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1. INTRODUCTION 
1.1 Background 

A major thrust in sampling theory in the last 
twenty years has been to devise ways of restricting the 
set of samples used for inference. In a purely design- 
based approach, as described in Hansen, Madow, and 
Tepping (1983), no such restrictions are imposed. 
Statistical properties are calculated by averaging over 
the set of all samples that might have been selected 
using a particular design. Although it is generally 
conceded that some type of design-based, conditional 
inference is desirable (Fuller 1981, Rao 1985) 
satisfactory theory has yet to be developed except in 
relatively simple eases. A design-based approach to 
conditioning was introduced by Robinson (1987) for 
the particular ease of ratio estimates in sample 
surveys. Robinson applied large sample theory and 
approximate normality of certain statistics to produce 
a conditional, design-based theory for the ratio 
estimator. 

In this paper, we extend that line of reasoning 
to the problem of post-stratification. Convincing 
arguments have been made in the past by Durbin 
(1969) and Holt and Smith (1979) that post-stratified 
samples should be analyzed conditional on the sample 
distribution of units among the post-strata. Model- 
based, conditional analyses of post-stratified samples 
are presented in Little (1991) and Valliant (1993). 
The alternative pursued here is design-based and uses 
large sample, approximate normality in a way similar 
to that of Robinson (1987) as a means studying 
conditional properties of estimators. 

1.2 Basle Definitions and Notation 
The target population is a well def'med 

collection of elementary (or analytic) units. For many 
applications the elementary units are either persons or 
establishments. We assume the target population has 
been partitioned into first stage sampling units 
(FSUs). The collection of FSUs will be referred to as 
the first stage sampling frame (or just sampling 
frame). It is assumed that there are M FSUs in the 
sampling frame and they are labeled 1, 2 ..... M. We 
also assume that the population units can be 
partitioned into K "post-strata" which can be used for 
the purposes of estimation. 

We let y represent the value of the 
characteristic of interest for an elementary unit. 

Associated with the /th FSU are 2K real numbers: 

y~ = aggregate of the y values for the elementary 

units  in the i a' FSU which are in the k °' 

post-stratum, 

Ni = number of elementary units in the i th FSU 

which are in the k th post-stratum. 
For each post-stratum we then define the aggregate of 
the ys  and total number of elementary units: 

M M 

Y.k : ~_~Yc,, and Nk  = ~_,N~ • 
i=1 i=1 

In what follows we assume that the N~ are known. 

The population aggregate of the y values and the total 
population size are given by 

Y . . = Z Y ~ a n d N . = ~ _ , N ,  . 
k=l  k=l  

In sections I-3, we assume that the sampling frame 
provides "coverage" of the entire target population. In 
section 4, we consider the problem of a defective 
frame, i.e. one in which the coverage of the frame 
differs from that of the target population. 

1.3 Sample Design and Basic Estimation 
Suppose that the first stage sampling frame is 

partitioned into L strata and that a multi-stage, 
stratified design is used with a total sample of m 
FSUs. In the following, the subscript representing 
design strata is suppressed in order to simplify the 
notation. For the subsequent theory, it is unnecessary 
to explicitly define sampling and estimation 
procedures for second and higher levels of the design. 
However, for every sample FSU, we require 

estimators Ya and A/a so that E[~a]=ya and 

E[iQ.~]=N~ where the notation E indicates the 
2 + t - - J  2+ 

design-expectation over stages 2 and higher. Letting 

a" i be the probability that the i th FSU is included in the 

sample and w i = 1/tri, it follows that the estimators 
m /ti 

17.k = Z w,~a and A/, = Z w,/f/a 
i=l i=l 

are unbiased for Y.k and N~. 

1.4 An Analogue to Robinson's Asymptotic Result 
Following Krewski and Rao (1981), we can 

establish our asymptotic results as L--> oo within in 
the framework of a sequence of f'mite populations 

{ILL} with L strata in 1I L . It should be understood 
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that we implicitly assume (without formal statement) 
the sample design and regularity conditions as 
specified in Krewski and Rat  and more fully 
developed in Rat  and Wu (1985). Details of proofs 
are omitted. 

