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I. Introduction and summary 

The use of auxiliary variables for 

weighted estimation of finite popu- 

lation totals or means is commonly 

advocated for reasons of bias and/or 

variance reduction. In practice, 

good predictors of the target 

variable(s) and/or the response 

mechanism may be hard to obtain. In 

such cases one often deals with cat- 

egorical auxiliary variables only, 

and in any case the weighting pro- 

cedure may amount to little more 

A 

estimator' YLS for the population 

mean and modify it into a general 
A 

regression (GR-) estimator YGR with 

built- in truncation procedure, name- 

ly Potter's 'squared weight contri- 

bution to mean squared weight (NAEP) 

procedure' . The estimation weights 

v i in the resulting bounded leveraEe 
A 

(BL-) estimator YBL--EIvlYl are 
A 

bounded in absolute value, while YBL 

retains some general properties of 
A 

YLS, being 'in simple projection 

form' , ' asymptotically design un- 

biased' (ADU), and representative 

with respect to the covariates. 

In §2 we derive the BL-estimator 

as a 'x-outlier-robust' modification 

than standardization with respect to of a given GR-estimator. In §3 we 

known population means. Standar- 

dization may have its price, how- 

ever, in that the resulting weights 

vary too much. The variance of a 

weighted estimator may be unduly 

increased as compared with the cor- 

responding unweighted estimator. 

describe the corresponding algo- 

rithm. In §4 we discuss related 

approaches in the survey literature. 

2. Robust general regression 

estimators 

Such an increase may be counteracted Given a population of size N of 

to a certain extent by truncating 

the weights, cf. Potter (1988,1990). 

In the paper we start from the 

'r-inverse weighted least squares 

(Yk ,xk)'pairs of target variable and 

covariate values, let (Yl ,xl), 

i=l,...,n, be a sample of effective 

size n drawn from that population 
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with inclusion probabilities ~k, 

k=l,...,N (x k is 1-by-p). We use the 

notations A-diag(A i ) with Aitl/~ i , 

Y=(Yl,''',Yn)T, X for the n-by-p 

sample covariate matrix with i-th 

row x i, YNt(yl,...,yN)T X~ for the 

N-by-p design matrix with k-th row 

Xk, and 1 n and 1 N for vectors with 

all entries equal to i. Our aim is 

to obtain a GR-estimator for the 

finite population total ytlTyN--~yk 

or the finite population mean YtY/N 

with good design properties, say 

with small design mean squared error. 

For the sake of obtaining a uniform 

set of estimation weights, regard- 

less of y, we will not explicitly 

account for design bias. Instead, we 

aim to reduce the design variance by 

eliminating weights with large abso- 

lute value due to 'x-outliers'. 

We will use the model 

Yk t x ~+~k (k-l, N), E ~ tO, 
k " ' ' '  ~ k 

var ~-o2a E ~ ~ tO (j~k) (i) 
~ k k' ~ j k 

for the (Yk ,xk)-pairs, where the x k 

and ~k are assumed to be indepen- 

dently distributed, such that xk~ is 

distributed around ~~ and ~k is 

distributed around 0 (ak known, a ~- 

unknown). In matrix notation we have 

YN=XN~+~N, with E~YN=XN~ and E~N~ T= 

=a~V, where ON= (~I,...,CN)T and 

V=diag(a k). The x k are assumed to be 

known, or at least the p population 

means contained in the row vector 

f-N-tI~XN " We focus on the case with 

intercept term, such that 1 N belongs 

to the column space of X N (xkt-I for 

all k; XN of full rank). If all co- 

variates are categorical, then the 

resulting estimator will amount to 

(seml-)poststratification, cf. 

Bethlehem and Keller (1987). 

The superpopulation model (I) 

serves to (a) lend support to taking 

the familiar class of general re- 

gression (GR-) estimators as a point 

of departure, and to (b) apply con- 

cepts like ' influence' and 'robust- 

ness' to such estimators, cf. Tam 

(1988) and Smith (1990). For any 
A 

regression coefficient estimator ~, 
=.. 

the GR-estimator for Y is given by 

A A A A 

- _- +(~_~ )~- 
YG a YH Z Z 

A 

- N -t {iZAy+(iZX -IzAX) }~ (2) 
n N N n ' 

A 

where yHT--N- t~.tyl/~t is the Horvitz- 
_. A 

Thompson estimator for Y, and XHT 

the row of Horvitz-Thompson estima- 

tors for the ~j. In practice, the a k 

will usually not be known to any 

reasonable accuracy, so that we 

simply put ak-i for all k (V--IN). 

