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1. Introduction 
In the 1991 Schools and Staffing Survey (SASS), there are 

some nonrespondents. One strategy for adjusting for 
nonresponse is to estimate the variables of interest with a 
poststratification estimator. Each respondent observation is 
weighted by the inverse of the respondent proportions of the 
observations in its cell, which is defined on the auxiliary 
variables such as grade level, enrollment and urbanicity. In 
doing this, one is implicitly modeling the nonresponse 
mechanism by assuming that the probability of nonresponse may 
vary among cells but not within cells. Hence, it is important to 
choose suitable adjustment cells such that the response 
probabilities of individuals within cells are as homogeneous as 
possible. This approach is discussed in detail by Schaible (1979). 

The first objective of our research is to identify the auxiliary 
variables correlated with nonresponse and make 
recommendations for nonresponse adjustment cells. The 
second objective is to identify subpopulation with low response 
rate where field resources can be concentrated to improve the 
overall response rate. The data used are from a sample of 8995 
public schools and 2741 list frame private schools. 

Section 2 of the article presents a brief description of the 
1991 SASS. In Section 3, we discuss the methodology. To 
identify the auxiliary variables correlated with nonresponse, 
adjusted Chi-square tests are used for testing the correlation 
between the auxiliary variables and response status. For 
estimation of response rates in subpopulations, due to the small 
subpopulation sizes, procedures depending on the distribution 
created by the sampling plan are unstable or not available. The 
Io0t-estimates , which are simply the application of the "pseudo" 
maximum likelihood estimate (pseu-MLE) from Roberts, Rao 
and Kumer (1987), were used to estimate the response rates for 
subpopulations of public schools. For private schools, 
subpopulation sample sizes are too sparse to support the 
existence of a unique pseu-MLE. Hence, empirical Bayasian- 
Iogit estimates which are based on the "pseudo" maximum 
posterior estimate (pseu-MPE) defined in Section 3.3 were used 
as alternatives. Section 4 contains a summary of our results and 
conclusions. 
2. The 1991 Schools and Staffing Survey (SASS) 

2.1 Frame Construction 
The 1991 Schools and Staffing Surveys consists of a school, 

a teacher, and for public schools a Local Education Agency or 
school district survey. Public schools were identified on the 
Common Core of Data or CCD. This CCD was matched to the 
previous SASS public school sampling frame. Non-matches 
from the previous frame were included with the CCD to make 
up the public school sampling frame for 1991. Public schools 
were stratified by state, grade level, and Indian/non-Indian. 

The private schools were selected from a list frame, 
constructed by matching multiple lists obtained from private 
school organizations, State Departments of Education, and a 
private vendor. This frame is thought to include 80-90% of 
private schools. To increase the coverage of the survey, an area 
frame was constructed by selecting 120 PSUs, consisting of 
counties or groups of counties. Within these sample counties, 
lists of schools were obtained from local sources, such as yellow 
pages, churches and fire marshals. These lists were unduplicated 
with the list frame. The remaining schools, not matching to the 
list frame, make up the area frame. 

2.2 Desijzn 
Public schoo~ were stratified by state, grade level, and 

lndian/non-lndian. Probabilities of selection were computed, 
proportional to the square root of the number of teachers in the 
school conditioned on the 1988 selection. The probabilities were 
adjusted to obtain the desired proportion of overlapping schools 
from 1988. Approximately 9900 public sample schools were 
selected systematically within each stratum. 

Private schools were stratified by affiliation, grade level, and 
census region for the list frame, and by PSU and grade level for 
the area frame. Probabilities of selection were computed and 
adjusted similarly to the public schools. Approximately 3300 
private schools were selected, systematically within each stratum. 

2.3 Data Collection 
School questionnaires were mailed to schools. They were 

asked to fill them out and mail them back to the Census Bureau. 
After four weeks, if the school hadn't responded, we sent out a 
second questionnaire. If after three more weeks the school 
hadn't responded, we called them and attempted to complete the 
interview by telephone. Schools still not responding by 
telephone were classified as noninterviews. 