Converting 

Y :[Ya...Y,]' , 

to matrix notation, we let 

N = [ N I . . . N . r ] '  , ~ '  = [Y.t . . . ]~.~]  ' , 

"Y = (1/N.)¢l and N = (1/N)1~1. Analogous to 

conditions C4 and C5 of Krewski and Rat  (1981), we 
assume that 

lim Y k/Nk = Its,, for k = 1,2,- . . ,K,  (1) 

lim N k / N  = ek > 0 for k = 1, 2,..., K ,  (2) 
L---~** 

= r El, z,2] (positive def'mite) (3) l immV=Y., L 

where Z is partitioned in the obvious manner. Note 
that we have again suppressed the subscript 
representing design strata. Assumptions (1)-(3) 
simply require that certain key quantities stabilize in 
large populations. Condition (2), in particular, assures 
that no post-stratum is empty as the population size 
increases. Letting 

M, = lira Y =[c#,lz, c#21z ~ ... c#~clz~c] , 
L--coo 

M 2 = l i m N  [¢1 ¢2 "'" Cr] and 
/.-4.00 

-1 
V e "-- E l l  - -  X I 2 X 2 2 X 2 1  , i t  f o l l o w s  t h a t  

mY2[ ~ -  M1-~ Zt2Z~ (~-__N_M2 M2)] tends in distribution 

to N 0 ' 0 •22 . This is analogous to the result 

for K = 1 cited by Robinson (1987). It then follows, as 

in Robinson, that given N (more strictly, given N in a 

cell of size on -~  for small e), the conditional 
^ 

distribution of Y is asymptotically 

-1 - - - - ~  ),m-iV,) N(M~+ Z~2Z22 (N- M 2 

Note that in some sample designs I 'N  = N. (such as 
those in which a fixed number of elementary units are 

selected with equal probabilities) in which ease Zd 
does not exist; in such cases only the rtrst K-1 post- 
strata are considered for the purpose of conditioning. 

2. C O N D I T I O N A L  P R O P E R T I E S  OF 
E S T I M A T O R S  FOR THE P O P U L A T I O N  MEAN 
2.1 Estimators for the Population Mean 

The population mean is, by definition, 

# = lirn(Y/N) = l im( l 'Y / l 'N )=  ,~--~,t,¢,/4, where 

1' is a row vector of K ones. Four estimators of the 
population mean will be considered. The f'trst three 
are standard ones found in the literature while the 
fourth is a new estimator: 

(1) Horvitz-Thompson estimator: ~ur = I '~ ' / I 'N = 1 '~  

(2) ratio estimator: ~R = 1"¢1/1'N = I ' Y / I ' N  
(3)post-stratified estimator: 

L : N-1Z(N,/D~)I~k : r'Y 
t = l  

where r ' : [Nl l l f t , . . . . .N, lf i l , ]  
(4) linear regression estimator: 

The linear regression estimator is motivated by the 
form of the large sample mean of the conditional 

random variable Y--1 ~ listed at the end of section 1.4. 

This estimator was also discussed by Rat  (1992) and 
is very similar to the generalized regression estimator 
discussed by Samdal, Swensson and Wretman (1992). 
It should be noted that the estimators require varying 

degrees of knowledge about Nt and N. • The linear 

regression estimator has the additional complication 

that the covariance matrices Zt2 and Z22 are unknown 
and must be estimated from the sample. In 

A 

implementing Yz~, the known finite population 

quantities (1]N.)N will be used in place of the 

limiting vector M 2. 

2.2 Conditional expectations and variances of  the 
estimators 

Using the asymptotic setup given earlier, the 
conditional expectations and variances of the four 
estimators can be computed. First, define the 
following three matrices: 

H = Z~2Z~, R = H - D ( # ) ,  and P = H - D ( # k )  

with D(p)=  diag(l t , . . . ,#) ,  D(ltk)= diag(l~, '" ,pr , ) .  
Below, we state the mean and variance of the four 
estimators without providing any details of the 
calculations. When the sample of first-stage traits is 
large, each of the estimators has essentially the same 
conditional variance. The Horvitz-Thompson, ratio, 
and post-stratified estimators are, however, 
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conditionally biased, whereas the linear regression 
estimator is not. Thus, the linear regression estimator 
has the smallest asymptotic mean square error among 
the four estimators considered here. 
(1) Horvitz-Thompson estimator: 

(2) ratio estimator: 

