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The problem of categorical data analysis when one 
has a complex survey sample is an important  problem 
as many response variables from these surveys are in 
fact categorical. The problem has received extensive 
attention over the past fifteen years. One can trace 
two main lines of development" the first is a design- 
based approach developed by J. N. K. Rao, A. J. Scott, 
R. Fay, D. R. Thomas and others. For a summa- 
rization of this approach the author recommends Rao 
and Thomas [1981] in Skinner, Holt, and Smith [1989], 
which will provide a complete bibliography. The sec- 
ond line of development is a model-based approach, 
which was developed in Altham [1976], Cohen [1976], 
Brier [1980], and Holt and Ewings in Chapter  13 of 
Skinner, Holt, and Smith [1989], with related papers 
of Beitler and Landis [1985], H~rvme and Mee~ [a989], 
Mak [1988], and Choi and McHugh [1989]. 

This paper will continue development of the model- 
based approach, while taking into account the sample 
design through pseudo-likelihood methods. The Brier 
[1980] Dirichlet-multinomial model is the main depar- 
ture point. This model will be developed to take into 
account pseudo-likelihood weighting and nonresponse. 
Full maximum likelihood will be the estimation ap- 
proach rather than method of moments which tends 
to be the dominant  approach in the model-based pa- 
pers. This will also allow for easy incorporation of non- 
response effects, and use of maximum likelihood guar- 
antees asymptotic efficiency. An IMSL-type Fortran 
program is available free from the author to implement 
the methodology (mail net lrizzo@ stat.uiowa.edu). 

1. A n  E x a m p l e  
The complex survey used as an example in this pa- 

per is the National Educational Longitudinal Survey 
of 1980, sponsored by the U.S. Dept. of Education and 
carried out by the National Opinion Research Center. 
The purpose of the survey was to collect information 
from a cohort of high school sophomores and seniors, 
and then follow up at intervals into the future. The 
sample design was primarily developed such that  ev- 
ery sophomore or senior in the U.S. would have an 
equM probability of selection. Certain sub-groups of 
interest, such as certain minorities, were given higher 
probabilities of selection. 

The sample was a cluster sample, where schools 
were clusters. The probabilities of selection were some- 
what proportional to the size of the two classes, and 
equal samples of size 40 were taken randomly within 
each class of a selected school (unless the total size 
of the class was less than 40 in which case the whole 
class was the sample). Information was collected at 
the school level, as well as from the students. 

Nonresponse at the school level was dealt with 
through an adjustment  in the probability of selection 
by multiplying by an estimated probability of response. 
These adjusted weights will be treated as constants. 
Unit nonresponse at the student  level is ignored: a 
complete case analysis is done (no information is avail- 
able on nonresponding students).  Item nonresponse at 
the student  level will be dealt with explicitly in this 
paper. 

The population of interest will be restricted to New 
England, and the responding number of clusters is 52. 
The average responding subsample size (among both 
sophomores and seniors) was 52.75, with a minimum 
of 12 and a maximum of 69. 

The first and simplest example to be presented is of 
a 2 x 2 categorical table with one margin being sex of 
the s tudent  and the other margin response to a ques- 
tion about the importance to the student of success 
in their future career (0 = not very important ,  1 = 
very important) .  This question was one of a series of 
questions about  at t i tudes towards the future, and it 
is of interest to know if these at t i tudes differ across 
categories of students,  sex being one category. The 
null hypothesis of interest would be that  of indepen- 
dence between the two margins. We have then four 
cross categories with cell numbers respectively 1, 2, 
3, 4 corresponding to pairs (M,1), (F,i) ,  (M,0), (F,0). 
Thus the first cell corresponds to males who view suc- 
cess as important ,  cell 4 are females who do not view 
success as important ,  etc. 

2. T h e  M o d e l  a n d  F u l l  D a t a  P s e u d o  
L o g  L i k e l i h o o d  

Let Yi be the cell indicator for a particular stu- 
dent. Then in the general population Pr(yi  - k) - 
Pk k = 1 , 2 , . . .  , r .  Let X = ()~1,. . .  , A t - l )  = 
( P l , - - - , P r - 1 )  with Pr -- l - - I r A .  Let 7/be a ( r -  1)- 
vector of {log Xk}. Then we assume 7/ -- X ~ ,  where 
X is a ( r -  1) by d design matr ix , /3  a d-vector of pa- 
rameters. In our example a model of interest is that  of 
independence between sex and success, in which case 
d - 2, and the rows of X are [0,0], [1,0], and [0,I]. 
The yi's are assumed independent in the population. 