2.4 Estimation 
Schools' probabilities of selection were adjusted for school 

merges and other situations that would affect the probability of 
selection. The inverse of the probability of selection became the 
basic weight. This basic weight was adjusted to account for 
noninterviews using noninterview adjustment cells. A ratio 
adjustment was also applied which adjusted the characteristics 
of the sample schools to the characteristics of the whole sample 
frame. 
3. Methodology 

3.1 Testing 
The response status (yes or no) is considered to be the 

response variable. The continuous auxiliary variables are 
divided into 2 -5 groups. The standard Chi-Squared tests for 
independence (denoted as X~ 2 when auxiliary variables are not 
used for stratification) or tests for homogeneity (denoted as Xa 2 
when auxiliary variables are used for stratification) are not 
appropriate due to the complex sample design of SASS. As a 
result, some adjustments that take into account the design are 
necessary in order to make valid inferences from survey data. 
Rao and Scott (1984) derived a first-order correction denoted by 
6 to the standard Chi-Squared test which requires the knowledge 
of only the cell design effects (deffs) and the deffs for marginals 
provided the model admits a direct solution to likelihood 
equations under multinomial sampling. These results are 
applicable to the test results in our study. 

However, because of a shortage of information on cell deffs, 
only Xai and some of Xa 2 were adjusted. The reason is that the 
empirical study by Holt, Schott and Ewings (1980) indicated that 
the distortion of nominal significance level is substantially 
smaller with X~ 2 than with X~ 2. The deffs for adjusting tests 
were obtained based on the estimated variance of all the 
individual cells using 48 pseudo-replicates originated by the U.S. 
Bureau of the Census (Simmons and Baird (1968)). 

** This paper reports the general results of research 
undertaken by Census Bureau staff. The views expressed are 
attributable to the authors and do not necessarily reflect those 
of the Census Bureau. 
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3.2 Subpopu!atio n Estimation 
Some variables of interest that we identified as correlated 

with nonresponse, were chosen to construct subpopulations. By 
the levels of the variables chosen, the populations of public 
schools and list frame private schools were divided into 20 and 
48 subpopulations respectively. In certain subpopulations, 
sample sizes are too small to have accurate estimates by using 
the standard methods based on the selection probabilities. One 
strategy is to borrow information across subpopulations by using 
an unsaturated Iogit regression model. Due to difficulties in 
obtaining appropriate likelihood functions for our design, 
"pseudo" maximum likelihood estimates (pseu- MLE) (Roberts, 
Rao and Kumar (1987)) can be used to replace maximum 
likelihood estimates (MLE) of regression coefficients. This 
strategy was implemented on the estimation of response rates 
for subpopulations of public schools and the estimates based on 
the regression model are referred to as Io0t-estimates. 
However, with only 2741 samples for list frame private schools, 
the observed response or nonresponse frequencies are zero for 
some subpopulations. These conditions may make pseu-MLE 
not unique (Albert and Anderson (1984)). To solve the 
existence problem, an empirical Bayes approach was proposed 
and Bayesian-lo0t estimates were used as alternatives. 

The approach is described in Section 3.3. The goodness-of- 
fit of the model was based on a likelihood ratio test corrected 
by an upper bound on 6 proposed by Rao and Scott (1987). 
The upper bound can be obtained using information on cell 
deffs and marginal deffs. The test is conservative and applicable 
to the model not admitting a direct solution to the likelihood 
equation. 

3.3 An Empirical Bayesian Approach for Subpopulation 
Estimation of Binary Data from Complex Sample 
Surveys 

Without loss of generality, suppose that the population is 
partitioned into I×J subpopulations according to factor Ai 
(i= 1 ..... l) by factor Bj (j-1,...,J). Let P-(PI,-.-,Pu)' where P~ 
denotes the proportions that schools in the ij * subpopulation are 

respondents. Let ~ r  denote the 1991 SASS survey estimate of 

the ij* subpopulation total ~'0~ the corresponding estimate of 

response frequencies. With large ~r 0 and reasonably large 

frequencies, ~0~' the ratio estimate 

is often used to estimate Pe. When the data are too few 

Ptf can be very unstable. In this situation, it seemed much 

more appropriate to borrow information across subpopulations 
by using an unsaturated logistic model. A logistic regression 
model for the response rate Pi of the ij * subpopulation is given 
by P~ = f~(~), where 

I)o) ]. 
1-/#(I))] x'(,I) 

In (3.1) X~ is an S-vector of known constants derived from 
the factor levels and p is an S-vector of unknown parameters. 
The pseu-MLE of p can be obtained from solving the following 
"pseudo" likelihood equations through iterative calculations: 

