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Introduction 

Given a list of sampling units (frame), 
most sample designs select a sample 
proportional to a known variable and collect 
data for the selected units (i.e., the 
sampling and collection unit are the same). 
One example of this type of design is sampling 
schools proportional to the number of teachers 
in the school, and collecting school data from 
the selected schools. It is well known that 
balanced half-sample replication provides 
appropriate variance estimates for such 
designs. A slightly different type of design 
is when the collection unit is an aggregation 
of the sampling units. In the example above, 
if school district data is also collected from 
all districts with sampled schools then this 
is an example of the second type of design. In 
this case, the school district (collection 
unit) is an aggregation of the schools 
(sampling unit) belonging to the district. 

The question that this paper addresses is 
whether balance half-sample replication is 
appropriate when the collection unit is an 
aggregation of the sampling units. Using the 
usual BHR design assumptions (i.e., two units 
independently selected per stratum, the 
replicates are fully balanced, and the 
collection and sampling units are the same) 
then the following is true concerning BHR: 

E(V.,,,(Xn))=V(X.)=V((Xnlz* + Xn/22)/2) 

=I/2V(X,12* ) 

E: is expectation with respect to all 
possible samples 

V.,,R: is the BHR variance estimate 

Xn: is a linear estimate based on the 
full sample of n units 

v: is the true variance estimator 

X,w2* : is the half-sample replicate estimate 
of X based on the first unit selected 
within each stratum 

X,,/22 : is the same thing as Xni21 except the 
estimate is based on the second unit 
selected in each stratum 

PA=I-~ (I--PAh) 
AhqA 

P~h" is the selection probability for the part 
of aggregate A that is within stratum h. 

If aggregation A is composed of one 
sampling unit for each of two stratum then: 

PA=P, + P2 - P,P2 

Pi" is selection probability for unit i 

This selection probability is not linear 
with respect to the sample size, assuming the 
Pis are linear in the sample size. Hence, BHR 
may be inappropriate. However, if PIPz is small 
relative to Pis then BHR may provide a 
reasonable approximation. Whether BHR is 
appropriate, depends on the distribution of 
the PAs. 

One possible alternative to BHR is the 
bootstrap variance estimator. Bootstrap 
samples use the full sample to approximate the 
distribution of the frame. From this 
approximate frame, bootstrap samples are 
selected using the initial sample size. Since 
the bootstrap estimates are based on the 
initial sample size, the half-sample 
assumption that the variance is inversely 
proportional to the sample size is not 
necessary. 

The goal of this paper is to investigate, 
how well BHR estimates the variance when the 
collection unit is an aggregation unit. Two 
weighting schemes will be tested - i) the 
inverse of the selection probability and 2) a 
weighting scheme that is linear with respect 
to the number of selection units selected in 
the aggregation unit. In addition, a bootstrap 
variance estimator will be tested using the 
inverse of the selection probability as a 
weight. 

I'll show, using simulations with a weight 
based on the inverse of the selection 
probability, that for the National Center of 
Education Statistics ' Teacher Demand and 
Shortage survey, BHR works reasonably well for 
most states. For eight states, BHR does not 
provide reasonable variance estimates. For 
these few states, a bootstrap estimator 
provides reasonable estimates. Based on 
simulations, I will also show when the second 
weighting scheme is used, BHR appears to 
provide unbiased variance estimates. 

This says that BHR assumes the true 
variance is inversely proportional to the 
sample size. It is this property of BHR that 
might not be true when the collection unit is 
an aggregation of the sampling units. If the 
inverse of the selection probability is used 
as the weight then the possibility of a biased 
variance estimator can be seen by looking at 
the form of the selection probability. 

When the selection and collection units are 
the same, the selection probabilities are 
usually linear with respect to the sample 
size. If this is true with the aggregation 
unit selection probabilities, one might expect 
BHR to work well too. 

