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1. Introduction.

Sample surveys have been done in
so many different fields of
application that choosing a design
usually means reviewing the
experiences of others and settling
on the most popular design. For
present purposes such background
experiences will be taken to be
relatively absent. Suppose that one
can visualize fairly well how the
simple random sample design would
work and wishes to consider
increasing sampling unit size. That
is, we have defined the element along
with its measurement operation and
now wish to construct clusters of
elements to see if sampling such
clusters would offer advantages over
the sampling of elements.

First we review some formulas
useful in setting sample size and
finding the best size of cluster when
doing basic cluster sampling. The
word "basic" means that there are no
natural units such as classrooms,
farm fields, bales, or other chunks
having boundaries that should be
utilized as strata or as first stage
units. The formulas are based on a
measure of relative cluster
heterogeneity called Smith’s b and we
will show how values for b can be
obtained. The illustrative data come
from dot sampling of aerial photos to
estimate the proportion of land in
forest. Although this type of
sampling is more often done with
spatially systematic (widely spaced)
methods (Zeimetz, et al, 1976),
forest areas do occur in clumps and
clumping is also common for soils and
vegetation characteristics for which
enumeration on ground level is best
done using compact clusters.

The following discussion starts by
reviewing the steps one takes in
designing a small scale cluster
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sample survey. We have in mind a
household or farmstead survey as a
typical case, although many surveys
of plants, trees, soils, and other
material should fit the description
as well. We first furnish the
formulas for required sample size,
for best size of compact cluster and
for design effect. Recall that
design effect is the ratio of the
number of elements sampled in
clusters to elements sampled
individually that give the same
precision. We also furnish methods
of finding the value of Smith’s b
which is used in the formulas for
cluster size and for design effect,
and we illustrate the methods with
examples. Finally we illustrate
methods for determining cost
coefficients.

2. Preliminary Steps

It is helpful, in designing small
or moderate sized sample surveys to
begin by imagining the design as a
multi-start systematic sample of
clusters. Actual definition of the
boundaries of the clusters would be
done only in the vicinity of those
selected so that frame construction
costs are kept down. The frame is
ordered, as best as can be, so the
systematic design feature achieves
hidden stratification. Use of
several starts allows the sample to
be drawn as replicated subsamples
which can then be used, via the
Tukey Jackknife, to estimate
sampling variances and biases.

If the population to be sampled
is novel then a challenging job will
be to settle on the frame material.
One will be told of ideal materials
such as Tists in some office
somewhere, or sketch maps that one
might be able to get permission to



use, or aerial photos that can be
ordered, but it’s usually best to
start by considering the simplest
materials such as homemade sketch
maps or a tourist map and then try
to find improved materials.

Small scale surveys often have
time limitations as well as cost
restrictions. Although the
questionnaire must be pretested and
the enumerators trained, fieldwork
could conceivably commence within a
few weeks so one cannot wait too
long to assemble frame materials.

The basic "skeleton" material must be
capable of dividing up the population
into fairly large, so called, count
units each one having a well
delineated boundary. Then there must
be some information on sizes of the
count units to be used in assigning
numbers of clusters. Selection of a
sampied cluster will then lead to its
count unit, which itself must then be
further subdivided in order to
discover (by rerandomized selection)
the sampled cluster. This final
subdivision will commonly be combined
with enumeration and done in the
field.

The U. S. Census Bureau provides
Block Statistics for moderate or
larger sized cities and the city
block then becomes the count unit,
while numbers of households from the
last census can be used as sizes. In
open country or rural areas of the U.
S. one can use BNA’s (block numbering
areas) as count units. The
population census of any country
provides an excellent list of count
units as names of places such as
villages with either population
counts or map areas, as sizes. The
nature of the size information will
be chosen to represent a compromise
between accuracy and cost. It may be
simply the guesses of someone who
knows the territory.

