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1. Introduction.

The Current Population Survey is a household
survey conducted by the United States Census
Bureau in cooperation with the Bureau of Labor
Statistics. It is designed to generate estimates of
labor force characteristics (such as employed,
unemployed, and Civilian Labor Force),
demographic characteristics, and other
characteristics of the noninstitutionalised civilian
population. The sample design of the Current
Population Survey contains a rotation scheme that
includes the replacement of a fraction of the
households in the sample each month.

For any given month, the sample consists of
cight time — in — sample panels or rotation groups,
of which one is being interviewed for the first time,
one is being interviewed for the second time, ...,
and one is being interviewed for the eighth time.
In other words, the interview scheme is balanced on
time—in—sample. Houscholds in a rotation group
are interviewed for four consecutive months,
dropped for the next eight succeeding months, and
then interviewed for another four consecutive
months. They are then dropped from the sample
entirely. This system of interviewing is called the
4-8—4 rotation scheme, and is a special case of the
scheme described by Rao and Graham (1964).

The Current Population Survey is a repeated
survey, the design and analysis of which have
received considerable attention in the literature.
Theoretical foundations for the design and
estimation for repeated surveys were laid down by
Patterson (1950). Least squares procedures were
considered further by Jones (1980), and Fuller
(1990). Composite estimation is a procedure of
estimation which makes use of observations from
the current period and the preceding period, and
the estimator of the previous period. See Rao and
Graham (1964), and Kumar and Lee (1983). A
comparison of alternative estimators for the Current
Population Survey was undertaken by Huang and
Ernst (1981) and Breau and Ernst (1983). Least
squares estimation for a fairly general class of
repeated surveys was considered by Yansaneh

(1992).

2. Basic Assumptions

Assume that in each period of the survey, s
rotation groups are introduced into the sample,
where & > 1 is fixed. For computational
convenience, the data obtained over p periods can
be arranged in a pxs data matrix, denoted by
M , in such a way that all of the observations on a
rotation group appear in a single column. The
total number of observations is n = ps, where n is
the number of entries in M. We refer to the
columns of M as "streams". Assume that:

1. A given rotation group is observed over a
period of total length m and the observation
pattern is fixed (m = 16 for the Current
Population Survey).

2. The columns of M are independent.

3. The covariance structure of the observations in
a stream is constant over time, and it is the
same for all streams.

The computation of the variances of the
alternative estimators of current level and change
are based on the estimated covariance structure
constructed by Adam (1992).

3. Alternative Estimators of Level and Change

3.1. The Present Composite Estimator,

Composite estimators combine the estimators of
previous periods with data from the current period
and immediately preceding period to form an
estimate of the current period. With the Current
Population Survey, six of the eight rotation groups
observed at time t were observed at time t —1,
Let Y4 be the estimate of level obtained from the
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rotation group which is in the i—th stream at time
t,i=1, .., 8. The estimator is of the general
form
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Substituting in (2) recursively, we have, for an
estimator initiated at time zero,
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Equation (3) is an expression for Gt c asa linear
1)

function of current and pasat observations and, since
Iézl < 1, the weights decline as the distance from

the current period increases.

3.2. The Best Linear Unbiased Estimator
Suppose s streams of data collected over p

periods are available. Let Yi = (yi P Y p)' y i
=1, ..8,and let Y = (yi, yé, ey y’)’ be the
nx 1 vector of observatxom, let 0 = (0 2,
ap—-l' Op)' be the p x 1 vector of parameters of
el be the Kronecker
Pxp

interest, let X = 1"1
product of J x1 ! the s x 1 vector of ones, and

Ipxp the p x p identity matrix.
The linear model with no time—in—sample

effects is

= X8 4
Yp P+¢p, (4)

where ‘p is the vector of error terms and we

assume that E{ep} =0. Let Vp be the
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covariance matrix of Yp . The best lincar

unbiased estimator of 'p is

. (xvx)xvy, (5)

(xv 1x)-1

with covariance matrix 2

3.3. The Recursive Regression Estimator

The recursive regression estimation procedure is
a computationally efficient method of producing
minimum variance estimators in repeated surveys.
Instead of using all the available information in a
large least squares computation, the recursive
regression estimation procedure uses a linear
combination of an appropriate set of initial
estimates and the new observations at the current
level to produce the best linear unbiased estimators
of current level and change.

