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I. Introduction 

The health sample surveys conducted by the 
National Center for Health Statistics (NCHS) have 
complicated design structures. Logistic regression 
analyses are frequently performed on these surveys, 
but the survey design structures are often ignored or 
modified, e.g., assuming independence of observations 
or ignoring weights. Conventional computer software, 
e.g., SAS PROC LOGISTIC, which cannot take into 
account all features of the complex design may be 
used. Recent software advances, e.g., Research 
Triangle Institute's (RTI) SUDAAN, allow the analyst to 
take into account design structures for a data analysis, 
but availability, ease of use, and cost factors often 
persuade analysts to continue to use conventional 
software. This paper compares some of the common 
analytical approaches to NCHS survey data. 

II. Survey Design Structures 

There seems to be no universal consensus as to the 
"correct" method for complex-survey data analysis. 
The concept of design-based versus model-based 
analysis has been discussed elsewhere (see Hansen et 
al. (1983) and Nathan (1988)), as have the issues 
involved in informative versus non-informative survey 
designs (see Skinner(1988) page 146). 

As discussed in Korn and Graubard (1990), analysts 
have many options in imposing a structure on survey 
clustering and weighting. Many analysts feel a model- 
based analysis can be first run and then a common 
deflation factor applied to a model-based test to 
compensate for the survey design. Even when using 
the design-based structure, many analysts alter the 
original clustering structure and/or modify the weights. 
As an extreme position, the weights are ignored (i.e., 
set to unity), and an unweighted but clustered analysis 
is used. Table 1. provides some possibilities for an 
analytical design structure. 

The with-replacement (WR) design with no 
clustering is usually considered to be the simplest 
design-based structure. Here, (w, x, ), 
i = 1,2 ..... n is a sample from a finite population and 
Pr( sample j selects element (w, x,) ) o= l/wi. 

Now, a model-based sample differs from a WR-design 
in that the data are independent, and it is usually 

assumed that x, is a random variable with 
Var(x~) = 1/w, 

Table 1 SURVEY DESIGN STRUCTURES 

SAMPLING STRUCTURE WEIGHTS 
.... 

YES NO 
==== 

DESIGN- BASED 

...................................... 

FULL-COMPLEX DESIGN 

MULTI -STAGE CLUSTERS 
............ 

STRATIFIED ONE-STAGE DESIGN 

FI RST-STAGE CLUSTERS 
..................................... 

WITH REPLACEMENT DESIGN 

NO CLUSTERS 

========== .................. 

MODEL-BiaSED I 

S R S  
Idesign 

I I 

Korn and Graubard (1990) have provided some 
examples and discussion of imposing various design 
structures on the complex survey data. They point out 
that even though a weighted design-based analysis is 
totally justifiable via sampling theory, clustering and 
weighting can lead to inefficiencies in the analysis. 
See also Kish (1992). 

Many of the large scale population surveys funded by 
NCHS implement multi-level, disproportionate sampling 
strategies along with non-response and ratio adjust- 
ments. The resulting final survey weights are usually 
quite variable. A large sampling weight for an 
individual may make that individual's responses highly 
influential in an analysis. To avoid this, one strategy is 
to truncate the sampling weights, and using 
unweighted data is an extreme case of this strategy. 
After weight truncation, the population parameter 
estimators are biased in the design-based framework, 
although it is usually assumed that the mean-squared- 
error is reduced. 

In the analytical strategies considered, the data 
clustering is only used in defining the functional form 
of the variance/covariance of an estimator. In general, 
if within a stratum the data clustering is ignored, the 
resulting variance estimator will on the average be 
smaller, since the data are treated as being more 
efficiently collected. If however, stratification is 
ignored and the stratification is indeed effective, the 
ignoring of stratification will usually increase the 
resulting variance. Typical variance estimators 
considered are based upon sums and sums of squares 
of cluster totals at different levels. If a design-based 
restructuring results in more "degrees of freedom" (df) 
than the original structure, then the corresponding 
variance estimator usually has the advantage of being 
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more stable than the original, while if fewer "degrees 
of freedom" result, the variance estimator may be less 
stable. The modified structures will, however, often 
result in design-biased variance estimators. Our focus 
will now be directed toward logistic regression 
analyses of survey data under some of the various 
design structures discussed above. 

II. Logistic Regression Analyses 

To justify the modeling of a logistic regression in a 
finite population, a pseudo-MLE modeling is often 
taken, (see Skinner et al (1989) page 80 and Binder 
(1983)). Binder provides a detailed technical 
discussion, but briefly stated, one assumes that a p- 
vector, p, of the finite population parameters of interest 
is the MLE estimator for an infinite population where 
the finite population values are treated as the data. 
Furthermore, assuming that the finite population MLE 
solution for It satisfies the form: 

~ k t l  U(Yk,Xw;/Y) = 0 

where u is a p-dimensional vector valued function, 
(Yk, Xw) are the N population data values, and/Y is the 
parameter to be estimated, then using the sample data, 
(Yk, Xk), k = 1,2 .... n, with associated weights w k, the 
estimator of the population parameter is the solution to 

~ - I  wk u(Yk,Xk;#) = 0 ( 1 )  

This is the same form as used in a weighted model- 
based MLE, e.g., SAS PROC LOGISTIC, thus the 

estimator of/t, 13, is the same for both the model- and 
design-based structures. For the model-based 

A 

approach, the variance for 13 is the inverse of the 
information matrix, INF 1. For the design-based 
structure, the variance is of the form: 

Var(~) = INF 1 :T u INF 1 , ( 2 ) 
where }'u is the variance/covariance matrix for the p- 
vector of expression (1). This variance linearization 

process for the estimator 13 is presented in greater 
detail in Binder (1983). 