3. Sample and Cluster Size Formulas
In terms of elements, not

clusters, one can calculate required

sample size for estimating a mean or
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a total as:
n = Population CV 2 (3.1)
Required Sample CV )

where Population CV is the ratio of
guessed population standard deviation
divided by guessed population mean and
Required Sample CV is 1/10 for a
"minimally adequate precision" or 1/20
for "adequate precision" or 1/100 for
"good precision." Population CV’s
range from .1 to 3 or 4 but most are
around .3 to 1 or 2 and for novel
characteristics one simply inquires
about the ranges where common values
are found and then judges the
magnitude of the Population CV. For
the estimation of a proportion around
50% the Population CV is 1, and the
three required sample sizes are thus
100, 500 and 10,000.

A bit more difficult design question
is that of the size of a cluster.
The basic formula gives optimum
cluster size as:

M =b Cl/(l-b)C (3.2)

opt 2’
where C, is the cost of adding another
cluster“to the sample and C, is the
cost of adding another e1emgnt to a
cluster, while b is Smith’s (1937) b.
Let’s consider how to obtain a value
for b first.

The quantity b equals 1 if there
is no adjacency correlation and
equals 0 if adjacency correlation is
maximal. Thus b reflects relative
independence or "heterogeneity" as H.
F. Smith (1937) called it. If there
were no adjacency correlation then
the varjance o gluster megns would
equal ¢°/M = "M * where ¢° is
population variance. For a given
shape of plot and a given
characteristic, adjacency correlation
is often found to cause the,vapiance
of cluster means to equal ¢°M ” where
b is in the range 0 to 1. This is
Smith’s "law."

In actual data one may notice
gradual changes in b as M varies.

For some variables the cluster
variances may be poorly and only



erratically fit by Smith’s law. Such
cases can occur with economic data on
households, for example, as one goes
from city blocks to tracts to whole
cities to regions. Fortunately, such
cases are relatively rare and can be
easily foreseen, while constancy, or
a gradual change with near constancy
in the range of interesting cluster
sizes, is more usual.

There are at least four ways to
get a numerical value for b. The
first is by judgement. A default is
.5. Smith found b = .75 for yield of
wheat on plots ranging from 1/2 foot
to 36 feet of row. We found b = .1
for disease incidences among tobacco
plants in plots of all sizes within a
field (Proctor, 1985). One can thus
often judge the amount of clustering
for the variable in question as
intermediate between wheat yields and
tobacco diseases -- especially if one
has familiarity with biological
phenomena.

The second way is to convert
values of the intracluster
correlation coefficient (written §,

p or "roh") to b values. In Hansen,
Hurwitz and Madow’s (1953) Chapter 6,
Tables 3 and 4 show by way of values
for 6§ that b is .4 for the agricul-
tural items and ranges from .4 to .9
for some socioeconomic and
demographic variables. The formula
to use for conversion is
b=1- Log[(M-1)§ + 1]/20g M. (3.3)

An even more empirical (third) way
is to find data on a variable similar
to the survey variable and to,estimate
the population variance, as s, and
that among cluster means, as s_, for
some given cluster size M. Th¥n one
solves Smith’s Taw for b as:
b = -Eog(s§ /sz)/ﬂog M. (3.4)
A more elaborate variation on this
method (the fourth way) when one has
the data, is to do a nested analysis
of variance for various sizes of
nested clusters and use the estimation

methods in (Proctor, 1985). Both of
these latter two types of calculations
will be illustrated for the data shown
in Figures 1 and 2.

4. IMlustrative Calculations for Smith’s b
The ones in Figures 1 and 2 represent

dots on an aerial photo that hit
woodlands and the zeroes hit something
else. The data were interpreted by
Joop Faber (1971) from two 1:200,000
aerial photographs of the Lake Mickey
watershed near Durham, NC. Each
Figure has 2500 points in a 50-by-50
square lattice. On the ground the
side of this square measured about 2.5
miles.
squares then there will be 100 square
clusters. The variance among these
100 cluster means for Figure 1 can be
found to be .0740 while the total
variance is .2478 [since the proportion
of forested points is p = .548 for the
photo, the total variance is approxi-
mately p(1l-p)]. Thus formula (3.4) may
be used to find b = .38, for squares
having M = 25 points. Applying the
same calculation to Figure 2 yields

b = .35.