Consider the ~-1-weighted least 
A 

squares (LS-) estimator YLS with 
A A 

~=~Lst(XTAX) - tXTAy. One can write 
A 

YLS--~-tWt Yt where the estimation 

weights are given by 

_ A -- T 

um - X mm w N II +A (~ xH )(X~AX) i 
i i i T i 

- ~ ~:(XzAX) -I - x (i=l .. n) (3) 
i i '" ' ' 
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so that w i is the sum of the 'sample robustness' in the sense of Tam 

weight' I/(N~ i ) and an 'adjustment 

weight', say al, associated with 
^ 

~LS" The second equality in (3) 

holds because ~iAiel-0 for the 
^ 

sample residuals el-y i -x i~Ls , or 

^ 

ITnA(y'X~Ls ) -- O. 
^ 

This means that YLS can be written 

in simple projection form as 

(4) 

(1988). Property iii is not suffl- 
A 

cient to guarantee that YLS is 

'design-robust', in the sense that 

the (sample based) influence func- 
A 

tion IF(yl ,xl ;YEs ) is unbounded 

both in Yl and xl, cf. Cook and 

Weisberg (1982). In fact we have 

^ (x ~ - IF(yi,x ;YL ) = A ~ AX) i T x e == 
i S i i i 

^ ^ -I~ A 
-- -- N (5) YLS -- ~LS ~-lYk' 

^ A 

where Yk--Xk~LS is the ordinary 

linear model estimate of Yk" This 

form is convenient because the in- 

- w e (i-l,...,n). (6) 
i i 

This undesirable property relates to 
A A 

the fact that ~--~LS is the solution 

to the normal equations XTAe-0p, in 

fluence of observations for the i-th which large residuals are weighted 
A 

sample element on the outcome of YLS 

can be expressed in terms of their 
A 

influence on ~LS only, cf. Smith 

(1990). Moreover, '~.i Ai el-0' offers 

protection against the simultaneous 

occurrence of a large residual e i 

and a large sample weight N-IAI . 

Under certain regularity condi- 

tions, Sarndal (1980) shows that 
A 

with YLS we have a GR-estimator 

A 

as heavily as small ones (e i-yl -xi~; 

e_(el,...,en)7). 
A 

Now we sketch how ~T.s can be mo- 

dified in such a way that the influ- 

ence of the x i is bounded, while 

properties i-ill are retained. Note 

that we refrain from accounting for 

'y-outliers' by bounding the influ- 

ence of residual. Focusing on cova- 

riate influence, let us turn to the 

T-T(y)-Ziwly i with the property that class of so-called ~-1-weighted GR- 
A 

estimators YPI of the form (2) with 

A A 

fl - tiP1 - (ZTX) iZ Ty, with 

T 
(a) rank(Z X)=p, and (7) 

(b) Zc-Al n for some p-vector c. 

(i) T is ADU, that is 

limn, N-® Ep (T-Y)-0. 

Moreover, when cj denotes the j-th 

column of X, we have that 

(ii) T is representative, that is 

T(cj)-Ziwlxlj-~j for j-1,...,p, 

and, as we already saw, 

(iii) T is in simple projection 
A 

form, that is T-N-l~xk~. 

Here Z is some n-by-p matrix that 

may depend on the ~i and x i . Note 
#% 

that YES is obtained for Z-AX. Now 
A 

YPI is obviously representative, 

Here i and ii are typical for 'model while it will be ADU under mild 
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A 

regularity conditions regarding Z. to obtain the BL-estimator YBL given 
A 7% 

As ~-~el is the solution to the by (2) and (7), cf. (9). We 
A 

normal equations ZTe-Op, condition b let the bound K 2 depend on Var~YLS- 
?% 7% 

in (7) implies that YPI-~PI. We aim -a2~lw~, the model variance of 

to choose Z in such a way that cova- the LS-estimator, and on a preset 

riate influence is bounded without proportionality factor C (a 2 is 

affecting conditions a and b in (7). cancelled out). 

In §3 we take Z-(AI n IAUX2), which is Our BL-algorithm incorporates the 

obtained by partitioning X-(I n I)[2) NAEP-procedure, the squared weights 

into I n and the n-by-(p-l) 'substan- being bounded by an upper bound nK 2 
?% 

tial covariate matrix' X 2 . Here proportional to Var~y Ls/a2 • Obvious- 

U-diag(v i) is composed of iterative- ly there remains some arbitrariness 

ly computed correction factors v i . 

Equivalently, the p-fold system 

A e = 0, (8a) ~ 
i i i 

A v e x -0 j-2 ...,p, (8b) 
i i i i3 ' ' 

has to be iteratively solved for 

(el-yi'xi#), where the v i depend on 

restrictions on the squares of the 

in the choice of the proportionality 

factor C, cf. Potter (1990). Here 

careful judgment is required, be- 

cause the weights should not be so 

rigorously adjusted that bias is un- 

duly increased. (C should be large 

enough to ensure convergence; the vl 

should approach I as n,N~.) Putting 

modified estimation weights given by a2=l, the algorithm runs as follows" 

A 

v -N-IA +(f xs )(zTx) I T - Z " 

i i T i 

f (ZTX)- i z - z (i-l,... ,n), (9) 
i 

A 

with YPI-~ivlYl • Simple projection 

form is thus preserved by bounding 

(0) -Put vi-I and compute 

w i-A i~(x TAx)-Ix T (i_l,...,n). 
A 

-Compute Var~YLs-~lw 2 ; choose 

C, cf. DmFFw--n(~lw~)/(~lwl )2. 
A 

- P u t  K z =Cn-  1 Var r /Y  L s • 

the influence of the p-i substantial (1)-Put X-(~ I,c z,...,cp), where 

covariates without affecting that of Cj_(Xlj,...,Xnj)T is the j-th 

column of X (j=2,...,p) and 
the dummies xil. 