At the current time, denoted by ¢, where
¢ 2 m, we desire an estimator of 00: , the value of a

particular characteristicc. We have available:
1. m best linear unbiased estimators of the
parameters for the previous m periods,

‘c——l(m) = (oc ac—l) !
2., the m x m covariance matrix Ell,c—l (m)
of ’c—l(m)'

3. s observations on the eight streams at the
current time.

The s elementary observations can be
transformed so that they are uncorrelated with
previous observations. Let the transformed
observations be

%e = yi JE bk(x,c:),_) ie—j'

where the b.j's are constructed so that 5. is

uncorrelated with y § forall j> 0. The

expected valga of llc, 2 are Gc Oc-

by 8,_po s 0, — Em_lb ,’
linear model in the data avulable at the current

time is

. tespectively. A
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and le is an s x m matrix whose entries are
functions of the b, ,.  .'s, which are in turn
k(i ),

functions of the autocorrelations. The covariance
matrix of Zc is:
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¢ 0

Q00

. 2 2 2
where QOO = Var{lc} = Dmg{ol, Tor ooy a'},
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and o, = var{sic}, i=1,2,..s

The recursive regression estimator of the vector
‘c(m +1) of parameters at time c¢ is

P’y ’ _l __1 ’ _1
Omsr) =W VoW W VTZ, (D)

The covariance matrix of 'c(m +1) u‘
S T |
QR. = (W Vc w) .
It can be shown that the recursive regression
estimator of current level ot is the best linear
unbiased estimator of Ot based on data for periods

1, 2, ..., t [Yansaneh (1992), § 4.4]. To update the
recursive regression estimator for the next period,

from the data
vector, and drop Ol from the parameter vector.

The parameter Ot +1 is then added to the

we drop the initial estimate @
t—m
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parameter vector. This way, the dimension of the
estimation problem is kept constant over time.

It can be proven that the covariance matrix of
the vector of recursive least squares estimators
obtained in the recursive regression procedure
converges to a positive definite matrix as the
number of periods increases [Yansanch (1992),

§ 4.4].
3.4. The First Order Composite Estimator

The first order composite estimator is a
composite estimator of the present composite type,
constructed to give approximately optimum
estimates of current level under a first order
autoregressive model.

The weights to be used in the construction of
the firat order composite estimator of current level
are the least squares weights constructed using two
periods of data. The procedure is described in
Yansaneh (1992), Section 5.5.3.

4. Time—in—Sample Effects

A major problem with most periodic surveys is
the presence of time—in—sample effects. This refers
to the phenomenon by which estimates of current
level for a given period obtained from different
rotation groups have different expected values,
depending on the length of time they have been
included in the sample. The effects on the
estimates of current level and change have been
studied by Bailar (1975) and by Kumar and Lee
(1983).

We shall now examine the effect of rotation
group bias or time—in—sample effects on the least
squares estimators of current level and change. The
least squares procedures described in Section 3 can
be modified to incorporate time—in—sample effects.
Our discussion will focus on the 4—8-+4 rotation
scheme, but our procedure can be easily modified
and applied to any rotation design.

4.1. Best Linear Unbiased Estimation

We proceed exactly as in Section 3.2, where we
used elementary estimators in a linear model to
produce best linear unbiased estimators. In the
presence of time—in—sample effects, the components
of the linear model (4) in Section 3.2 that change
are the design matrix X and the parameter vector

0 .
P
Suppose " is the rotation group effect for

time t associated with the rotation group which is
in its k—th time—in—sample. Then, for each time



t , we may write the model

(8)

T
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where Vet is Yis when k(i, t) = k and the

covariance structure of the errors e is the same
9

as in Section 3.2. With an estimability restriction
on 7 , the best linear unbiased estimator of ﬂp

= (1) .oy LAY 01, vey op__l, Op) can be

constructed by the usual least squares procedures.

4.2. The Recursive Regression Procedure

To construct a recursive estimator in the
presence of time—in—sample effects, we proceed as
in Section 3.3 with appropriate modifications in the
design matrix and parameter vector of the
corresponding linear model. We assume that at
time t, the following quantities are available:

(a)

£=m + 8 — 1 initial estimates Bt—-l( 9

al

= (;;—l(s—l)' ot—-l(m))

where ;;-—1(3—-1) = [?l(t—-l), vy

= [0,_p (1) o

’

t—1(m)

Gt___l(t—-l)], where ot—-l(m)
estimator of the vector using data through
time t—1,

-~

T 1 (t—1)) and @

is the best

the covariance matrix of bt-—l '

®)
(©)

s independent observations, denoted by s

= ('lt’ vey s.t)’.

