
SOME IMPROVEMENTS ON AN ALGORITHM FOR CONTROLLED SELECTION 

Ting-Kwong Lin °, Fred Hutchinson Cancer Research Center 
1124 Columbia Street, MP702, Seattle, WA 98104 

KEY WORDS: Pattern, contradiction, maximum, 
minimum 

mainframe has been modified and now can run on a 
personal computer. 

1. Introduction 2. THE OLD ALGORITHM 

The sampling technique called controlled selection 
was f'u'st described by Goodman and Kish (1950). It 
was found to be a very useful sampling technique 
among practicing survey samplers, especially in 
selecting first-stage units in multi-stage sampling. 
Hess, Riedel and Fitzpatrick (1961, 1975) have given 
a simple illustration on how it can be implemented in 
the sampling of hospitals in the state of Michigan. 

Causey, Cox and Ernst (1985), using transportation 
theory, have shown for two-dimensional controlled 
selection problems complete solutions do always 
exist. They have given an algorithm on how the two- 
dimensional controlled selection problems can be 
solved. Computer programs are available to solve the 
transportation problems. 

Groves and Hess (1975) gave a formal algorithm 
for obtaining solutions to the two-dimensional and the 
much more complex three-dimensional problems. A 
computer program written by Groves for the 
mainframe is available. However, this algorithm may 
not always yield a solution. There are simple 
examples that can be solved by hand but which the 
algorithm fails to solve, even in the two-dimensional 
situation. 

In this paper, we show how the Groves-Hess 
algorithm can be improved and how further controls 
which are useful to survey practitioners can be built 
into the algorithm. Problems the old algorithm could 
not solve can now be solved by the new algorithm. 
The computer program written by Groves for the 
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The algorithm as described by Groves and Hess 
(1975) consists mainly of three phases: 

"Phase I: 
Begin the pattern construction with the cell having 

minimum probability. That cell may be one of the 
individual cells, one of the marginals, or the total. 
The minimum probability may be the probability for 
the cell to take on its maximum value or the 
probability for its minimum value. This minimum 
probability is also the weight assigned to the pattern. 
For the first pattern, a minimum probability will be an 
initial probability from the input data. For the second 
and later patterns, a minimum probability is really a 
minimum remaining probability, since the initial 
probability of a cell value might have been 
diminished by that value's use in prior patterns. 

"Phase II: 
Search for cells whose values are implied by virtue 

of some other cell's value having been selected for 
use in the current pattern; that is we search for cells 
that can assume only one of their possible values 
given the selected cell's value. 

"Phase III: 
After all implied cells have been identified and the 

implications entered into the pattern, select a free cell 
(a cell that may take either its minimum or maximum 
value) and choose its value for the pattern being 
constructed. Then return to Phase II. 

"After all free cells have been chosen at the end of 
Phase II, a pattern is complete. The algorithm then 
adjusts the remaining probabilities and returns to 
Phase I to begin the next pattern. Eventually all cells 
will become fixed after completing a pattern. At that 
point there is only one remaining pattern; it contains 
the fixed value of every cell and receives the 
remaining probability as a weight. Then the solution 
is complete". 

3. NO SOLUTION 

Two examples are available for which no solution 
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exists for three-dimensional controlled problems. The 
first is given by Causey, Cox and Ernst (1985), viz: 

I=1 1-2 
K=I 1(=2 K=T K=I K=2 K=T 

J=l 0.5 0.0 0.5 0.0 0.5 0.5 
J-2 0.0 0.5 0.5 0.5 0.0 0.5 
J=T 0.5 0.5 1.0 0.5 0.5 1.0 
(T stands for the marginal total.) 

I=T 
K=I K=2 K=T 
0.5 0.5 1.0 
0.5 0.5 1.0 
1.0 1.0 2.0 

Causey et al. (1985) have given a proof that no 
solution exists for the above problem. We can also 
view the above problem in the following way. For 
I--T we can have the following two possible patterns 
(the number within the parentheses denotes the weight 
of the pattern): 

J=l 
J=2 
J=T 

Pattern 1 Pattern 2 
I=T (0.5) I=T (0.5) 

K=I K=2 K=T K=I K=2 K=T 
1 0 1 0 1 1 
0 1 1 1 0 1 
1 1 2 1 1 2 

It can be easily shown that neither of the patterns 
can be satisfied simultaneously by I=1 and I=2. In 
fact we can start with any of the cells having 
minimum probability and end with a contradiction 
without ever the need to search for another free cell 
to imply. 

For their algorithm, Groves and Hess (1975) have 
given two possibilities that may give rise to 
contradictions: 
1. The marginal cell has not yet been chosen, and 

a) Sum of the minimum values of cells not selected 
yet together with those selected values is greater than 
the marginal cell maximum; OR 

b) Sum of the maximum values of cells not 
selected yet together with those selected values is less 
than the marginal cell minimum. 
2. The marginal cell has been chosen, and 

a) Sum of the minimum values of cells not selected 
yet together with those selected values is greater than 
the selected marginal cell value; OR 

b) Sum of the maximum values of cells not 
selected yet together with those selected values is less 
than the selected marginal cell value. 