For application of the more
elaborate nested ANOVA we trimmed away
the last two columns and Tast two rows
of both figures to get a 48-by-48
lattice. Now we can create 2-by-2,
4-by-4, 8-by-8 and 16-by-16 nested
squares as well as nested row and
column transects with lengths 2, 4, 8,
16 and 48. The resulting analyses of
variance and estimates of Smith’s b
are found in Tables 1 and 2.

The basic message for both squares
and transects concerning the value of
Smith’s b is its gradual increase
when the length of a side or transect
exceeds 16. Below this size its
value is stable at around .35 to .40.
The global estimate with @ = 0 in
tables 1 and 2 is based on supposing
b to be constant and averaging
interlevel b’s roughly in accord with
their degrees of freedom. The one
with @ = .01 is based on supposing
the departure from constancy is due
to haphazard Tack of fit and averages
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If clusters are formed as 5-by-5



interlevel b’s more nearly equally. actual pattern of interlevel b’s that
However, since the departures from needs to be kept in mind for these data.
constancy are not haphazard it is the

Table 1. Square Plots ANOVA and Smith’s b.

la. Analysis of Variance Mean Squares
Degrees of Photo Photo
Sizes Freedom 33 86

16 x 16 = 256 8 1.23318 4.64941
8x 8= 64 27 3.00434 2.28487
4 x 4= 16 108 1.18432 .88759
2x 2= 8 432 .32465 .34505
1x 1= 1 1728 .12355 .11646

1b. Smith’s b Estimation, Interlevel and Two Global Estimates

64 to 256 1.54 .64
16 to 64 .62 .47
8 to 16 .35 .41
1to 8 .34 .33
a = 0 Estimate .35 .31
a = .01 Estimate .46 .39

Table 2. Transect ANOVA and Smith’s B Estimates

Mean Squares

2a. Analysis of Variance Photo 33 Photo 86
Degrees of Row Column

Sizes Freedom transects transects Rows Columns

48 47 .45242317 .5694444 .6834275 .93076795

16 96 1.3346354 .57942708 .66666667 .97005208

8 144 .53993056 .76388881 .69487847 .50217014

4 288 .31597222 .49392361 .35980903 .35112847

2 576 .21788194 .18576389 .19748264 .21223958

1 1152 .11197917 .11371528 .11414931 .09765625

2b. Smith’s b Estimation, Interlevel and Two Global Estimates

Interlevels

16 to 48 1.76 1.01 .98 1.03
8 to 16 .60 1.22 1.02 .61
4 to 8 .48 .80 .61 .57
2 to 4 .48 .40 .46 .48
1 to?2 .37 .37 .40 .33
a = 0 Estimate .44 .43 .45 .36
a = .01 Estimate .72 77 .70 .61

529



This may be an opportune place to
remark that the Smith’s b values
constitute a means of characterizing
spatial autocorrelation that is in
conceptual competition with the
spatial correlogram, or a variogram or
a spatial spectral density function.
Obviously the Smith’s b
characterization, even when one
recognizes the patterns of
nonconstancy, is inferior to these
more complex methods. On the other
hand we believe that for the limited
purposes of sample design the Smith’s
b is just right. Its only serious
competitor here is the intracluster
correlation coefficient, and again we
believe the Smith’s b formulation is
both more flexible in fitting the data
and leads to more convenient formulas.

5. Finding Cost Coefficients

As with the Population CV and the
Smith’s b, the values for C, and C,,
the cost coefficients, can &e obta?ned
by judgement, by experience with
similar material or from data. Using
Jjudgement and an active imagination,
one considers all the operations of
the survey needed to collect and
analyze the data, and expresses them
in man hours or in dollars. Next we
suppose an additional element is added
to a cluster and ask how much time or
money does this add to survey cost.
This is C,. Then we suppose an
additiona? cluster must be drawn and
calculate its expense. This is C,.
Since only the ratio C /C2 enters
the optimizing express}on we are
basically interested in it. Usually
(translate "In my experience") C, to
C, is around 10 to 1. Hansen, Harwitz
aﬁd Madow (1953) cite 2 to 1 and this
can happen when household interviews
take all day or when there will be
repeated visits, but for physical
measurements such as moisture
readings, or weed counts or soil
analyses the ratio can easily be
higher than 10 to 1.