Then, the estimator of ﬁt( 41) is constructed as

in Section 3.3.

In the recursive procedure, the current estimates
of the time—in—sample effects are in the data
vector throughout the iteration process. It
therefore follows that the variance of each of the
time—in—sample effects will converge to sero as the
number of periods increases.

One may be unwilling to assume that the
time—in—sample effects are constant over a long
period. One way of permitting the time—in—sample
effects to change slowly over time is to do a kind of
"exponential smoothing" by adjusting the
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covariance matrix of the estimated effects at time
t, used to construct the estimator. One procedure
is to multiply the covariance matrix of the initial
estimates of the time—in—sample cffects by a
constant bigger than one. In this procedure, it is
important to distinguish between the matrix used
to define the estimator and the actual covariance
matrix of the estimators. The calculated matrix
used to construct the estimator will converge as the
anumber of periods increases. Then, the matrix
defining the recursive regression estimator will also
converge. In the limit, we can write

Prtsr) = il ©)
where zt,r = (pt-—l(l)' s;) , and Pr is the limit

matrix of coefficients. Since &t( &+1) is a function

of preceding estimates, one can use the procedure
outlined in Section 3.1 to calculate the coefficients
of the observations that define the estimator,

5. Results and Discussion

The variances of the alternative estimation
procedures relative to the variance of the basic
estimator of current level, for both characteristics of
interest, are presented in Table 1. We define the
basic estimator of the current level as the simple
mean of the elementary estimates obtained from
the 8 rotation groups at the current period. In
general, the best linear unbiased procedure becomes
more statistically efficient as the number of periods
increases. For both characteristics, the results
reveal that the best linear unbiased procedure based
on 24 periods is uniformly more efficient than the
present composite estimator. The precision of the
best linear unbiased procedure relative to the
present composite estimator for current level is 30%
for the best linear unbiased estimator for 24
periods, and 33% for the recursive regression
estimator. For unemployed, the corresponding gain
in precision is about 3% for all the estimators.
These results are a reflection of the nature of the
autocorrelation functions of the characteristics.

The autocorrelation function for unemployed
declines much faster than that for employed.

With the exception of one period change in
employed, there is a substantial improvement in the
efficiency of the estimation of change from using
the alternative estimators instead of the present
composite estimator. The gain in precision
increases as the interval of change increases,



reaching a maximum value at the five—period
change for both characteristica. The gain then
decreases slightly. In the case of the recursive
regression estimator, the maximum gain in
estimated change is 64% for employed and 11% for
unemployed.

The results of the comparison of alternative
estimators and rotation designs are given in
Table 2. The performance of the alternative
estimators of current level, change in level, and
average level for multiple time periods under the
intermittent 4—8—4 rotation design and two
continuous rotation designs are compared. The
best estimator used in these comparisons is the best
linear unbiased estimator of current level based on
36 periods, The efficiency of the 36—period least
squares estimator is virtually the same as that of
the recursive regression estimator. The continuous
rotation designs are the 6 continuous scheme and
the 8 continuous rotation scheme. The 6
continuous scheme is the rotation scheme used in
the Canadian Labor Force Survey conducted by
Statistics Canada [Kumar and Lee (1983)]. For each
period of the survey, the sample consists of six
rotation groups. A given rotation group remains in
the sample for six consecutive periods and then
drops out of the sample for good. In the 8
continuous scheme, there are 8 rotation groups in
the sample for each period, one rotation group in
the its first time in sample, ..., and one rotation
group in its eighth month in sample. A given
rotation group remains in the sample for eight
consecutive periods and then drops out of the
sample for good.

For all rotation schemes under consideration,
there is some improvement in the precision of the
estimators of current level from using the best
estimator relative to the present composite
estimator. As seen in Table 2, the gain is highest
for employed where, under the 4—8—4 rotation
scheme, the variance of the best estimator of
current level is only 92% of that of the present
composite estimator. The relative precision of the
best estimators of change relative to the present
composite eastimator depends on the rotation design.
From Table 1 and 2, we see that under the 4-—8—4
rotation scheme, there is some gain in precision,
which increases as the interval of change increases.
For employed, the variance of the best estimator is
85% of the variance of the present composite
estimator in estimating one—period change, 61% of
the variance of the present composite estimator in
estimating six—period change, and 96% of the
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variance of the present composite estimator in
estimating twelve—period change,

For estimating twelve—period averages, the
present composite estimator is about 13% less
efficient than the best estimator and for estimating
change in twelve—period averages, it is about 53%
less efficient. For unemployed, there are only
modest gains in precision from using the best
estimator relative to the present composite
estimator.