X/D(~)](~) . X~D(~)p (3.2) 

where X = (XII ..... Xu) is an SxU matrix of rank S, 

¢ 

is the estimated subpopulation 

relative size t0i, 

= ( ~ ,  .... ,~u)' and , / ~ ) = ~ , ( ~ )  .... J ~ ) ) ~ ,  

Under the assumption that n v'(~ - . ~ ) )  converge in 

distribution to N(0, V), the estimated asymptotic covariance 

matrix of j ~ )  is (Robert, Rao and Kumar (1987)) 

¢,/- [~)]-'~ix~>px,~[z)(~)] -~ (3.3) 

where 

/k=d/ag(~),)~l,(l-~, ) .... ~ u ( l - ~ o ) }  and 

~-n-~(x'~x)-~[x't)(6)~6~(x'&x)-' 

where I~ denote the survey estimate of the covariance 

matrix V. 

However, when any of ~¢1 or/~te ('/~¢-/~¢1) is zero, a 

unique pseu-MLE ~ may not exist for the regression model 

considered. A sufficient condition for the existence of a unique 

is 0 </~#, < ~0 for all i, j (Albert and Anderson (1984)). 

The empirical Bayesian approach developed next solves the 
existence problem and has an intuitively appealing 
interpretation. First, we model the distribution of P~ as a Beta 
distribution with parameters ai and b i. That is, we will assume 

the hierarchical prior P¢-Bem(arbt)  for i-1,...,I and 

j = 1 .... ,J, so that the Pi have density function 
where B(ai, b.~ is the complete beta function. 
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Note that the hierarchial prior model is equivalent to 
grouping like subpopulations (with the same level of factor A) 
into strata (different levels of factor A) and modeling the 
subpopulations within a stratum to have a common distribution. 
For list frame private schools, based on the data 1988 and 1991 
SASS, the variation of response rate within each association is 
smaller than the variation of response rate among the 
associations. Also, there were reasonably large sample sizes in 
each association. Hence association was used as factor A and 
the combination of the other variables was used as factor B to 
construct the hierarchical model. 

Next, we estimate a i and b i for i= 1 .... ,I from the marginal 
distribution of data by integrating the following "pseudo" 
likelihood equation with respect to PiP 

E [(/)n(-~)÷,,-1 (I-/)¢)n('?)÷ b i =' [l)(a~D~)] -1] (3.4) 
It 

The result of integration of (3.4) is 

H¢ [ ( ~ - - ~ ) +  % ~ - - ~ ) +  b,)[B(%b~ )]-11 (3.5> 

The expression in equation (3.5) is maximized under the 
constraint a i>0  , b i>0  using numerical method to obtain the 

pseu -MLEofa  i a n d b  idenotedby  (t t and ~t f o r i = l  .... I. 

The value of # obtained by solving the following equation will 

be called the pseu-MPE of B and denoted by ~ and the 

estimator ~ )  will be referred as empirical Bayesian=lo0t 

estimator. 

X 'D( & )](~ ) = X tD( (a )P (3.6) 

where i li " (#,, .... ,Pu) t ~ ¢  = 

~ )  = a~a~(%, .... %) ,  

aA) - .... ,t',,(O))' % = 
( a , . O  

t 

The pseu-MPE always exists since d t > 0 and i~ t > 0 for 

all i. 
REMARK. 

First, note that PC can be written as 

where 

¢,' , , , .  
it U I m  

P~(1-PO 

Note that ~ is the estimated variance of the i a' stratum 

based on the superpopulation model (prior distribution impcr~d 

on P) and ~ is an intuitively estimated sampling variance 

for the ij* subpopulation when the subpopulation sample size is 
not zero. The smaller the sampling variance relative to stratum 

variance, the more weight PIt gets. Just as intuitively 

reasonable, for large relative sampling variance, which can be 
defined as infinity when sample size is zero, little weight should 

be given to Pit , and there should be a borrowing of strength 

from the other observations in the same stratum. Secondly, 
under the model (3.1), it follows that/~ has a prior ~r(/~) in the 
form 

, , (p)-II  
It 

Solving the Equation (3.6) is equivalent to maximizing the 
following "pseudo" posterior likelihood function with respect to 
# 

I 'I  [fd~) ]~ # J [1 - fd~)]  # 
¢ 

The conditional asymptotic covariance of ~ )  can be 

derived as follows: 