E[~'.IN] =/z + [ I ' R ( N -  M,)]  + o(m-') 

- + 

(3) post-stratified estimator: 

E[~'es~] = # + [ I ' P ( N -  M,_)] + o(m-') 

var[~esl'N] =m-'[r'V,r]= Vur(,, +o(m-(~' ) 

(4) linear regression estimator: 

Note that some minor modifications of the above 
formulas are necessary for designs, such as simple 

^ 

random sampling, in which I ' N  = N.. 
The large-sample biases of the first three 

estimators depend on N -  M 2, a measure of how well 
the sample estimates the population distribution 
among the post-strata. In some special cases each of 
the first three can be conditionally unbiased. The 
post-stratified estimator, for example, will be 

approximately unbiased if I ' ( H -  D(/z k)) = 0'. This 

occurs in simple random sampling and is possible, 
though certainly not generally true, in more complex 
designs. The matrix H can be interpreted as the slope 

in a multivariate regression of Y on N, or of Y on N 
when the sample estimates are close to the population 
values. Thinking heuristically in superpopulation 

terms, if E~ ( y , ) =  p,N,, as in VaUiant (1993), with 

E~ denoting an expectation with respect to the model, 

then E¢ (Y.k)=/z,N~. The slope of the regression of 

Y.k on N~ is then #~ . In the unusual case in which the 
^ 

~ ' s  are independent, H = D(/zt) and the conditional 

design-bias of the post-stratified estimator would be 

zero. If, on the other hand, the model has an intercept, 

i.e if E¢ (Y~) = oe~ + #~N~, then the post-stratified 

estimator may have a substantial conditional design- 
bias. 

Similar model-based thinking can be applied 
to the Horvitz-Thompson and ratio estimators to show 
that restrictive and unrealistic models are required in 
order for the conditional design-biases to vanish. 

3. SIMULATION RESULTS 
The theory developed in the preceding 

sections was tested in a set of simulation studies using 
three separate populations; the results for two of these 
populations are given below. The population size and 
basic sample design parameters for the two studies are 
listed in Table 1. 

The first population consists of a subset of the 
persons included in the fin'st quarter sample of the 
1985 National Health Interview Survey (NHIS). The 
variable of interest is the number of restricted activity 
days in the two weeks prior to the interview. Four 
post-strata were formed on the basis of age and sex in 
order to create population sub-groups that were 
homogenous with respect to the variable of interest. 

The second population is artificial; it was 
ere, ted with the intention of producing a substantial 
conditional bias in the post-stratified estimator of the 

mean. As noted in section 2.2, Yes will be 

conditionally biased if the FSU post-stratum totals for 
the variable of interest, conditional on the number of 
units in each FSU/post-stratum, follow a model with a 
non zero intercept. With this in mind, we generated 
the population in such a way that 

E¢ (rAIN,)= a .  + fiN, + y N~ (4) 

where N, is the number of units in the k th post- 

stratum for the i ~ FSU and a k,/3, and ~' are constants. 

Five post-strata were used with tt~ = lOOk (k=-I ..... 5), 

/3=10, and ) ' = - . 0 5 .  Two thousand FSUs were 

generated with the total number of units in the i ~ 

FSU, say Ni., being a Poisson random variable with 

mean 10. Conditional on N;., the numbers of units in 

the five post-strata (i.e., N,a,Ni2,...,N~5 ) for the i ~ 

FSU were determined using a multinomial distribution 

with parameters N i. and pk =.20 for k = 1,2,...,5. 

Finally, the value of the variable of interest for 

the j*~ unit in the k ~ post-stratum for the i ~ FSU was 
a realization of the random variable 

y~ = , , I N ,  + #+ rN,  + e~, + e~, + e~N,. 

where eai, e2,, and e ~  are three independent 

standardized chi-square (6 d.f.) random variables. 
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This structure implies that E¢ (YaINa) is given by (4). 

A single-stage stratified design was used for 
the NHIS population with "households" being the 
FSUs. Ten design strata were used and an 
approximate 10% simple random sample of 
households was selected without replacement from 
each stratum. Each sample consisted of 115 
households and each sample household was 
enumerated completely. 