The selection probability for an aggregate 
unit, A, has the following form: 

Simulations 

The Teacher Demand and Shortage Survey 
(TDS) is one of four linked surveys the Center 
produces to study the critical aspects of 
teacher supply and demand, the composition of 
the administrator and teacher work force, and 
the status of teaching and schooling 
generally. School districts, schools, 
administrators, and teachers are all surveyed 
through a common sample design. These surveys 
are called the Schools and Staffing Surveys 
(SASS) and are designed to provide state 
estimates. The focus of this paper is the 
initial sampling unit, schools; and the survey 
of school districts, the aggregation unit. The 
simulations will be based on data from two 
frames - the SASS public school frame and a 
frame of all matching public school districts. 
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The school frame will be used to select 
multiple school samples using a design similar 
to the SASS school sample. Each school sample 
will be matched to the district frame to 
produce the district sample, as is done for 
the TDS survey. The district frame has 
teacher, student, graduate, and school counts. 
From each district sample, estimates and their 
BHR variances will be produced. The true 
variances can be estimated and compared to the 
BHR estimates. 

Design of SASS School and TDS Surveys* 

The school survey uses NCES's public school 
file as the frame. The frame is stratified by 
state by school level (elementary, secondary 
and combined). The school sample is selected 
using a systematic probability proportionate 
to size procedure. The measure of size is the 
square root of the number of teachers in the 
school. The school districts that include a 
sampled school comprise the TDS district 
sample. In order to simplify the computation 
of the district selection probabilities, the 
schools are sorted by school district within 
each stratum. 

This design does not satisfy all the BHR 
assumptions. The selection is done 
systematically, so units selected within a 
stratum are not independent and a finite 
population correction is required. In 
addition, more than two schools are selected 
per stratum. To satisfy the BHR assumptions, 
the simulation sample design is modified from 
the above TDS design in the following manner: 

I) Each sampling stratum is further 
stratified by substrata. The substrata are 
chosen to be the set of all schools that 
could be selected in two consecutive 
selections from the systematic selection 
procedure described above (i.e., the 
schools within two sampling intervals). Two 
schools will be selected within each 
substratum. 

To simplify the district weight 
computation, a district spanning two 
substrata is place in only one substratum 
depending on which substratum contains most 
of the district's measure of size. 

If the cumulative school measures of 
size within a district is larger than two 
sampling intervals than the district is 
subdivided into pseudo-districts that are 
approximately equal to two sampling 
intervals. Each of these pseudo-districts 
comprise a substratum. Such 
districts are certainty districts. The 
purpose of this modification is to maintain 
the original school sample distribution. 
Otherwise, by selecting at most two schools 
for very large districts, more of the 
smaller districts will be selected then in 
the original design. 

2) Two schools are selected with 
replacement within each substratum. The 
first selection will be assigned to panel 
I, while the second will be assigned to 
panel 2. This maintains the BHR assumption 
of independent selections and eliminates 
any finite population adjustment for the 
variance that might be part of the original 
design. 

Bootstrap Implications of Simulation Design 

When the sample and collection unit are the 

same, the bootstrap variance estimator for 
simple random sampling is biased by a factor 
of nh/(nh-I ) . Since the simulation sample 
design selects two units per stratum, this 
bias would be significant with the school as 
the collection unit. With the district as the 
collection unit, it isn't clear what the 
appropriate stratum sample sizes are when 
determining the bias. If all districts are 
defined completely within a single substrata 
then the bias will be large (i.e., the 
effective district sample will be close to 2 
providing a bias close to 2/(2-I)=2). If all 
districts are defined across substrata, the 
bias might be smaller (i.e., if districts are 
defined within three substratum with a sample 
of 6 schools then the bias might be close to 
6/(6-I)=1.2). In reality, the district 
definitions are somewhere in the middle, so 
the magnitude of the bias is unclear. However, 
I will assume there is an effective sample 
size in the "stratum" which can partition 
states that will or won't be significantly 
biased. 