Our sample is not a simple random sample from the 
population. The yi's in the responding sample do not 
have the simple distribution Pr(yi  = k) = )~k, with 
yi's independent.  The clustering and nonresponse has 
the effect of making the distribution of the yi's we ac- 
tually observe different from the full population distri- 
bution. (See Little & Rubin [1987], or Sugden & Smith 
[1984], for example). A way of adjusting for this is to 
specify the relationship between the response variable 
and either the design covariates or the probabilities 
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of selection t reated as covariates, and then in effect 
predicting the yi's for the nonsampled population.  The  
design covariates are whatever covariates were used in 
specifying the sample design - in this example size of 
school (sophomore & senior class) and s t ra ta  deter- 
mined probabil i ty of selection, where s t ra ta  were de- 
termined by type of school, percentages of part icular  
minorities, and geographical location. 

The justification for this predictive approach based 
on using design covariates and /o r  probabilit ies of se- 
lection is given in a number of sources, including Rizzo 
[1992], Chambers  [1986], Pfeffermann [1988], Skinner, 
Holt, and Smith [1989], and Sugden and Smith [1984]. 

The  most general model of this kind would be based 
on a conditioning on the cluster indicator.  If Ic  is 
an indicator for cluster C and Yc are the response 
vectors for elements subsampled within the cluster we 
can write Pr(yi  = k[Ic) = Pkc. The substantive 
modeling assumption in this paper is then to assume 
these pkc's are drawn from a Dirichlet distr ibution 
with mean vector p,  as in Brier [1980], i.e., 

r(k) fi(p~)~,-1 
f(P¢IP, k) - I-I¢_-~ r(kp~) ~=, (2.1) 

where Pc = (Pxc , . . . ,Prc) ,  P : ( P l , . . . , P r ) ,  and k 
is a parameter  which essentially determines the vari- 
ability of the ~c 's  around ~. The Dirichlet assumption 
at the populat ion level seems reasonable: we have uni- 
modality, a variability in Akc proport ional  to A k c ( 1 -  
Akc) and some skewness to the middle (symmetry  for 

~ X -  1). (See Figure 2). 
Assuming no nonresponse the actual s tudent  sam- 

ple in the longitudinal  survey will be a simple random 
sample from the school. This combined with the model 
independence of the y responses gives independent  re- 
sponses for the s tudents  overall within school. Let 
(Zle,  • • • ,:eke) be the counts of each cell in the cluster 
subsample. Then the distr ibution of (Z lc , . . .  ,xkc) 
is mult inomial  given Pc. The  overall distr ibution of 
(Xlc, . . .  , z r c )  is Dirichlet multinomial:  

r(k) 
f(x¢lp, k)  - ( ncXlc'' 'Xrc ) F(nc + k) 

j=l j = l  

(2.2) 

If the clusters are iid we could write the log-likelihood 
as ~c%x e n f ( x c l p ,  k). 

However we do not have an independent  identically 
distr ibuted sample: the probabili ty of selection of each 
cluster is 7re (the rc  are unequal). In addition we 
adjust  this probabili ty by an est imated probabil i ty of 
response Pc, giving an overall probability of inclusion 
for the cluster of 7rc - rope. (~r c is provided in the 
da ta  file from the sampling organization in the school 
example).  Pc will be t reated as a fixed value though 
it is an estimate,  as is commonly done. 

The approach in this paper to adjusting for differ- 
ing 7rc*'s is to use pseudo maximum likelihood, i.e., we 

use a weighted log-likelihood ~cm=X wcenf(xcl,X, k), 

• -1 There are a variety where we is propor t ional  to 7r e . 
of ways of just ifying this: for example the weighted 
sample log-likelihood is an asymptotical ly design un- 
biased es t imator  of the full populat ion log likelihood 
(Kish and Frankel [1974], Godambe  and Thompson 
[1986]). One can also justify p-weighting from a more 
model-based viewpoint:  the reader is referred to Rizzo 
[1992], section 3.-t.4 of Skinner, ttolt, and Smith [1989], 
and Smith [1989]. Rizzo [1992] also discusses an alter- 
native to p-weighting of adding r c as a covariate to 
the model. 