A two-stage stratified sample design was used 
for the artificial population. One hundred design 
strata were created with each stratum having 
approximately the same number of FSUs and a 
systematic sample of m = 2 FSUs was selected with 
probabilities proportional to size; thus, 200 FSUs were 
selected. The within FSU sample size was set at 15 
which resulted in the complete enumeration of most 
sample FSUs. 

A total of 5,000 samples was selected from 
each of the populations for the simulation study. In 

each sample, we computed Ynr, YR, Yes, and two 

versions of Yt~. For the first version of the regression 
A 

estimator, denoted Yu(emp) in the tables, H was 

estimated separately from each sample as would be 

required in practice. Each component of I;~2 and 1922 
was estimated using the ultimate cluster estimator of 
covariance, appropriate to the design. The second 

A 

version, denoted YtR(theo), used the same value of H 
in each sample, which was an estimate more nearly 
equal to the theoretical value of the H matrix. 

Table 2 lists unconditional results summarized 
over all 5,000 samples from each population. 
Empirical root mean square errors (rmse's) were 

/s] calculated as rmse(ff')= ,_ , (~_ ~.)2 j4 wi thS=  

^ 

5,000 and Y, being one of the estimates of the 

population mean from sample s. In the artificial 
population, results for the Horvitz-Thompson and the 
ratio estimators were nearly identical so that only the 
former is shown. Across all samples, the bias of each 
of the estimators was negligible. As anticipated by 

the theory, Y~(theo) was the most precise of the 

choices, although the largest gain compared to Yes 
was only 4.7% in the artificial population. The need 
to estimate H destabilizes the regression estimator as 

shown in the results for Yt~(emp). For the NHIS 

population, Yt~(emp) has a larger root rose than both 
^ 

Y~(theo) and Yes. 

Figures 1 and 2 present conditional simulation 
results. The 5,000 samples were sorted by the 
theoretical bias factors presented in section 2.2. The 
sorting was done separately for each of the estimators 
of the population mean. In the cases of the two 
regression estimators, which are theoretically 

^ 

unbiased in large samples, the bias factor for Yes was 

used for sorting. The sorted samples were then put 
into 25 groups of 200 samples each and empirical 
biases and root rose's were computed within each 
group. The group results were then plotted versus 
theoretical bias factors in the figures. The upper sets 
of points in each figure are the empirical root rose's of 
the groups, while the lower sets are empirical biases. 
The two regression estimators are conditionally 
unbiased as expected. The other estimators, however, 
have substantial conditional biases that, in the most 
extreme sets of samples, are important parts of the 
mse's. In the neighborhood of the balance point, 

N = N, all estimators perform about the same, but, 
because of a lack of data at the design stage, we have 
no control on how close to balance a particular sample 
may be. The safest choice for controlling conditional 

^ 

bias is, thus, Yu~ (emp). 

4. DEFECTIVE F R A M E S  
4.1 The Basic Problem of Defective Frames 

In most real world applications not all of the 
elementary units in the population are included in the 
sampling frame. In household surveys, it is not 
unusual for some demographic subgroups, especially 
minorities, to be poorly covered by the sampling 
frame. Bailar (1989), for example, notes that in 1985 
the sample estimate from the CPS of the total number 
of Black males, ages 22-24, was only 73% of an 
independent estimate of the total population of that 
group. 

To formalize the discussion of this type of 

coverage problem, suppose that Nk now refers to the 

number of elementary units in the frame and that /V.k 

is the actual number of population elements in the k ~ 
post-stratum. In the discussion below terms with a 
dot on the top are population values while terms with 

no dot are frame values. Letting I;'. k be the aggregate 

of the y values over all population elements in the k ~ 
post-stratum, then it follows that the true population 

is given by 
117 

E& 
k = l  

Obviously, all four of the estimators of the mean 
given in section 2 are biased (both conditionally and 
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unconditionally) for ~. The additional bias term is 

/z-/;t for all of the estimators, and being o(1), it will 
dominate the other bias terms listed in section 2.2 as 
the number of FSUs increases. A more basic problem 

is that the individual frame values N~ are usually 

unknown so only the ratio estimator is well defined. 

On the other hand, the/V~ (or least the proportions ~k) 

may be known from independent sources and hence 
be available for the purposes of estimator 
construction. 