Weighting 

Two weighting schemes will be analyzed - 
one based on the district selection 
probability ( probability weight ), and the 
other based on the school selection 
probability (expected hits weight). The sample 
estimate, BHR variance estimates and the 
estimate of true variance will be computed for 
each weighting scheme. 

The probability weight for district d (PWT~) 
is: 

PWTd = I/(l-((l-p~) (l-p~) (l-p~c))2) 

P~: ~ Pl , S~ is the set of all elementary 
i6S~ schools in district d 

Pi: is the selection probability for 
school i. 

P~: ~ Pi , S~ is the set of all secondary 
iES~ schools in district d 

P~: ~ Pi , S~ is the set of all combined 
i~S~ schools in district d 

If p~, p~ or p~ is greater than or equal to 
one then the district is selected with 
certainty and PWTd = I. 

The expected hit weight for district d 
(HWTd) is • 

HWTd = Hd/~  P i  
i6S d 

Hd" is the number of schools selected in 
district d 

Sd: is the set of all schools within district 
d 

The unbiasness of this weight follows from 
the fact that the expectation of the numerator 
( the expected number of schools selected 
within a district) is equal to the denominator 
(the sum of all school selection probabilities 
within a district). 

BHR should be unbiased using the expected 
hits weight because any linear district 
estimate can be written as a normalized school 
estimate. 

Let Xa be a district variable and suppose we 

441 



want to estimate the total value of Xd within 
the set of all districts in some set U, say 
all urban districts then: 

HWTd Xd = E (Hd/E Pi) Xd 
d~U ~ i ~ S  d 

= ~ (P~/ ~ Pl) Xd/P:, Ukd is the set of all 
iEUk~ i6Sd sampled schools 

within districts in U 

This is now written as a school estimate 
weighted by I/Pi, normalized by Pi/~ Pl, and 

iqSd 
where X d is assigned to every school within 
district d. Since this is a school estimate, 
the BHR variance estimate should be unbiased. 

Balanced Half-sample Replicates 

The selected schools are placed into half- 
sample replicates using the usual textbook 
methodology 2 . The r t" district half-sample 
replicate is defined to be the set of 
districts that have schools in the r t" school 
half-sample replicate. Since the SASS 
replicates are based on 48 replicates, the 
simulations will be based on 48 replicates. 
The district replicate weights are: 

For the probability weight, the replicate 
weight is: 

RPWT,, = i/(l--((l--Pde/2)(l--Pds/2)(l--Pdc/2)) 2) 

The probabilities are divided by 2 because 
with half the sample, each school has half the 
chance of being selected. 

For the expected hits weight, the replicate 
weight is: 

RHWTd~ = Hrd/~ (Pl/2) 
iqSd 

H~,,: is the number of schools within 
replicate r and district d. 

District Bootstrap Samples 

The idea behind the bootstrap samples is to 
use the sample weights from the selected units 
to estimate the distribution of the school and 
district frames. From the estimated bootstrap 
frame, B bootstrap samples can be selected 
using the simulation TDS design. For each 
selected school i in district d the weights 
say, PWT~ districts should be generated for the 
bootstrap frame. The PWTd districts should have 
a total cumulative school measure of size 
equal to WiPi, where W i is the school sampling 
weight (i/Pi) . The bootstrap frame and 
selection are described below for a specific 
sample. 

i) Generate a file of selected schools. If 
a school is selected twice, it is on the 
file twice. 

2) Divide each school into PWT d bootstrap- 
districts (indexed by bd), each with a 
(W~pi)/PWT d school bootstrap measure of 
size. If PWTd is not an integer then the 
bootstrap-district representing the 
noninteger part has a CdW±Pi/PWT d school 
bootstrap measure of size, where C d is the 
noninteger part of PWT d. 

If a selected district has selected 
schools in the elementary and secondary 
strata then the bd th bootstrap-district 

generated in the elementary stratum should 
match to the bd th bootstrap-district in the 
secondary stratum. This relationship should 
exist for all school levels that are 
selected for the district. Since this 
relationship exists for the selected 
districts, it is important to reflect it in 
each bootstrap-district. 