The second "no solution" example is given by Hess 
(1975) as follows: 

I=1 1=2 I=T 
K=I K=2 K=T K=I K=2 K=T K=I K=2 K=T 

J=l 0.2 0.2 0.4 0.2 0.4 0.6 0.4 0.6 1.0 
J=2 0.4 0.0 0.4 0.6 0.6 1.2 1.0 0.6 1.6 
J=3 0.6 0.4 1.0 0.4 0.0 0.4 1.0 0.4 1.4 
J=4 1.2 0.6 1.8 1.2 1.0 2.2 2.4 1.6 4.0 

She has also given a proof that no complete set of 
solutions exist. We can again view the problem as 
above. For I=T the following three patterns are 
possible with their respective weights given by the 
numbers in the parentheses: 

J=l  
J=2 
J=3 
J=T 

Pattern 1 Pattern 2 Pattern 3 
I=W (0.4) I=T (0.2) I=T (0.4) 

K=I K=2 K=T K=I K=2 K=T K=I K=2 K=T 
1 0 1 0 1 1 0 1 1 
1 1 2 1 1 2 1 0 1 
1 0 1 1 0 1 1 1 2 
3 1 4 2 2 4 2 2 4 

In this example, patterns 1 and 2 can be satisfied 
simultaneously by I=1 and 1=2 but pattern 3 cannot. 
So, when the program is run for the above data, we 
will have a solution when either pattern 1 or pattern 
2 is obtained but ultimately we receive a contradiction 
as pattern 3 cannot be constructed. We again observe 
that the contradiction occurred without searching and 
choosing another free cell. 

Thus, one modification to the algorithm is this: if 
in the construction of a pattern a contradiction arises 
without even the need for searching for another free 
cell, the program is terminated with the output 
statement that most likely there is no complete 
solution to the problem. 

4. SOME IMPROVEMENTS 

In the old (Groves-Hess) algorithm, when a 
contradiction arises the program retracts all 
implications, setting them free once again; makes 
other necessary adjustments; and then sets the flee 
choice to its complement and begins again to check 
for implications. If a second contradiction arises the 
algorithm stops. In doing this it assumes that both the 
minimum and maximum cell values of a chosen cell 
will lead to contradictions in implied values of related 
cells. 

However, the following situation may occur. After 
setting the free choice to its complement and checking 
for all its implications, the program then searches for 
another free choice cell; then only does the 
contradiction occur. In this situation, it is no longer 
the same cell that leads to both contradictions. In 
stopping, the old algorithm removes the possibility 
that a solution may exist. To allow the algorithm to 
proceed, it is modified so that if the above situation 
arises the new free choice cell is set to its 
complement and the program continues to check for 
implications. 
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Even though both the minimum and maximum cell 
values of a chosen cell lead to contradictions in 
implied values of related cells, the following 
situations may arise: 

1. At the beginning of the construction of a pattern, 
there may be more than one cell with minimum 
remaining probability. 
2. There may be more than one free choice cell. 

If either of the situations arises, there is a 
possibility that the selection of a different cell other 
than the one chosen may lead to a solution. Thus the 
algorithm is modified such that if either of the above 
situations arises, the program will begin construction 
of the pattern all over again. In order to do this we 
need two arrays to store the remaining probabilities 
and frequencies before the construction of a pattern 
begins. Then if either of the above situations occurs, 
the two arrays that are to contain the newly formed 
remaining probabilities and frequencies are set to 
begin with the values in the stored arrays. 

5. IMPOSING OTHER CONDITIONS 

The motivation for imposing further conditions is 
given by the following three-dimensional controlled 
selection problem. The old algorithm could not give 
a set of complete solutions to the problem. When it 
was solved by hand calculation, it was found that 
further conditions were needed in order to obtain the 
complete solution. Some restrictions have to be 
imposed on the marginal cells. 

I=1 
K=I K=2 K=3 K--4 K=T 

J=l 0.000 0.244 1.005 0.649 1.898 
J=2 0.000 0.119 0.500 0.167 0.786 
J=3" 0.000 0.096 0.372 0.213 0.681 
J=4 0.000 0.031 0.362 0.115 0.508 
J=5 0.000 0.000 0.000 0.000 0.000 
J=6 0.000 0.000 0.000 0.000 0.000 
J=T 0.000 0.490 2.239 1.144 3.873 

K=I K=2 
J= 1 0.000 0.000 
J=2 0.214 0.000 
J=3 0.000 0.213 
J=4 0.000 0.092 
J=5 0.000 0.000 
J=6 0.391 0.000 
J=T 0.605 0.305 

1=2 
K=3 K--4 K=T 
0.000 0.102 0.102 
0.000 0.000 0.214 
0.000 0.106 0.319 
0.185 0.215 0.492 
0.155 0.845 1.000 
0.609 0.000 1.000 
0.949 1.268 3.127 