3. T h e  O b s e r v e d  D a t a  P s e u d o  
L o g - L i k e l i h o o d  

The full da t a  pseudo log likelihood is given in Sec- 
tion 2 is ~cm__l wc gn f ( x c [ ~ , k ) .  We deal with miss- 
ing clusters through weighting alone, i.e., by adjust- 
ing wc to take into account an est imated probability 
of response for the responding clusters. There also 
is non-response within the clusters: using Rubin and 
Little 's notat ion let Xc,obs be the observed data  in clus- 
ter c. Then our observed da ta  pseudo log likelihood is 
Ec%X wcgnf(xc,obslJk, k). To illustrate in this case 
we can look at one of the clusters from the NELS sur- 
vey with one margin sex (S0=Male,  S l=Female ) ,  the 
other  margin the impor tance  of future success to the 
s tudent  ( I0=Not  very impor tan t ,  I I = v e r y  important) .  

I0 I1 

S0 1 16 0 

S1 2 23 1 

1 2 

The 2 x 2 table within the cluster was as follows: The 
2 × 2 table corresponds to complete observations, the 
two margins to part ial ly missing observations: we had 
one s tudent  who gave her sex, but  did not give a suc- 
cess answer, and 3 s tudents  who gave success answers, 
but  not their sexes. 

For the complete  da ta  the probability is 

( 42 ) r(k) 

x r ( 1  + k p l ) F ( 2  + kp2)F(16  + kp3)F(23 + kp4) 

For  t h e  missing da t a  margins def ine  x !  1 ) _ . ¢l(Xcl), Xc2) )(1.  

= (0, 1) and x (2) -- ( x~2 ) , z~ ) )  -- (1 ,2) .  The super- 

script indicates missingness pat tern.  Let n~ 1) -- 1, 

n (2) -- 3 be the totals  of each cluster falling into each 
missingness pa t te rn .  Since we assume the data  is miss- 

ing at random,  the n~J)'s as random variables have 
dis t r ibut ions independent  of k and p. Thus we will 

condition on the n~J)'s as ancillary, and consider them 
as fixed constants .  

(x) 
It is clear t ha t  condit ional  on Pc, k, and ne that  

~11 ( 1 )  _ _  z (1) is Bin(n(~ 1) p )) where Pcl Pc1 ~ Pc3 the el ~ ' ' 
sum of the probabil i t ies of the cells corresponding to 
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x~ll)'s margin. Likewise x~] ) is Bin(n(2),p~)), where 

P~I ) -- Pel + Pc2. Wha t  are the distributions of 

(p~ll) ' p~l)), (p~) ,  p ~ ) ) ?  We know the pei's are Dirich- 

let with parameters  ( k , p l , . . .  ,Pk)- The p~) ' s  are 
summations of part icular Pej's, and these summations 
must also have Dirichlet distributions. For example 

(p~tx),p~l)) -- (Pc1 + Pe3, Pe2 + Pc4) has Dirichlet dis- 
tribution with parameters  k, (Pl + P3, P2 + p4). (See 
Wilks [1962], p. 181). This convenient property makes 
the Dirichlet desirable, if it is an adequate approxima- 
tion of truth.  

It follows that  x (1) -- (x~ll) X (1) , c~ ) will be Dirich- 

let multinomial with parameters  n~ 1), k, (p~l),p~l)), 

where p~l) _ Pl + P3, p(1) _ P2 + P4" 

f(z~:),z~x~>[)~,k,n (t> - 1 )  
r(~) 

r(1 + ~11-I~=~ r(~v~ x) ) 
x r(0 + kp~Xl)r(1 + kp~ 11) 

f(x~), x~)l,~, k, n~ ~) - 3) 

= 3  r(~) 
r(3 + k) H~=x ~ r(kp~ ~)) 

x r(1 + ~p~'))r(2 + kp~ 2)) 

The overall probability of Xc,obs, the observed da ta  
given in the table above, is a product of the complete 
data  likelihood and the two likelihoods given above. 
In general, suppose we have L missingness pat terns 
possible, in each cluster. Then the overall pseudo log- 
likelihood of the observed da ta  in the clusters will be 

