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Non-parametric regression provides 
computationally intensive estimation of unknown 
finite population quantities. Such estimation is 
frequently more flexible and robust than inference tied 
to design-probabilities (in design-based inference) or 
to parametric regression models (in model-based 
inference). The non-parametric regression based 
estimator for finite population totals is introduced. Its 
utility is supported by determination of its asymptotic 
bias and variance and by a simulation study on wage 
data. 

1. The problem. We consider a fresh approach to 
the estimation of finite population "parameters" based 
on a sample from the population. Given a population 
P of N units for each of which there is a variable Y of 
interest, with values available on a sample s of P, we 
often wish to estimate a function of the population 

Y's, for example, the population total T = ~ t ,  Y~" the 

population mean T/N,  or the population distribution 

function F ( y ) =  N-l~_~pI(Y~ < y); the last is useful in 

estimating population quantiles. In what follows we 
will focus on the total T; parallel work on the 
distribution function may be found in (Chambers, 
Dorfman, and Wehrly, 1992) and (Dorfman and Hall, 
1992). We assume that an auxiliary variable x related 
to Y is available for the entire population. 

Section 2 briefly reviews the model-based and 
design-based approaches to inference on totals in 
survey sampling and describes (a sample from) a 
dataset on wages collected in Boston by the Bureau of 
Labor Statistics. Section 3 reviews non-parametric 
regression. Section 4 introduces a non-parametric 
regression based estimator of the total, gives some 
theoretical properties, and compares it to the standard 
design-based expansion estimator. Section 5 gives 
empirical results on several design-based and model- 
based estimators of the total, based on simulations on 
the Boston Wage Data. The non-parametric regression 
estimator outperforms the design-based estimators. 
Section 6 states conclusions and points to questions 
requiring research. 

2. Rival approaches. There are two incompatible 
approaches for making inference from sample to 

population: the more traditional designed-based 
approach, in which the probability structure of the 
procedure by which the sample s is selected serves as 
the basis for inference, and the model-based or 
predictive approach, in which a regression model of 
Y on x is used to predict the non-sample Y's and, by 
consequence, their total (or other function of interest). 

For an example of the difference, consider the 
sample in Figure 1 from a population, the "Boston 
Wage Population", consisting of N=400 Boston 
establishments. Y is the total wages paid to workers 
in a selected group of occupations; x is the total 
number of workers in each establishment including 
those in positions outside the select group. The data 
is taken from the Bureau of Labor Statistics' 1991 
White Collar Pay Survey for Boston. The sample is a 

stratified random sample: for h=1,2,3 , nh=20 points 

were taken from each of three strata of sizes Nh= 

202, 114, and 84 respectively. Three classes of 

company size, viz. 0 < x < 250, 250 < x < 1000, and 

1000 < x, determined the strata. 
Then a designed-based estimator of total is the 

stratified expansion estimator 

where, for h=1,2,3, ~h are the probabilities of 

including units Yhi in the sample component s h of 
the hth stratum. The presence of inclusion 
probabilities is characteristic of design-based 
estimators. 

If one assumes that Y is linear in x, for 

example, Y~ = a  + ~x i -baiei, i = 1,...N, with the e i 
IID with mean 0, then an appropriate model-based 
estimator is 

where ~, ~ are the appropriate weighted least 

squares estimators of a ,  /3. The model-based 

estimator ignores the selection probabilities. 
For elaboration of the issues, see Royall and 

Cumberland (1981) with discussion, Hansen, Madow, 
and Tepping (1983) with discussion, and, at this 
conference, Smith (1992), with discussion. 

One advantage of the design-based approach 
is its auwmaticity: once the planning is done and the 
sample is selected, estimation of the population 
quantity is determined, at least in principle (there are 
lots of ragged edges, such as non-response). It is 
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helpful to be able to say to interested, possibly 
powerful, non-statisticians that the analyst her/himself 
had no input into the result such as arises in the 
choosing of a model. 