LEMMA. Let [3 o denote the conditional expected 

value of ~ whenP  = P0- 

Suppose that 

(A) The conditional distribution of nv~(# _ i(130)), 

n tends to infinity, is normal with mean 0 and 

variance V 0 and, 
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,) m 
(B) For all i,j, we have ~0-~a¢-o~1) where ~¢ 's 

are some design-dependent constants. 

then the conditional asymptotic variance of ~ )  , denoted 

by ~ , is ~ -  [D(w')]-t& e X VII X/~I, o [D(w*)]-s 

where 

V~ .,~ -,(X , %X)-,tX ,D( ,., .) VoD( o, .)X](X ,aoX)-~ (3.7) 

D(to*) = diag(to*,,...,to*u) and 
Ao : diag{ta*,,f.(flo)[1-f,(fl0)] .... ,to~f,(#0)[1-fu(fl0)]} 
Proof: 

Let t~p.o(z)). E tt~(lkv(a)) - E x'~%(P~ - I¢(1~)) • 

By Equation (3.6), U(j],D(~)) - 0 

Under the assumption ( B ) ,  

U(fl,D(~)) - U( ILD(¢o *)) + o,(1) for  a / / p  as n - . -  

Now, treat U(13, D(¢o*)) as a function of ~ only and 

denoted by L(fl). Regularity conditions are satisfied by L(fl) 

and as n is large n ~  - 130) can, using a Taylor expansion, 

be approximated by 

- 0t' A ~ ' ~ '  DO*') 0D ~ @ -j~lt,))] 

Under the assumption (A), it follows that n~t(~ - I$0), 

as n tends to infinity, converges in distribution to N(O, VII) . 

Similarly, noting that 

. ~ i i ) -  ~Kji.))- [ ~-~ . )1  l .~15 - I~=)l - [D(,=)]-'~ X [ . ~ l i  - I~=)l 
t oP ~..~ 

it follows that n~ f (~ )  -,f(l~e)), as n tends to infinity, 

converges in distribution to N(0,Vj0. 

Let 17" denote the survey estimate of the covariance 

matrix V 0 (given the prior parameters a t and ~t 

i= 1 ..... I). Then (3.7) can be estimated by 

l 1 I I 1 ~ : (x ~x)- tx ~ , )ez) (~)xj (x  ~x)- 

for 

Similarly, the asymptotic covariance of 

estimated by 

~ )  can be 

(3.8) 

In our study, the computer programs were written in SAS" to 
perform the required maximization of the logarithm of equation 

(3_~) to obtain the estimated prior parameters a t and ~t for 

all i. Then SAS/CATMOD was used to obtain the ~ and 

for public schools and private schools respectively. Due to small 
sample sizes for certain subpopulations, a pseudo-replication 

scheme is not applicable to the estimation of V and V b . 

One way around this is to aggregate, temporarily, some of the 
subpopulations of small sample sizes to the same group. In 
other words, define disjoint groups of subpopulations and 
implement a pseudo-replication scheme to estimate the 
covariance of groups. Assign the estimated group standard 
deviation to all subpopulations belonging to the same group. In 
our study, this strategy was used to obtain subpopulation design 

effects, 10' and I~' and then I~/wtd ~ were calculated. 

4. Results and Conclusions 
4.1 Testing: 

Table 1 and Table 2 illustrate the estimated deffs ~ and 

results of X2a, X~ X2s/~ and X~t6 for some auxiliary 

variables selected. From Table 1 and 2, we note that the deffs 
for public schools are much higher than those for list frame 
private schools. One explanation is that our design is not 
planned to reduce the variance of the estimation of response 
rate. However, it happened that for private schools, both grade 
level and association, which are strongly correlated with 
response status, were used for stratification, while for public 
schools, grade level, which is used for stratification, is weakly 
correlated with response status. Even though design effects for 
public schools are very high, it turned out that the size of the 

modified tests based on Xi2/~ was significant at a = .001 for 

urbanicity and at a = .01 for enrollment and the modified test 

based on X~/~ was significant for state at a = .001. For 

private schools, the size of the modified tests based on X~/~ 

was significant at ot = .001 for grade level and association. The 

size of the modified tests based on X~16 was significant at a 

= .001 for affiliation and urbanicity and at about a = .10 for 
enrollment. 

where A = diag {4) ,~,(~)[1-~,(~)l  ..... 6ufu(~)[l-fu(~)]} 
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Table ! 
Test Results for Public Schools 

I 12.1 13-1 1.0 . 

Jd 9 ~l k5.6 14 !.9 . 