It can be seen by comparing Tables 1 and 3
that for employed, there is some gain in precision
for estimation of current level and change from
using the best estimator under the continuous
rotation designs instead of the present composite
estimator. Again, the gains in precision are higher
for employed.

For estimation of twelve—period change,
twelve—period average and change in twelve—period
averages, the best estimator, under both continuous
rotation schemes, is less efficient than the present
composite estimator for both characteristics, as can
be seen by comparing the last three rows of
Tables 2 and 3.

In Table 3, we compare the variances of the first
order composite estimator for employed and
unemployed under the various rotation designs.
Under the 4—8—4 rotation acheme, there are modest
gains in the precision of estimation of current level
from using the first order composite estimator
instead of the present composite estimator. The
gain is 9% for employed and 1% for unemployed.
However, for employed, the first order composite
estimator of change under the 4—8—4 rotation
scheme is clearly superior to the present composite
estimator. In estimating current level and change
up to twelve periods for unemployed under the
4—8-4 rotation scheme, the first order composite
estimator has roughly the same efficiency as the
present composite estimator. The results for the
continuous rotation designs are similar.

As mentioned in Section 4, in the presence of
time—in—sample effects, the alternative estimators
of current level and change are biased relative to
the mean of the basic estimator. The variances of
the alternative estimators of current level and
change over several periods in the presence of
time—in—sample effects are presented in Table 4 for
employed and unemployed. In all cases, the sum of
the time—in—sample effects is restricted to be sero.
That is, the estimator is restricted to have a mean
equal to the mean of the eight elementary
estimators. Under this restriction, there is an
increase in variance of about 10% for current level



Table It Variances of alternative estimators relative to the vanasce of the basic
estimatos of currest level
Employed Usemployed
i BLUE  Racersive BLUE  Recursive
Prosest u 1 Preseat 1] regression
Curreat
level 0.482 0.681 0.650 0.047 0.918 0.918
tpetiod
chaage 151 0.432 0.433 1.970 1073 Lon
m‘ 1.3% 0.853 0.858 L706 1.6 1.628
13-—period
change 0.992 0.747 a.76t 1503 1.563 1.584
Teble2:  Variances of the best esti of tbe basic of current level
squals one
Zmployed Unemployed
Quantity
Zatimated 4844 0Cont. ¢ Cont. 34 8Cont, §Coat.
Cusrent level 0.653 a.781 0.739 0.918 0.944 0.938
1-peniod change 0.433 4.398 0.434 1.073 1.003 1.081
6—period change 0.854 0.528 0.970 1.628 1817 1.688
12-period change 0.758 1.048 1.186 1.584 1.698 .37
12-period avenge 0.326 0.440 0394 0.249 0.301 0.268
Clange in
13—period averngos 0162 0388 0403 0262 0372 0350
Table3:  Variances of the firss ordet composl lative 10 the variance of the
basic estimator of curreat level
Employed Unemployed
au.m
umu:( 844 8Coat. 6Comt. 434 §Comt, §Coat.
Curtent level 0.790 0.520 0.800 0.942 0.961 0.952
1-period chaage 0.482 9.417 0.487 1.090 1.011 1.060
@—pedod change t.127 0.988 1.133 1.702 1.638 1.729
12~period change 0651  1.298 1M1 1.580 1.1 0.7
12-period avennge 0380 0.434 0.288 0250 0.0t 0.261
Clange in
l!—ogod aversges 0.263 0473 0.450 0.284 0.3%8 0.383

Table & Variances of iternative ertimators {a the presence of time—{n—~ample effects§
variance of the basic estimatoc of curreat equals cae
Employed Unemployed

Blgl Recursive sx&m Recursive

g:ud regression regression

uugd 24 periods estimasoe 4 periods estimatoe
Current level 0.7 0.688 0.928 0.923
1—period chaage 0.449 0.438 1.009 1.078
6—period chaage 0.831 (X1 1648 L6
12-period change 0.914 0.%07 1.589 1573

fThe estimatoc is constructed 50 that the expected valoe of the equals the expected

valne of the average of the cight elementary estimators.
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of employed and virtually no increase for
unemployed.

Generally, the effect of including
time—in—sample effects in the model is to increase
the variance of the estimators. The increase in
variance is a function of the type of restriction
imposed and the length of the period used to
estimate the time—in—sample effects.
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