The use of non-parametric regression for 
inference on finite populations, discussed below, is 
firmly within the model-based tradition. However, it 
has a much greater degree of automaticity than is 
generally associated with model-based inference 
based on standard parametric models. Since the 
parameters are essentially nuisance parameters 

anyway (not a ,  fl but T is of interest), this 

approach is a natural one to consider. 

3. Non-parametric regression. The idea of non- 
parametric regression goes back to Nadaraya (1964) 
and Watson (1964). A current reference is Hardle 
(1990). There are many species of non-parametric 
regression; we here consider the simple Nadaraya- 
Watson kernel estimator. 

Consider the model 

Y=m(x)+a(x)e  (1) 

with m(.) a smooth function and the e i independent 
with mean 0 and constant variance, and suppose we 

wish to estimate m(.). One possibility is to average 

the nearby values of Y~, where "nearby" is measured 

in terms of the distances [x,-x[.  Let K(u) be a 

symmetric density function, for example the standard 
normal. For a chosen scaling factor ("bandwidth") b, 

define Kb(U)=b-lK(u/b), and let the weights 

wi(x)--Kb(Xi--x Kb(xi-x  ). The larger b is, 

the flatter and broader the density function, and the 
more equal the weights. Then the Nadaraya-Watson 

estimator of re(x) is 

fit(x) = ~_~w,(x)Y i . (2) 
i 

Under reasonable conditions on re(x) and the 

design points x, fit(x) will be consistent for m(x) , as 

b---> O, nb---> oo. 
Figure 2 shows estimates of m(x) for the 

sample of the wages data for three choices of 

bandwidth with K(u) the standard normal density. A 

log transformation has been applied to the auxiliary 
to even out the spread. Note that the wider the 
bandwidth, the smoother the estimated function. 
From the figure, it appears that the smallest bandwidth 
is perhaps accomodating the data too much. 

4. Non-parametric regression based estimator of 

the total. We can let x = x j  for any point in the 

non-sample and so estimate m(xj). Then the 

following estimator of the total suggests itself: 

As with model-based estimators generally, this 
estimator ignores sampling probabilities. (It also 
ignores stratum boundaries.) Except for the selection 
of bandwidth, and possible transformation of the 
auxiliary, it is an automatic estimator. 

It is interesting to compare this estimator to the 

expansion estimator ~,p. /~,paccumulates the non- 
^ 

sample values of m(x.i) in lieu of the Y/ Tex p in 

effect does the same thing, replacing ~. by the 

average of sample Y~'s in the corresponding stratum 

(compare Figure 3). The expansion estimator tacitly 
assumes a jump function, with jumps precisely at 
those points we happened to use for sample selection. 

This is a tighter model than merely assuming m(x) 

smooth, so that in a sense ~xv is more of a model- 

based estimator than ir~p! 

It can be shown that, from the viewpoint of the 

model (1), the bias of ~,v is of the same order as its 

variance (compare Cumberland and Royall(1988)). 
For the non-parametric regression estimator, we have 
the following proposition: 

Proposition. 0 Let K(u) be a symmetric density 

function with I uK(u)du = 0 and 

k2 - I u2K(u)du > 0; let ~ (x )  be defined as at (2) 

above; assume m(x) has a continuous second 

derivative, and let fl(x) = d~ (x)m"(x)+ 2d~'(x)m'(x); 
assume n and N increase together such that 
n / N --> lr, with 0 < lr < 1; assume sample and non- 

sample values of x are in the interval [c,d] and are 

generated by design densities d~ and d~_~ 

respectively, both bounded away from zero on [c,d], 

where d~ and dp_s are defined by 

-' L n ~ I(x, <_ x) --> d~ (u)du 
i 

and 

J 

and are assumed to have continuous first derivatives; 
then 
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e(L - T ) :  / 2)S 

and 

_ 1 2 - I  2 
- S o  

+ ( N - n ) f  (r2(x)dp_,(x)dx +o(n) 0 

The proof is omitted. We note the following 
consequences: 

(i) The relative bias is 

E('I',,,-T)IE(T)=O(b:~)+o(b 2 +[nb]-')" this goes to 

zero so long as the standard conditions 

b --~ O, nb --) oo are met. (ii) If b = Cn" for 

- 1 / 2  < t~ < - 1 / 4 ,  then the ratio 

E(7~ - T)/varU2 (7~,e - T ) i s  asymptotically zero; this 

suggests that a fairly wide choice of bandwidth might 
be satisfactory in practice, yielding a better estimate 