L L 
c(x, k) - ~, ~ c(/)(x, k) 

m=l t=0 

= ~ log (~')x!'))  + logr(k) 
t=0 = 

1" t 

- log  r ( -V)+ k ) -  y ; log  r(kp~.')) 
j= l  

j= l  
(3.1) 

/~!t) is the likelihood function for the da ta  from one 
cluster c and missingness pat tern  g. The case g -- 
0 corresponds to the complete da ta  in each cluster, 

thus p(0) is just p, x(c °) is the vector of complete data  
counts for the cluster, etc. rt is the number of cells in 
the margin corresponding to the missingness pattern: 

in our example r l  -- 1"2 -- 2, and ro -- 4. If n~ t) 

is zero for any c, e then £(t)()~, k) will be zero rather 
than the formula as given above (this is presumed in 
the formula for £()~, k) to avoid clutter).  

p~t)'s" are obviously straightforward The linear func- 
tions of )i (see section 2). As a function of fl, each 

r - - 1  
)i i -- e xi/$/1 + ~ i =  X eX'a, from the model, as is stan- 
dard in log-linear models, and the £ can bc written a.s 
a function of fl based on (3.1). 

4. F i n d i n g  t h e  M a x i m u m  L i k e l i h o o d  
E s t i m a t o r s  

Before discussing the maximum likelihood estima- 
tors, an initial discussion of why the EM algorithm 
was not used here is probably necessary. If we used the 
EM algorithm we would maximize an expectation of 
the complete da ta  log-likelihood over the distribution 
of the missing data  given the observed data. In this 
situation the observed d a t a / ~  is a product of Dirich- 
let multinomials, thus it is not more complicated in 
form than the complete da ta  log-likelihood. Thus the 
M step in the EM algorithm is no easier than a di- 
rect maximization of/~. In addition there is no sim- 
ple formula for the expectation of the complete da ta  
log-likelihood given the missing data,  making the E 
step somewhat computationally intensive. In short, 
the EM algorithm in this situation was much less effi- 
cient computationally, and no simpler conceptually. 

To get the maximum likelihood methods we need 
the score function and higher-order derivatives of /~  
with respect to k and/~1. The derivatives with respect 
to k are easy to obtain. Let ~b(x) -- 0-~ log F(x).  (The 

function and its derivatives are given in a number of 
software packages, e.g., NAG Fortran Library). Then 

0£ 
Ok 

= ~ ( k ) -  ~( . ! ' )  + k) 
m= 1 t=O 
r(t) 

j = l  

r(t) ] 
+ Z P ~  t ) ' '  (t)w(xct + kP~ ̀)) 

j= l  
(4.1) 

m=l t=0 
r ( t )  

~-'r~(t)12 - ~ . ~  , ~ ' ,kp/) ,  ( ( I 

j = l  
r(t) ] 

+ Ep ' l +kp 
j=1 

(4.2) 

The next step is to get the first and second partial 
derivatives of/~ with respect to/3, the main parameter  
of interest. To facilitate this matrix derivative theory 
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will be used. A major reference for this theory is Mag- 
nus and Neudecker [1988]. We will briefly discuss what 
is necessary in developing our estimators. 

Suppose we have a matrix function F mapping n x q 
matrix X into an m x p matrix F ( X ) .  Then the ma- 
trix derivatives D F  is an mp x nq matrix for which the 
(i, j)th element of D F  is the partial derivative of the 
i th element of vec F ( X )  with respect to the jth ele- 
ment of vec (X) .  Two properties of matrix derivatives 
proven in Magnus and Neudecker [1988] used below are 
a chain rule and product  rule: if F ( X )  = F1 (F2(X)) ,  
then D F  - (DF1)  * (DF2) ,  and if G ( X )  = A X  B, 
where A and B are constant matrices, then DG - 
B'  ® A. Simpler versions of the product rule for vec- 
tors can be obtained by replacing A or B with an 
appropriate identity matrix. 