The sum of the school bootstrap measures 
of size for school i is W:p,, which is the 
appropriate representation based on the 
school weight. The number of districts 
being represented by school i is PWTd, which 
is the appropriate representation based on 
the district weight. 

Each bootstrap-district within a stratum 
could be divided into W i bootstrap-schools. 
Since the school is only a selection unit, 
not a unit of analysis, it's only required 
to know which district is selected and not 
which school. To compute the bootstrap- 
district weights, the bootstrap-school 
selection probabilities would be summed 
within a bootstrap-district, anyway. This 
would yield the same results as the 
procedure described above. One method is 
computational less intensive. 

3) Using the frame generated in step 2 and 
assuming two units are independently 
selected, within the substrata, 
proportional to the bootstrap measures of 
size, compute the bootstrap-district 
weight, BPWT~. Let u denote a selection 
unit on the frame and Pu the selection 
probability for u. 

If pd is a bootstrap-district 
representing an integer part of PWT d then: 

BPWT~ = I/(l--((l--p%~)(l--Pbd.)(l--p,,~c)) 2) 

P~: ~ Pu, Sb~ is the set of all elementary 
U6Sb~ units in bootstrap-district 

pd 

Pm~: ~ P,, S~ is the set of all secondary 
u6S~ units in bootstrap-district 

bd 

P~=: ~ Pu, S~ is the set of all combined 
u6S~ units in bootstrap-district 

bd 

If p~, ~. or p~ is greater than or equal 
to one then the bootstrap-district is selected 
with certainty and BPWT~ = I. 

If pd is a bootstrap-district representing 
a non-integer part of PWT d then: 

BPWT~ = Cd/( i-- ( ( l--p~ ) ( l--Pbd. ) ( l--P~dc ) ) 2 ) 

4) With the frame and bootstrap selection 
probabilities define in step 2, 
independently select two units per 
substratum proportional to bootstrap 
measures of size. The weights for the 
selected bootstrap-districts are defined in 
step 3. 

5) Since the available data is defined by 
the districts selected in the original 
sample, a bootstrap-district weight indexed 
by d (BPWTd) is required: 

BPWT d = ~ BPWT~, SdB is the set of all bdEd 
bdqSd8 selected in the B u' 

bootstrap 

6) Repeat steps 4 and 5 until B bootstrap 
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samples are selected. Since there are 48 
balanced half-sampled replicates, there 
will be 48 bootstrap samples. 

Sample Estimate 

For each of the simulation samples, totals, 
averages and ratios will be computed within 
each of the fifty states and the District of 
Columbia. The averages are average number 
teachers per district and average number of 
schools per district. The ratios are the ratio 
of the number pupils to the number teacher and 
ratio of the number of teachers to number of 
schools. The totals are number of student, 
teachers, graduates, schools and districts. 
The student, teacher and graduate totals are 
highly correlated with the measure of size, 
while the school and district totals have a 
lower correlation with the measure of size. 
For each of the 90 simulation samples, 459 
sample estimates and respective sample 
variances are computed (51 states * 9 
estimates). The average of these estimates 
across the 90 simulations is an estimate of 
the expectation of the respective sample 
estimate. It is these averages that are the 
building blocks of this analysis. An estimate 
of the true variance for the sample estimates 
can be obtained by computing the simple 
variance of the sample estimates across the 90 
simulations. The expected values for the 
sample variances can now be compared with the 
estimate of the true variances. 

A number of other analysis statistics are 
required. They are described below. 

Analysis Statistics 

Confidence Coefficient 

To measure the accuracy of the variance 
estimates, a one sigma two tailed confidence 
coefficient is computed by determining what 
proportion of the time the population estimate 
is within the respective confidence interval. 
If the variance estimates are appropriate then 
the confidence coefficients should be close 
0.68. One sigma confidence coefficients are 
used because there aren't enough simulations 
(90 of them) to accurately measure the 5% 
tail. 

