~D in equation (6). 
A test for the model was also 
proposed. When the data 
(through the test) or common 
sense tells us that the model 
is unreasonable, there seems 
little justification for 
preferring ~c over ~D. 

An estimator for the 
combined variance of 9c was 
proposed that has a slight 
combined bias. The 
construction of a combined 
unbiased estimator for the 
combined variance of ~c is 
possible, but it is very messy 
and sheds little light onto 
the analysis. It is left for 
the interested reader. 

There are some surface 
similarities between ~c and 
the synthetic estimator (see 
S~rnal, Swensson, and Wretman 
1991, p. 410). Both employ 
models to estimate post- 
stratification group means 
(the Yk in equation (I)). In 
synthetic estimation, however, 
the group sizes (the Nk) are 
known, while ~c incorporates 
design-based estimators for 
these values. 

8. A POSTSCRIPT FROM REAL LIFE 

This paper proposes a method 
for testing whether the model 
inherent in ~c holds. Sadly, 
this method has never been 
applied to real data. The 

author proposed it first at 
NASS, where analysts deter- 
mined that the variant of ~c 
under investigation could not 
pass the "laugh test" (it 
~roduced estimates so far from 
yD as to be judged biased by 
appearances alone). 

The version used for the 
Census Bureau's QFR survey 
appears to be more reasonable 
than the one contemplated at 
NASS. Nevertheless, the 
statisticians there are 
committed to using a fully 
design-based estimator in the 
future and don't feel the need 
for any elaborate testing. To 
be fair, the present program, 
which they want to replace, 
estimates variances using v 2 
alone. Moreover, complicated 
sample rotation and nonres- 
ponse adjustment schemes make 
appropriate variance esti- 
mation a lot more difficult 
than presented here. 
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