We will proceed by finding ~ for each g and 
~t) _(t) 

c. Let X (t) -- (p , ' " , V r t - l ) ,  i.e., the margin cell 

probabilities except the last: p(t t) -- 1 - p~t) . . . . .  
p~t_.) Then X (t) -- Z(t)X, where Z (t) is a ( r t -  1" 
1) x ( r -  1) matrix of l 's and O's. Note that  Z (°) 

is an identity matrix. Let /~ t )  _ Ft (F2(X)),  where 

F2(X) - X (t). Then from (3.1), DFt is a (1 x rt - 
1) vector with jth e l e m e n t - k ¢ ( k p ~  t)) + k¢(x~tj) + 

0£(t) kp~ t)) + k~(kp!t, )) - k~(x~tr~ + kp!t,)), i.e., ~ as 

a row vector. D F2 is just  Z (t) from the product rule. 
Now let )~ - F3(r/),  where 7/ - X/3. Then )~i = 

e r/i/1 + y~ e r/~ from Section 2, and we obtain DFa - 
A), -- )~)~l (differentiating with respect to r/), where 
A x is a diagonal matrix of )q's, from direct compu- 
tation of the partials. Finally 7/ -- F4(/3) - X/3, 

and DF4 - X.  We then have /~!t) _ E(/~) - 
Fl (F2(F3(F4(~)))) ,  with 

[ ]' D F -  O£!t) Z(t) [Ax - AA']X 
0A(t) 

(4.3) 

from the chain rule. 
To get the second derivative of/~!t)  with respect 

to /3  we just  differentiate DF above as a column vec- 
tor ( D F  is a row vector in (4.3)). Z (t) and X are 
both constant,  so as a function of f~, DF'  is G(/~) - 

X'[Gt  (/5)]Z (t)' [G2(/5)] where a t  (/3) - Ax - X,V, 
0£(t) 

G2(/3) - o~-X~" To differentiate G we have a essen- 
tially a product  of two functions. For matrix deriva- 
tives this derivative operates in the same way as a sim- 
pler scalar function product ( f t ( x ) f 2 ( x ) ) '  

-- f~(x)f2(x) 
+ f l ( z ) f ~ ( z ) .  Combining this with the product rule 

above we get DG - [-o-X~ Z(t) ® X '  DG1 + 

[X'GI ( f l)Z(t) ']DG 2. 
DG2 can be derived in a manner similar to DG us- 

(t) 
0~£~ ]X ing the chain rule: we obtain DG2 - [oa(~)0x(~)' 

Z( t ) [Ax - XXqX.  The ( r e -  1) x ( r e -  1) sec- 
02£.(t) 

ond derivative matrix Ox(t)ox(t), has as diagonal ele- 

m .ts -k  (kp  ) + + - k (k p(/, )) 
+k2¢'(Vir,  +kp(t.)), and off-diagonal elements - k 2 ~  ' 

x ( k p ~ ? )  + k2¢'(yi,.t + kp(,.tt)). (See 3.1 and the dis- 

cussion of ~ O '  ). 

For DGx we need to differentiate Ax - X,V as a 
function of 13. We can write A x - A A '  as H2(H1 ( / 3 ) ) -  
H 3 ( H t ( ~ ) ) ,  where Ht( /3)  -- X. We know from work 
preceding (4.3) that  DH1 = [ A x -  XX']X. H2 maps 
Xinto  AA; if for example Xis 3x  1 DH2 will be the 9x  

tOO . 000 • 000] t 
3 matrix 000. 010. 000 , obtained by direct partial 

000 • 000. 001 
differentiation. /-/3 maps X into XX'. From Magnus 
and Neudecker [1988], p. 182, if F ( X ) -  X X ' ,  where 
X is n x q, then DG - (In~ + Kn ,n ) (X  ® In ), where 

Kn,n is the matrix that  satisfies Kn,n [vet(Z)] - (Z T) 
for any n x n matrix Z. Thus DH3 = (I( ,~-t)~ + 

K r , -  t ,r . -  1)(X ® Ir~- t), and the second derivative is 

02zz t) ] 
D G -  X ' [ A x  - AA']Z (t)' 

OA(t)OA(t)' 

x Z(t)[A~, - AA']X 

+ [OA(t)]'z (~) ® x '  

× { + [mH I}[zX  - XX']XI 
(4.4) 

Obtaining these second partials is do-able at least in 
theory without  the matrix derivative theory, but it is 
far less pleasant-you need to do them one by one. 