BHR Bias Indicator 

The main task of this paper is to measure 
whether the BHR assumption, that the true 
variance is inversely proportional to the 
sample size, is violated. If it is violated, 
what is the impact on the district variance 
estimates. The following statistic can be used 
to partition states into those that will or 
won't be significantly biased. 

BHR Bias Indicator = V/(I/2(V, + V2)/2 ) 

V: is the simple variance of the 90 simulation 
sample estimates that are computed from 
districts selected in both panels, using 
the methodology of interest (PWTd or HWTd 
weighting schemes), 

v,: is the simple variance of the 90 
simulation sample estimates that are 
computed from the districts selected in 
panel I, using the methodology of 
interest, 

V2: is the simple variance of the 90 
simulation sample estimates that are 
computed from the districts selected in 
panel 2, using the methodology of 
interest. 

The numerator is an estimate of the true 
variance and the denominator is another 
estimate of the true variance assuming the 
true variance is inversely proportional to the 
sample size. Hence, the ratio should be close 
to one when the true variance is proportional 
to the sample size. 

Within each state, this ratio is computed 
for each of the nine sample estimates. An 
average state ratio is then computed using the 
weights described in the 'Weighting the 
Estimate' section below. When producing the 
tables, this state average is assigned to each 
of the nine state estimates and associated 
statistics. 

In the tables, B, the bias indicator is 
partitioned into three sets: 

Bias Indicator (B) Expected Result 

B > 1.05 BHR underestimate the 
variance 

1.05 > B > 0.95 BHR provides appropriate 
variance estimates 

B < 0.95 BHR overestimates the 
variance 

Bootstrap Bias Indicator 

As stated before, the concern with the 
bootstrap variance estimator is its biased 
when two units are selected within a stratum, 
as is the case, with the simulation design. 
With districts, this bias is difficult to 
measure. However, the bias should be larger in 
states that have more districts solely defined 
in only one substratum. To measure this, the 
proportion of each state's districts that are 
totally within a single substratum is 
calculated. 

In the tables, the proportion of districts 
in 1 stratum is divided into three groups: 

Bootstrap Bias 
Indicator (B) Expected Results 

B > 0.2 most bias 

0.2 > B > .08 some bias 

B < 0.08 least bias 

This proportion will be used as a potential 
bias indicator for the bootstrap variance 
estimates. 

Sp/Op, Se/O e a n d  Sb/O b 

Besides the confidence coefficient, the 
ratio of the average estimated standard error 
(probability or expected hits weight with BHR; 
or probability weight with Bootstrapping), 
across the 90 simulation, over the estimated 
true standard error (probability or expected 
hits weight with BHR; or probability weight 
with Bootstrapping) is another measure of the 
accuracy of the variance estimates. 

443 



(Jl* / (~"- 

Since the accuracy of BHR variance 
estimation for two weighting schemes are being 
compared, it is important to know which has 
the smaller standard error, irrespective of 
whether the BHR techniques work. This is done 
by looking at the ratio of the estimated true 
standard error using the probability weight 
(Up) divided by estimated true standard error 
using the expected hits weight (o.). 

Weighting the Estimates 

Each of the statistics described above is 
computed for the nine estimate within each of 
the 51 states. These 459 estimates with their 
respective sample variance estimates, 
estimated true variances and other statistics 
are summarized by type of estimate - averages, 
ratios and totals. Since there are 
differential numbers of these type of 
estimates (five totals for every two averages 
and ratios), an important consideration is how 
these estimates should be weighted. Within a 
state, the estimates are equally weighted by 
estimate type with high and lower correlated 
totals being weighted equally. All summary 
statistics in the tables are weighted averages 
using the weights describe above. 