^ 

than T~x p. However, the proposition yields no practical 

prescription for choosing the bandwidth in a particular 
instance. (iii) These results on the bias hold whether 
or not the sample and non-sample design densities are 
the same; this suggests that balance (Cumberland and 
Royall 1988) plays a minor role with this estimator; 
on the other hand, if the sample x's are not spread 
throughout the non-sample x's, we can expect the 
kernel estimation process to run into difficulties. 

5. Empirical  Results. The non-parametric 
regression based estimator was compared to several 
design-based estimators of the total, namely the 
expansion estimator, and the combined and separate 
ratio and regression estimators (see Cochran (1977)), 
and also the linear-model based estimator with 
different assumed variance structures, in a series of 
100 stratified random samples from the Boston Wage 
Population, with strata selected as described in section 
2. The auxiliary variable was log-transformed for the 
non-parametric estimator, and, for comparison, for 
some of the design-based estimators. Three 
bandwidths were used which were judged to give 
reasonable results, based on visual inspection of fits 
on a single sample (Figure 2 above). 

Table 1 gives summary results in the form of 

the average relative error O0 and the 

.00 /1 
a v e r a g e  s q u a r e d  e . o r  . O0 where ~ is 

r = |  

one of the estimators of 7' computed for sample r. 

We note the non-parametric regression based 
estimator is more efficient (i.e. has smaller average 
squared error) than the best of the design-based 
estimators, at the two larger bandwidths. It has about 
the same efficiency as the expansion estimator at the 
smaller bandwidth. The non-parametric estimator at 
its best is about 20% more efficient than the best of 
the design-based estimators. 

Greatest efficiency was achieved by the 
model based estimator relying on a linear model, with 
variance assumed proportional to x 2, but there is a 
drop in efficiency with other variance structures, well 
below the non-parametric estimator at larger 
bandwidth. 

6. Conclusions and suggestions for further w o r k  
The above results suggest that, even in the current 
undeveloped state of the art, the non-parametric 
regression based estimator of a f'mite population total 
is a potent rival to familiar design-based estimators. It 
has the quality of automaticity we associate with 
design based estimators, but can better reflect the 
actual structure of the data, yielding greater 
efficiency. It can be costly in computer power, and 
will probably not do as well as a parametric-model 
based estimator, when the modelling process is done 
carefully. 

Further work on the non-parametric regression 
based estimator is desirable. Is there a good way to 
select bandwidth automatically? How should its 
variance be estimated, and how satisfactory are the 
consequent confidence intervals? In the Boston Wage 
Data, the sample showed clear signs of 
heteroscedasticity, which we ignored in constructing 
the non-parametric regression based estimator; can its 
efficiency be improved by incorporating a reasonable 
assumption of variance structure into the non- 
parametric regression methodology? 
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Table 1. Summary Statistics for Estimators of Total in Boston Wage 
Population 

Estimator Average Relative Root Average 
Bias Squared Error/10 6 

RASE(T)/RASE(~xp) 

expansion 0.035 6.34 1.00 

combined ratio 0.040 

separate ratio 0.042 

combined 0.070 
regression 
combined 0.033 

regression(log) 
separate 0.069 

regression 
separate 0.032 

regression (log) 

linear model 0.102 
0 (cr~(x,)o~ x, ) 

linear model 0.067 

( a ~ ( x , )  o~ x, ) 
linear model -0.063 

2 (a ~(x,)~ x, ) 

non-parametric 0.040 
reg'n (b=0.25) 
non-parametric 0.013 
reg'n (b=0.50) 
non-parametric 0.001 
reg'n (b=0.75) 

6.22 0.98 

6.32 1.00 

7.56 1.19 

6.16 0.97 

7.71 1.22 

6.33 1.00 

6.72 1.06 

6.94 1.10 

4.56 0.72 

6.50 1.02 

5.67 0.89 

5.40 0.85 
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