Although such judgements are
entirely appropriate for small or
moderate sized surveys, since
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departures from optimality will here
not be too costly, as the scale of
survey increases one should consider
doing a field trial of the procedures
to estimate C, and C,. To illustrate
the method, 1$t's coasider asking
each student in a sampling class to
conduct three surveys on his copy of
an aerial photo. When we in fact
carried out the exercise the three
surveys were: A was of n = 20 single
(M=1) points; B was of n = 10
clusters of M=5 points in a row; and
C was of n = 5 clusters each of M=10
points in a row. Table 3 shows the
data for 13 students and one can
verify that regressing time = Y on X1
= n and X, = nM (where the factor
student a% 13 levels was removed as a
blocks variable) gives regression
coefficients C, = .72 and C, = .06.
The cost ratio”is thus arouﬁd 12.

6. Design Effect and Setting the
Final Design Features
Having estimated the cost ratio
and also having estimated Smith’s b
one uses (3.2) and finds

Mopt = .4 x 12/.6 = 8.

This is a recommendation for using 8
points. Since cost coefficients are
available only for the row shape we
consider just that case. Since 8 is
close to 10 and M = 10 is a more
convenient cluster size we will
actually use M = 10. We can now
return to the design of the sample
after, it will be recalled, having
calculated the required sample size
in elements.

Knowing M and b we can calculate
the design effect as:

2 1-b

D¢ = M (6.1)

or, for our example, as 3.98 = 10'6= 4.
This shows that one needs four times

as many points in a cluster sample to
get the same precision as a

(scattered) simple random sample.

Thus, with n = 400, for example, from
(1) we would be Ted to a sample



design of 4 x n/M = 160 clusters,
each of 10 points in a row. The 160
sampling units themselves would
actually be drawn as a systematic
sample (or as several such) and so
might achieve more precision than
the simple random selection
underlying the formulas.

7. Postscript

Having seen in a fairly concrete
form how one can design a cluster
sample survey and thereby having
gotten a notion of how it might be
carried out, we hope the reader will
be in a better position to evaluate
cluster sampling as compared, say,
to element sampling or to a census
or, perhaps, to some other method
such as a purposive sample. A close
cousin to the cluster sample design
is a sample in two or more stages.
The cluster sample procedure as just
described is two-stage in operation
but, although the clusters in a
count unit are randomly permuted
just before selection, it is in
effect a one-stage design.

It is this simplicity of design
that makes for simplicity in
tabulations. Each enumerated
element will carry the same basic
raising factor of N/n. These
factors can then be adjusted for
case nonresponse, for item
nonresponse, for subsampling, if
such had to be carried out because
of surprises in the actual numbers
of elements in some selected
clusters, and so forth. Each
enumerated element can also be
provided with its replicate raising
factor and the separate estimates
from replicated subsamples can be
simply calculated and can be used in
variance estimation.

Although this review has moved
fairly rapidly over a number of
topics, they are the critical ones
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in cluster sample design.
size depends on the usual
requirements for precision but also
on the design effect which in turn
depends on the pattern of adjacency
correlation as reflected in Smith’s
b. This b value can be judged or
based on data as we’ve shown.

Choice of cluster size requires
that one know both the b value and a
ratio of costs and again we
illustrate a judgement method as
well as an empirical approach for
getting this cost ratio. The reason
we emphasize judgement methods for
Smith’s b and for the C,/C, ratio is
that one can seldom jus%if the
expense of pilot surveys. This is
essentially the same reason one
chooses the cluster design, that is
so as to avoid the expense of more
elaborate frame materials.

Sample

Table 3. Times in minutes required by
13 students to carry out three sample
surveys of an aerial photo.

Survey

A B C

n=20 n=10 n-= 5

Student p= 1 pu= 5 p=10
1 22 16 11
2 20 15 7
3 25 12 11
4 10 8 15
5 5 3 1
6 13 12 6
7 20 11 7
8 12 18 16
9 19 13 20
10 13 11 4
11 40 25 10
12 24 15 9
13 15 10 5
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