I I&~ . - 0~.7  

• U A ~D6  

Table 2 
Test Resulu for Private Schools 

1 2.2 3~ 3.0 US.* . 

I L?  * 137~* 

I 2J  . . $.1 

I 1.3 * * 17'7.7 

4 ] J  ~b t~  ) t t J  . 

. 

47.9 

D |  

I X. ' /~ I  

,I.6 

118.7 

° 

*For testing homogeneity:. 

1 I 
r. 0_ ,~  a~o o-,,,J.) ( / - IXJ-1)  ~-~ I'~ 

where n is 

! 

sample size, n i+ is row margin, 

~ 0  is the estimated cell proportions 

within the i ~ row population and a~0 - n~. If'(/~X0)//~(1-/~, ) 

is the estimated deffs of P/t0" 

where % 0  ) denotes the estimated variance of P~(0 " 

"*For testing independence: 

" ,1~! 

where P~. and P÷I are the estimated row and column 

marginais proportion, d~(r) and a~/(c) are the estimated deffs 

of Pe- and P./ respectively, and a~¢ is the estimated 

deft of /~¢ , which is the estimated proportion for the ij* cell. 

4.2. Subpopulation Estimation 
For public schools, the population was divided into 20 

subpopulations by grade level, urbanicity and enrollment. Based 
on the unadjusted chi-square of each term, some interaction 
terms appear to be nonsignificant and are excluded from the full 
model. The following reduced model was chosen to explain the 
variation in the response rate. 

V~t=l°g ( x ~  ) = p + a , . l l / . y t . ( . ~ ) ¢ + ( = y ) "  (4.1) 
l - ~ j  

where ~ri~ , denotes the response rate of the ijk* subpopulation. 
a i denotes the effect of the i ~' enrollment, i = l  .... ,5.  
¢tj denotes the effect of the j~ urbanicity, j = 1, 2. 

"ltk denotes the effect of the k* grade level, k = 1, 

(afl)~ denotes the interaction of the i* enrollment by the j* 
urbanicity. 

(t~-/)~ denotes the interaction of the i * enrollment by the k t 
grade level. 

Similarly, for list frame private schools, the population was 
divided in 48 subpopulations by association, grade level, 
urbanicity, and enrollment. The following model was chosen to 
explain the variation in the response rate. 

lg / 

- - / l _ ~ ,  , j  . . . .  (4.2) 

where lr'i~ 

~ i  

(¢,'¢3')i 

denotes the response rate of the ijld* 
subpopulation 
denotes the effect of the i i association, i= 1, 
. . , 6 .  
denotes the effect of the j* grade level j= 1,2. 
denotes the effect of the k a urbanicity, k= 1,2. 
denotes the effect of the 1" enrollment, I = 1,2. 

denotes the interaction of the i" assodation 
by the j* grade level,and so on. 

For testing the goodness-of-fit of the model, the adjusted 
likelihood ratio test proposed by Rao and Scott (1987) were 
used. The adjustment is based on the upper bound on 6 which 
requires the information of cell deffs (subpopulation deffs). The 
deffs of the subpopulation were estimated using 48 pseudo.. 
replicates. The estimated deft for the i* subpopulation is equal 
to 

where 

v'~J;,) 

is the estimated response rate for the it, 

subpopulation 

is the estimated variance of /;~ using 

48 pseudo-replicates 

is the estimated relative size for the i ~ 

subpopulation 

n is the total sample size. 

For public schools, the upper bound on 6 is estimated by the 
average deffs available (= 6.4) and multiplied by RJRI-m, , 
where RI is the number  of subpopulations (= 20) and m~ (= 15) 
is the number of parameters to be estimated for model (4.1). 
Hence the upper bound was estimated by (6.4)(20/5) = 25.7. 
The result for the adjusted likelihood ratio = (2.4)/25.7 = 0.09, 
which is not significant at the 5% level when compared to 
Xs2(0.05)=ll.1 Note that due to the high dells for public 
schools, the test is very conservative. 

Similarly, for list frame private schools, the upper bound on 
6 is estimated by the average deffs available (= 2.1) and 
multiplied by l~ f fR~-  m:, where R= is the number of 
subpopulation (= 48) and m: (= 31) is the number of 
parameters to be estimated for model (4.2). Hence the upper 
bound was estimated by (2.1)(48/17) = 5.9. The result for the 
adjusted likelihood ratio = 40.1/5.9 = 6.8, which is not 
significant at the 5% level when compared to X,~:(0.05)=27.6. 
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Based on model (4.1) and (4.2), the estimated response rate 
for subpopulations of public schools and private list frame 
schools are presented in Table 3 and Table 4 respectively. The 
corresponding estimated asymptotic standard deviations are also 
listed. 