02£ 
The derivative 01400 has a derivation very similar 

to the above work and will not be given. To actually 
find the maximum likelihood estimators of k and /3 
a Newton-Raphson method is used. Generally getting 
the expectation of the second derivative matrix is com- 
putationally inefficient, thus using the observed Fisher 
information matr ix is much better if it is positive def- 
inite. 

5. P r o p e r t i e s  o f  t h e  P s e u d o  M a x i m u m  
L i k e l i h o o d  E s t i m a t o r  

Let ~, be (k, j3), ~ the pseudo MLE, and /~c - 

~eL__-- ~.tct)'" The "pseudo" score function can be writ- 0 
ten as ~cm__l wc OL--~ with ~ derived in section 4. 07 ' 07 

02£c The second derivative of/~c will be ~ c m l  Wc o't o'r ' " 
To derive the asymptotic variance of "~, we use the 
usual expansion 

m 0£.¢ 
- ~__~ wc-~7 

c=1 "1' "1' 

= [ 02£¢ 
- ~ ~ =  we 0 7 0 7 '  

(~r - 7)  (5.1) 
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The variance of the pseudo score function is 

-- Eem=l we 28 [ 02£" ] ~ are ordinary [0707' ' since the o7 
score functions and are independent.  The asymptotic 
variance of "~ will be 

[ ] . c92£~  

e--1 [ ]-' m 0 2 £ ~  . ~ 0 2 £ ~  

2El 0707' ] 0707' 
e--1 c--1 (5.2) 

The asymptotic framework that  is most workable 
presupposes that  m, the number of clusters, goes to 

infinity, while the he, n (t) remain bounded (by an M,  
for example, which is not dependent  on rn). A rigorous 
proof of asymptotic normality will not be given here, 
but an outline of the proof will be described. 

The critical element is proving the asymptotic nor- 

mality pseudo score function E c % I  wcOL-'~[ • 
| 

of the O-y _-/ 

We need to use a Lindeberg-Feller type argument: we 
would require for example that  a/n  <_ we < b/n 
for a, b > 0, so that  no we is "large," violating uni- 
form asymptotic negligibility. In practice a we can 
be large relative to the others if the probability of se- 
lection of a cluster is very small - remember that  we 
is the inverse probability of inclusion. Existence of 
very small probabilities of selection will cause deviance 
from the normal distribution even with large m. If ne 
is bounded, then ~ has finite support  therefore it is (9"1' 
sufficient to show it is bounded above to bound in any 
moments. To bound in the first derivative and higher 
order derivatives in a neighborhood of ~, (see Serfling 
[1980], p. 144) we require that  k be strictly positive 
and Pc contains no zeroes. The ~b function and all 
derivatives thereof can be shown to be bounded on in- 
tervals of the form [771, r/2] where r/1 > 0: thus if its 
arguments in (4.1), etc. are kept away from zero the 
overall derivatives will be bounded above for any or- 
der. The partial derivatives of/~c of any order with 
respect to "7 can easily be seen to be linear combina- 
tions of the ~ function quantities and their derivatives. 
Variance matrices need to be positive definite and sec- 
ond derivative matrices negative definite. With these 
kinds of conditions it is not difficult to construct a 
proof of asymptotic normality of ~ along the l~nes of 
Serfling [1980], pp. 144-148. 

6. R e s u l t s  f o r  t h e  2 x 2 E x a m p l e  
The model of interest is the independence mode l -  

where sex and views toward future success are inde- 
pendent. This model as well as the saturated model 
was fit and compared. Using the starting values from 
Chapter  6, both model iterations converged (a small 
number of iterations were necessary (<  10): a few 
seconds on the SUN Spare stations). For "the satu- 
rated model the maximum likelihood estimator for k 
has 553 and the maximum likelihood estimators for 
the cell probabilities were: 

Sex 

M 

S uccess 
NI VI 

.069 .420 

F .087 .424 

To test independence a Wald Test was used: in the 
saturated model we have parameters  (/~1,/~2, ~3) with 

eat etc. Under the independence model 
Pl -- 1+E~=1 ea ' '  

]~I -- ~2 T/33 ,  thus we can test a'f~ - 0, where 

a - - [1 , -1 , -1 ] ,  using (a'/J)21Var(a'[3), (Var(/~)is 
a submatrix of (5.2) above) which we refer to a X 2 , 1 

distribution. The value of the test statistic was .448, 
with a p-value of ,~ .5. Thus we accept the indepen- 
dence model, sex being independent  of views on future 
success is consistent with the data. 