Results 

Probability Weight and BHR Variances 

When analyzing table I, BHR overestimates 
the true standard errors. Where the bias is 
expected to be positive, averages, ratios and 
total all have a large upward bias, with 
confidence coefficients as high as 81%, on 
average. Where the bias is not expected to be 
positive, there is still a positive bias, but 
at a more acceptable level. The confidence 
coefficients using the true standard errors 
are all close to 0.68, so the difference is 
caused from the BHR procedures and not from 
the distribution of the estimates. There are 
eight states, where the bias is expected to be 
positive. 

Expected Hit Weight and BHR Variances 

Table 2 is the same as tables 1 except the 
expected hits weight is used instead of the 
probability weight. The results for the 
expected hits weight are very different than 
the probability weight results. There doesn't 
appear to be any significant bias with the 
expected hits weight. The BHR standard errors 
are all close to the true standard error. The 
largest difference occurs where the bias is 
expected to be positive, in which case, BHR 
overestimates the standard error by 10% for 
averages. The BHR confidence coefficients are 
all close to the coefficients based on the 
estimated true standard error. 

Probability and Expected Hits Weight 

Since the BHR variance estimate are less 
bias using the expected hits weight, one must 
ask whether estimates using the expected hits 
weight are as reliable as the estimates based 
on the probability weight. If the answer is 
yes, then the expected hits weight should be 
used instead. Table 1 and 2 provide the ratio 
of the true standard error using the 

probability weight over the true standard 
error using expected hits weight (ap/a.). 

For averages and ratios the probability 
weight estimates have smaller standard errors. 
In table i, the gains in precision range from 
an average of 2% to an average of 19% over the 
precision of expected hits weight estimates. 
In table 2, the gains range from an average of 
3% to an average of 12%. 

For totals, the expected hit weight 
estimates have smaller standard errors. In 
table i, the probability weight estimate's 
precision ranges from an average of 12% to an 
average of 48% larger than the expected hits 
weight's precision. In table 2, the 
probability weight's loss of precision ranges 
from an average of 26% to an average of 34%. 

For two out of the three types of estimates 
the probability weight estimates are better 
than the expected hits weight estimates. 
Overall, the probability weight is better. 
However, if totals are the primary interest 
then the expected hits weight provides the 
best estimates. Since none of the totals in 
the simulation study are uncorrelated with the 
selection measure of size, performance of such 
totals is unknown. If the expected hits weight 
performs poorly with uncorrelated totals, it 
may not be advisable to use the expected hits 
weight. 

Probability Weight and Bootstrap Variances 

Table 3 uses the proportion of districts 
within a state that are solely in 1 stratum as 
a bias indicator, to compare the bootstrap 
standard error to the true standard error. 
Where the bias is expected to be smallest, the 
bootstrap standard error estimator using the 
probability weight provides good standard 
error estimates. The bootstrap estimates are 
on average 10%, 6% and 2% smaller than the 
estimated true standard error respectively for 
averages totals and ratios. The confidence 
coefficients are 0.66, 0.72 and 0.71 on 
average. Where the bias is not expected to be 
smallest, the bootstrap estimator doesn't do 
as well, and underestimates the true standard 
error. 

As stated before the BHR variance estimator 
does not work in eight states. In these eight 
states, the bootstrap variance estimator did 
work well. 

Overall, the bootstrap standard error 
estimates preform poorly. This poor 
performance seems to be related to the 
inherent n/(n-l) bias of bootstrap variance 
estimator. When a state has all of their 
district solely in one stratum, this bias will 
be large because the sample design only 
selects two units per stratum. This implies 
that the bootstrap variance will be 1/2 the 
true variance. When a state has few district 
solely in one stratum, the bias is small and 
the result show this. 

Using a sample design that selects more 
than two units per stratum should improve the 
bootstrap variance estimates. 

Distribution of District's Selection 
Probabilities 

In the introduction, I suggested the 
selection probability distribution would 
determine whether BHR would provide reasonable 
variance estimates. For this simulation, BHR 
does not work well when more than 20% of the 
district selection probabilities are larger 
than 0.95. Other surveys, using an aggregation 
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collection methodology, should review the 
selection probabilities of the aggregation 
units. If more than 20% of the probabilities 
are larger than 0.95 then the BHR variances 
may be biased. 