I=T 
K=I K=2 K=3 K=4 K=T 

J=l 0.000 0.244 1.005 0.751 2.000 
J=2 0.214 0.119 0.500 0.167 1.000 
J=3 0.000 0.309 0.372 0.319 1.000 
J=4 0.000 0.123 0.547 0.330 1.000 
J=5 0.000 0.000 0.155 0.845 1.000 
J=6 0.391 0.000 0.609 0.000 1.000 
J=T 0.605 0.795 3.188 2.412 7.000 

In this illustration, we need to put controls over the 
K dimension. For I=T, J=T and K=I and K=2, the 
sum of the initial probabilities of the maximum cell 
value for these two cells is 1.4. When the sum is 
equal to or greater than 1, the frequency in each cell 
should not be simultaneously the minimum value (in 
this case, zero) for any pattern. For I=T, J=T and K=3 
and K=4, the sum of the initial probabilities of the 
maximum cell value for these two cells is 0.6, which 
is less than 1. In this case, the frequency in each cell 
should not be simultaneously the maximum value for 
any pattern. 

In order to incoporate these conditions into the 
algorithm, we create another array, say, PT which 
contains the value of 1 if the sum of the initial 
probabilities of the maximum cell value of the pair of 
cells is equal to or greater than 1, and contains the 
value 0 otherwise. This is done before the 
construction of the first pattern. The first value in the 
array PT refers to the outcome of the sum Of cells for 
which K=I and K=2, the second value refers to the 
outcome of the sum of the cells for which K=3 and 
K=4. 

Thus in the constuction of a pattern, whenever a 
cell having I=T and J=T is selected or implied, a 
check is made on whether K is odd or even. If it is 
odd, the index of the other cell in the pair is K+ 1. If 
it is even, the index of the other cell in the pair is K- 
1. The position in array PT to which the selected or 
implied cell refers to is determined by integer division 
of K+I by 2. For example, for K having the value of 
1 or 2 integer division of K+I by 2 gives a value of 
1. This refers to the first value in array PT. A check 
is made to determine whether the other cell in the pair 
is fixed or already selected. If it is not, then a check 
is made of the array PT to determine whether it 
contains the value of 0 or 1. If the implied or selected 
cell contains the minimum value and the value in PT 
is 1, then the other cell is set to its maximum value. 
If the implied or selected cell contains the maximum 
value and the value in PT is 0, then the other cell is 
set to its minimum value. Otherwise, nothing is done 
to the other cell. 

The above control is built into the algorithm and 
the computer program is modified accordingly. When 
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it is run with the above controlled selection problem, 
a complete set of solutions is obtained without any 
difficulty. 

The setting up of the control over the marginal 
having dimension K is arbitrary. One can easily set 
up controls over dimensions I or J. Also forming pairs 
of cells consecutively is only one of the ways of 
setting up the control. 

Another useful way is this. For the cells having 
indices I=T and J=T, determine the positions of the 
cells (that is, the value of K) arranged in the order of 
descending initial probabilities of the maximum cell 
value of the cells. This information is stored in an 
army. Next, compute the sum of the first two largest 
of the initial probabilities of the maximum cell value, 
and then the next two and so on through all the K 
values. For each sum, a check is made to determine 
whether it is equal to or larger than 1. An indicator 
array keeps track of it. 

The rest of the procedure follows in similar line as 
before. In the construction of a pattern, whenever a 
cell having I=T and J=T is selected or implied, a 
check is made on the position of ranking, whether it 
is odd or even in order to determine the index of the 
other cell in the pair. The position in the indicator 
array to which the selected or implied cell refers to is 
determined in the same way as before. A check is 
made to determine whether the other cell in the pair 
is fixed or has already been selected. If neither, a 
check is then made on whether the indicator array 
contains the value of 0 or 1. Again, if the implied or 
selected cell contains its minimum value and the 
value in the indicator array is 1 then the other cell is 
set to its maximum value. If the implied or selected 
cell contains its maximum value and the value in the 
indicator array is 0, then the other cell is set to its 
minimum value. Otherwise, nothing is done to the 
other cell. 

The first procedure is usually preferable because 
surve3) samplers usually arrange in meaningful order 
the various classes within stratification variables. 

6. CONCLUSION 

solve. 
We have shown how to impose additional controls 

over the marginal cells. Different controlled selection 
problems may call for different sets of controls. For 
instance, instead of forming the sum of two cells, one 
can form the sum of three cells, or even more. 

The original computer program, which was written 
by Groves and runs on the mainframe, has been 
modified and now can run on a personal computer. 
This allows greater access to the computer program. 
The restriction on the size of the dimensions of I, J, 
K, depends on the size of the memory of the personal 
computer. For a standard personal computer, the 
following configuration seems sufficient, viz: 1=20, 
J=40 and K= 12. 
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Though the Groves-Hess algorithm has been 
improved, we cannot be certain that the new 
algorithm will solve every two-dimensional controlled 
selection problem. However, it has solved those that 
we know of that the old algorithm was not able to 
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