For this model the estimator of k is 54.5, with es- 
t imators for the cell probabilities of success, i.e., we 
have a ratio of 1.13 of girls vs. boys, and a ratio of 
5.17 of those viewing 

Success 

NI VI 

M .076 .393 

Sex 
F .086 .444 

success as important  against those not viewing it as 
not very important .  The correlation between the two 
j~ parameters in the asymptotic variance matrix was 
only - . 0 5 ,  thus we can for simplicity assume indepen- 
dence and set up two standard deviation confidence 
intervals for these ratios: for girls vs. boys the C.I. 
for the ratio is [.977, 1.305], and for VI's vs. NI's the 
C.F. for the ratio is [4.20, 6.31]. (Note: the true ratio 
of girls vs. boys is not necessarily 1 because of vari- 
able drop-out rates, etc.). The asymptotic s tandard 
deviation for k was 24.3, reflecting a great deal more 
variability for what is essentially a kind of variance 
component. 

Suppose we look at the distribution of )kc under the 
model using the maximum likelihood estimators under 
the independence model. Then the marginal distribu- 
tion of ,~1c is Beta (kpl ,k(1  - P l ) )  and that  of A3c is 
Beta (kp3, k ( 1 -  P3)) from basic results regarding the 
Dirichlet (Wilks [1977]). 

7. D i s c u s s i o n  a n d  E x t e n s i o n s  
In arguing for this methodology there are three 

questions that  need to be discussed: (1) Why use a 
model-based approach? (2) Why use this particu- 
lar model? (3) With this model why use maximum 
likelihood as an estimation procedure? Question (1) 
is pertinent because of the extensive development of 
a design-based approach to categorical da ta  models. 
There is a strong argument for the value of model-free 
inference especially in situations in which many dif- 
ferent users with many different presuppositions (i.e., 
models) will be using and critiqueing the results. This 
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approach by using pseudo-likelihood methods does ab 
low one to say the sample pseudo-log likelihood is an 
asymptotically design unbiased estimator of the true 
population log-likelihood, but in general the basis for 
inference is the model distribution, not the sample de- 
sign, thus in general design effects are not directly rel- 
evant to this type of inference (we do care about what 
Skinner, Holt, and Smith [1987] call "model effects" 
(Chapter 2)). On the positive side of the ledger for 
a more model-based approach, the models allow for 
fuller "exploration" of the data, as argued by Holt and 
Ewings [1987], they allow for an easier dealing with 
non-response, as seen in this paper, and on a practical 
side do not require knowledge of design effects for cell 
probabilities (which are not available for this survey). 

The second question we pose is assuming we want 
a more model-based approach why use the Dirichlet 
multinomial model? The author feels that it is easier 
to proceed by dealing with each cluster as an indepen- 
dent multinomial sample rather than attempting to 
throw everything together, and take account of intra- 
cluster correlation by defining covariance components, 
as is done in most of the model-based papers. This 
approach does not allow one to define a full likelihood 
easily, and gets very messy when one tries to deal with 
differing cluster sizes, and non-response. Another ap- 
proach is to use a normal prior for/3. This is harder 
to work with, requiring use of an EM mechanism, and 
in general is less efficient computationally. A product 
multinomial, with a Dirichlet "prior" on the cluster 
parameters, allows a very elegant likelihood approach 
to non-response differing cluster sizes, and asymptotic 
theory. 

The third question is why use maximum likelihood? 
Brier [1980] in the original paper uses method of mo- 
ments. However Brier does not cover either differing 
cluster sizes or non-response. Method of moments is 
very messy when one tries to generalize to these sit- 
uations. However with a technique like Magnus and 
Neudecker's matrix derivatives finding maximum like- 
lihood estimates in the most general situation is fairly 
straightforward, and assuming we have no sparse cells 
or disproportionately large clusters the asymptotic ef- 
ficiency of the direct maximum likelihood estimators 
can be established (we lose some of this efficiency by 
using a pseudo-likelihood with the weights based on 
inverse probabilities of selection). 
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