Conclusions 

This simulation study has shown that when 
the collection unit is an aggregation of the 
selection units then BHR may not provide 
reasonable variance estimates. If the weight 
is based on the aggregation unit's selection 
probability then the bias can be large when 
more than 20% of the probabilities are larger 
than 0.95. BHR assumes that the true variance 
is inversely proportional to the sample size. 
This assumption is not necessary true with 
this design and it appears that the violation 
of this assumption is the cause of BHR bias in 
eight states. 

If the expected hits weight is used then 
the variances do not appear to be biased. 
However, average and ratio estimates derived 
using the expected hits weight are not as 
precise, as estimates based on the aggregation 
unit's selection probability. If totals are 
the only estimates of importance then the 
expected hits weight is better. 

Using the simulation design and bootstrap 
procedure described in this paper with the 
probability weight, some state's variances are 
best using the bootstrap methodology. In these 
states, the effective sampling sizes in the 
"stratum" are large enough to introduce only a 
small bias. However, bootstrapping did not 
work for most states because the effective 
sample sizes in a "stratum" are to small. 

Ongoing Activities 

Currently, I am trying to extend the 
bootstrap methodology to a systematic 
probability proportionate to size selection 
procedure where n (>2) schools are selected 
per stratum. With a larger stratum sample 
size, I'm hoping the bootstrap bias will be 
smaller. So far, the preliminary results are 
encouraging when compared with BHR variance 
estimates. 
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Table 1 -- Probability weight BHR standard 
errors by estimate type and bias 
indicator 

One One 
Op Sp Sp Op 

Bias Estimate ...... Conf. Conf. 
Indicator Type o. up Coeff Coeff 

Neg Bias average 0.98 1.04 0.67 0.68 
Unbiased average 0.96 1.10 0.69 0.67 
Pos Bias average 0.94 1.24 0.76 0.68 

Neg Bias total i. 48 I. 06 0.69 0.69 
Unbiased total I. 35 I. 15 0.73 0.68 
Pos Bias total 1.12 1.43 0.81 0.68 

Neg Bias ratio 0.94 1.12 0.71 0.69 
Unbiased ratio 0.89 1.18 0.74 0.68 
Pos Bias ratio 0.81 1.42 0.80 0.68 

Table 2 -- Expected hits weight BHR standard 
errors by estimate type and bias 
indicator 

One One 
Gp s. se o. 

Bias Estimate ...... Conf. Conf. 
Indicator Type o. o. Coeff Coeff 

Neg Bias average 0.93 0.94 0.60 0.66 
Unbiased average 0.97 1.03 0.67 0.68 
Pos Bias average 0.96 i.i0 0.70 0.68 

Neg Bias total 1.31 0.98 0.65 0.67 
Unbiased total 1.34 1.03 0.68 0.68 
Pos Bias total 1.26 1.07 0.68 0.67 

Neg Bias ratio 0.88 0.95 0.64 0.68 
Unbiased ratio 0.88 1.02 0.66 0.69 
Pos Bias ratio 0.88 1.07 0.69 0.67 

Table 3 -- Bootstrap standard errors by 
estimate type and bias indicator 

One One 
Bias Sb Sh Ob 

Bias Estimate Indic. --- Conf. Conf. 
Indicator Type Size o b Coeff Coeff 

High Bias average 0.48 0.79 0.56 0.69 
Some Bias average 0.14 0.77 0.53 0.67 
Least Bias average 0.02 0.90 0.66 0.73 

High Bias total 0.48 0.92 0.63 0.69 
Some Bias total 0.14 0.97 0.65 0.68 
Least Bias total 0.02 1.06 0.72 0.71 

High Bias ratio 0.48 0.85 0.58 0.70 
Some Bias ratio 0.14 0.91 0.63 0.69 
Least Bias ratio 0.02 1.02 0.71 0.72 
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