4.3. Conclusion 
The empirical Baysian strategy used here for estimating 

response rate of subpopulations is a two-staged approach (one 
stage to estimate the prior, one stage to estimate the parameters 
given the estimated prior). The prior used is data-dependent. 
Although this strategy is not classical Baysian, it is in the spirit 
of an empirical-Bayesian procedure. This approach has the 
advantage of allowing information from all subpopulations to be 
used to provide estimates of response rate within each 
subpopulation. The disadvantage is that the computations are 
difficult. Under the hierarchical prior assumption, the estimated 
subpopulations' response rates were shrinked toward the 
marginal (association) response rate. The estimated asymptotic 
standard deviations did not include the uncertainty in the pseu- 
MLE of prior parameters. A possible remedy for this problem 
was suggested by Carlin and Gelfand (1991). 

In summary, the variation of response rate for public schools 
is much smaller than that for private schools. For public 
schools, the nonresponse adjustment cells currently used by the 
U.S. Bureau of the Census are state by grade level by 
enrollment by urbanicity. Based on our results of testing, it 
seems to be a good choice. When further collapsing is 
necessary, cells can be collapsed with grade level first, 
enrollment second and urbanicity third. For private list frame, 
the nonresponse adjustment cells currently used by the U.S. 
Bureau of the Census are association by grade level by 
urbanicity. Based on the results of testing, it indicated that 
enrollment may also be a good candidate for creating 

Table 3 

nonrestx)nse adjustment cells. If further collapsing is necessary, 
the cells can be collapsed with enrollment first, grade level 
second, urbanicity third and association fourth. 
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Estimated Response Rate and Asymptotic Standard Deviation for Subpopulation of 
Public Schools 

Urbaaldo/ 
] ~ r o i l m c ~ t  G r a d e  1Level 1 2 

1 1 * 0 . 9 6 7  (0.0017) * 0 . Y 7 6  (0.0017) 

2 

es~2 0.o059) 

o.sr~ 0.0040) 
• o,so7 (o.oos3) 

o.w~ (o.oo4a) 

o.~so (o.oox4) 
,, 

• o ~  (o.o~3) 

o.sm (o.oo2s) o.974 (o.oox6) 
. . . . . . .  

2 • 0.90o (0.oo93) - 0.9~a (0.oo93) 

~ (o.oo-~) o.974 (o.oo2o) 
. . . . . . . .  

2 • o.sw~ (o.oosx) - o.977 (o.omx) 
, , ,  

x os~ (o.tm,4) o.77o (0.oo2o) 
o.9oo (o.oo:3.5) oseo (o.oo67) 

The asymptotic standard deviation of the cells marked by '"' have been estimated based 
on the agg~tion of subpopulations. 

Table 4 
Estimated Response Rate and Asymptotic Standard Deviation 

for Subpopulations of List Frame Private Schools 

| I I 0dH3 ~.Q~T4) o0 .914 (0.01l) 0 0 . ~  10,,0'7~ * 0.1~J2 5.G84) - 0.8T3 (D011) 
, 

I I 2 0.51~ (0.01:2) *0.982 l . , 0 l l )  * 0 .9 t5  ~ R  - 0.'789 (0.C84) " O . J ~ J  ~ a i S ~  

l 2 I 10-1182 (0.009) 'I OA*'7~ 10.0111 o0.931 ~ . ,0 '~  e Q.'711"7 (0.Olld) " 0.7"Jl 5 ~  
, , 

I 2 2 " Oglg. (0.oo,~ "0.991 ~.011) * 0.919 ~O,J~J'~ "O.T /3  ~OJOS4) "OJ " / $  
.. 

2 I I ~ (0 .0~ )  * O.Vm re.oral  - o.Yr2 ~ml )  - 0.721 ~.013) - O . t ~  m J = ~ l  

2 I ~I qklrrZ tUN  - ql.W,6 ~ - o .~4  10nl  I ) "0.9"/2 ~O.0131 "0 .~2  
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The asymptotic standard deviation of the cells marked by '*' have been estimated 
based on the aggregation of subpopulations. 
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