Before attempting to construct unbiased 

estimators for ~ it should be noted that 
£ £ 

k=l k=l 

£ 

k=l  

So, if we assume that for each post-strata the mean of 
the units in the frame is equal to the true population 

mean, (i.e. /I k =~k for every k) then the bias term 

reduces to 
£ £ 

k=l  k=l 

This is very strong and expedient assumption; 
however, addressing the problem of defective frame 
bias without such a condition is virtually impossible. 

4.2 Alternative Estimators 
The basic strategy is to construct an estimator 

for the defective frame bias, , u - p ,  and then subtract 
this estimator from the estimators studied earlier. 
Two cases need to be considered: (1) The frame 

parameters {¢k, 1 < k < K} are unknown, and (2) The 

frame parameters {(p,, 1 < k < K} are known. 

Case 1. For this case only the ratio estimator is well 
deffmed and the only obvious candidate for an 
estimator of the bias is 

Using the strategy given above, the resulting estimator 
for/2 is 

£ 

k=l N k 

This is the "post-stratified" estimator usually found in 
practice. It is straightforward to verify the following 

A 

properties of Y~" 

E[~[~]  = ~ + [ p ' P ( ~ -  M,)] + o(m-') 

var[~[~]  = m-'[p'V, Pl+o(m -(¥~)) 

E[~] =/2 +o(m- ' )and  

+o(m -O/2}) 

where P' : [~,/¢,,  ~ , /~2 , ' " ,  ~¢/¢~] .  

The attempt to correct for the defective frame bias is 
A 

successful in the sense that Y~ is unconditionally 

unbiased for p.  However, the conditional bias is still 
present• 

Case 2. For this case it can be verified that the 
estimator 

is approximately, conditionally unbiased for # - / 2  
^ 

and, as Y~ is conditionally unbiased for # ,  it follows 
directly that the estimator 

is both conditionally and unconditionally, 

approximately unbiased for it. It can also be verified 
that 

v.[el,]: v.[e]-m-'[p'V,p] . 
In addition to the problems of the linear regression 
estimator cited earlier, this estimator is usually not 
even well deffmed as the frame parameters 

{~,, 1 < k < K} are rarely, if ever, known when the 

flame is defective. 

5. CONCLUSION 
This study has generalized the asymptotic 

techniques suggested by Robinson (1987) to study the 
problem of post-stratification from a design-based, 
conditional point-of-view. From a conditional point 
of view the linear regression estimator is preferable 
among the four studied here• Only the regression 
estimator is conditionally unbiased. The post- 
stratified estimator is no better (or worse) than either 
the Horvitz-Thompson or the ratio estimator; all have 

conditional bias terms of order m -c~). All of the 
estimators have the same conditional variance to 

terms of order m-l; furthermore, the conditional 

variance ~ depend on N, the vector of 
estimated proportions in the post-strata. 
Consequently, because of its conditional 
unbiasedness, the regression estimator has the 
smallest conditional mean square error. 

The problem of a defective frame introduces 
complications not found otherwise. Each of the 
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estimators of the mean studied here is biased both 
conditionally and unconditionally. Bias adjustments 
are possible only under the restrictive assumption that 
the mean of units within each post-stratum is the same 
for all population units whether they are included or 
excluded from the frame. 
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Table 1. Population size and basic sample design 
parameters for three simulation studies. 

Population 
Pop. 
Size 

N 

No. of 
FSUs 

M 
HIS 2,934 1,100 
Art ifie!al 22,001 2,000 200 

No. of sample 
FSUs 

191 

115 ~ 

Table 2. Simulation results, for three populations. 
A 

Rel-bias F rms~(~) 
Estimator (%) rms~(~) 100 nns~(~)- 

H I S  population 
^ 

Ytrr .12 .141 .05 
A 

.10 .141 .02 
_ A  

y~ .11 .141 0 

" .19 .162 14.71 
Yu~(emp) 
" .08 .140 -.96 Y,~ (theo) 

. o 

-1 

. 

Artificial population 
Y=r .02 2.30 -2.93 

rj,s .12 2.37 0 

" .04 2.31 -2.41 
Yu~(emp) 

r=(,ua ) '~ "" eo- .02 2.26 -4.70 

¢3 ~. 
=b.O 

a," 

Figure 1. NHIS simulation, m=115 
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Figure 2. Artificial population simulation,m=200 
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