~I--(XlI,'-',~nl)T is such 

3. Enforcing a bound for the squared 

weights 

that Xi1"I/ui (i=l,...,n). 

- Compute Z-AUX and 

di--lvil--l~(zTx)-IziTl (i-1,...,n). 

The following algorithm can be used 

to enforce an upper bound K 2 for the 

squared estimation weights v~ so as 

-Replace u i by min(l,fK/d i)u i 

(i-1,...,n; K=(K 2) h', f is some 

c o n s t a n t  f o r  s p e e d i n g  up  
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convergence, say f-O. 99). 

(2) Repeat Step I until the Iv i[ 

and/or the d i do not change 

substantially (say _<1%), or 

until the number of iterations 

attains a certain maximum. 

(3) Compute v i -~ (Z T X)- i z T 

(i-l,... ,n). 

This bounded-leverage algorithm is 

analogous to that of Dorsett (1989) 

in which the bound nK 2 is set for 

xI(ZTX) -Iz T, the 'leverage' of x i. 

The above algorithm results in a 

(virtually) continuous nondecreasing 

transformation of the least-squares 

weights (small l-f>0). The transfor- 

mation is not smooth. Smoothness can 

be obtained, however, in the manner 

of Huang and Fuller (1978) by repla- 

cing min(l,fK/d i), the correction 

factor in Step I, by some smooth 

nondecreaslng function of K/d i that 

equals i for K/di>_l+6 (for some 6>0) 

and fK/d i for K/di_<l. It may be com- 

putationally advantageous to center 

the zlj in the system ZTe--0p, except 

for the dummy covariate (j-2,...,p). 

For the n-by-p matrix F-(Tij) with 

711-0 and 71j-fj/ul, j-2,...,p, one 

has FTUAe-0p because In rAe-0 holds 

throughout the algorithm. Hence at 

each iteration of Step I, and in the 

final estimation formula of Step 3, 

may be replaced by X-F in Z-AUX, 

that is zlj may be replaced by 

zio-A IfJ (i-1,...,n; j-2,...,p). 

4. D i s c u s s i o n  

The paper gives a method of bounding 

the influence of substantial covari- 

ates on the outcome of the general 

regression estimator, without refer- 

ence to any specific target variable. 

Potter (1988, 1990) makes a distinc- 

tion between two categories of post- 

design procedures for limiting or 

reducing the number and size of ex- 

treme estimation weights. One cate- 

gory concerns the separate bounding 

of successive weight components that 

arise during the weighting process. 

The other one concerns inspection, 

truncation and compensation proce- 

dures after the composite weights 

have been computed. Bounded leverage 

(BL-) regression estimation repre- 

sents a blend of these categories, 

in the sense that the final BL- 

weights are obtained in a single 

process, in which truncation is 

automatically compensated for. 

Another feature of BL-regression 

estimation is that properties of 

model robustness (representativeness 

and asymptotic unbiasedness) are 

combined, to a certain extent, with 

'design robustness', cf. Kish (1977). 

One would, of course, guarantee 'de- 

sign robustness' more fully by some- 

how bounding the influence of resi- 

dual as well as covariate influence, 

cf. Dorsett (1989) and Smith (1990). 
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Thus an increase in bias might be 

prevented automatically. It may also 

be necessary to 'robustify' (zTx) -I 

and thus avoid convergence problems. 

Other methods of modifying re- 

gression weights have been proposed. 

Huang and Fuller (1978) give an al- 

gorithm similar to the BL-algorithm, 

such that the adjustment weight 

Nonnegative regression estimation 

for sample survey data, in 

Proceedings of the Section on 

Survey Research Methods, American 

Statistical Association, 300- 303. 

Kish (1977). Robustness in survey 

sampling, Bulletin of the 

International Statistical 

Institute 47 (3), 515-528. 

ai-A Iv i (~-xHz) (XTUAX) -IxT is bounded Potter, F.J. (1988). Survey of 

relative to the sample weight N-IAI, 

for iteratively computed correction 

factors u i . The purpose of Huang's 

and Fuller's method is somewhat 

different from ours. Moreover, 

simple projection form is not pre- 

served and hence influence conside- 

rations are less straightforward. An 

algorithm satisfying requirements of 

both nonnegativity and variance 

reduction would be fairly welcome. 
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