In terms of computer software, the model-based 
analyses are performed by conventional software, e.g., 
SAS, SPSS, while the design-based analyses use 
software specific to survey design analysis, e.g., 
SUDAAN, PC-CARP, OSIRIS. 

In this paper the design-based analyses are done 
using RTI's SUDAAN (1989). This software is based 
on Taylor-linearization methods to estimate variances, 
and covers a broad class of hierarchical nested designs 
applicable to NCHS data. This software permits an 
efficient use of design information; linearized variances 
for means, regressions, and logistic regressions can be 
computed using a linear combination of Yates-Grundy- 
Sen variance formulas (see Cochran 1977, page 261) 
and usual "S 2" variance formulas. The purpose of this 

paper is to evaluate the effect of imposing the design 
structures of Table 1 on a given analysis, and not 
software evaluation, thus only SUDAAN has been used 
for the design-based structures. 

SUDAAN, in its PROC LOGISTIC package, uses the 
methodology discussed by Binder (1983). PROC 
LOGISTIC provides the estimated Variance/Covariance 

matrix, V ( ~ ) ,  for the pseudo-MLE estimated 

parameters, ~. SUDAAN can process both full and 
non-full rank design matrices and also performs some 
basic hypothesis tests, but its output is quite limited in 
scope when compared to SAS. Unfortunately, the 
SUDAAN procedure takes considerable mainframe 
computer CPU time (see Carlson and Cohen (1991 ) for 
a related study). The SUDAAN solution to the MLE 
equations for the logistic model requires an iteration 
process and multiple re-readings of the input data set. 
It takes over 10 times the CPU time that the same 
solution in SAS requires. Users of large survey 
databases may not have the resources needed to run 
SUDAAN. Thus, conventional software may be the 
only practical option. (This paper is based on SUDAAN 
version 5.53. Version 6.00 which RTI has reported as 
more efficient became available after the presentation 
of this paper. Some of the deficiencies mentioned may 
now be corrected.) 

Most statisticians would agree that a logistic 
regression analysis that incorporates the complex- 
survey design into the sampling structure is preferable 
to one that does not, though there may be 
disagreement on the methodology to handle weighting 
and clustering. Our objective is to consider tests of 
hypotheses of the form: 

Ho" E(K~) = 0 where K# is estimable, and K i s o f  
full row rank, with the analysis subject to the 
structures of Table 1. 

Test statistics are based upon Wald statistics and 
not the -2log of the likelihood ratio, since SUDAAN is 
structured to produce the former. Test statistics of the 
following form are considered: 

F = c * ~ 'K'(K~, K')"K ~ / df(hypothesis) 

where '~ is an estimator of the Covariance matrix 

associated with ~ in expression (2), c is a 
standardization constant, and df(hypothesis) = rank(K). 

In our tables we will refer to four general types of "F" 
statistics : 

Model-Based: 

Here, the weights are scaled to ( ~ n  Wi)-I where 
/-1 n 

n is the sample size. The factor c = 1. 

MODEL-F • ~, = II~F, where 
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if p,(~) = ( 1 + exp(-x,~) )~ is the estimator of 
Pr( Y~ = 1 J ~ ) for a logistic model 

then II~F = Z x, ~T w, p,( ~ ) ( 1 - p,( ~ ) ). 

Design Based F: 

WALD-F: ~.. = V(~) ,  with the complex design 
structure typically selected from Table 1 and c = 1. 

For a WR imposed structure, ~3 u = the usual "S 2" 
variance/covariance matrix generated by n p- 

dimensional vectors ~ w~( y~- p~(~) ). This specific 
WALD-F will be referred to as WR-F. In general, 

the Z] matrix is generated from more complex design 
structures, e.g., stratum, PSU structures. 

SRS-F: ~]u = the weighted "S 2" variance/covariance 
matrix generated by n p-dimensional vectors 

( y~-  p~(~) ), each vector having weight wi. 
Equation (2) can then be used to provide an estimator 

for V(~ I true unweighted SRS design). It should be 

noted that the ~]'s for the WR-F and the SRS-F are 
identical if the weights are all unity, but in general will 
be different. 

SAT-F: SAT-F = c * SRS-F, 
c = second-order Satterthwaite correction, a 

function of the eigenvalues of ~-1 (SRS-F)* ~,, (WALD-F) 
(see Skinner (1989) page 43 ). 

A Satterthwaite degrees of freedom will also be 
associated with this latter F. If the hypothesis degree 
of freedom = 1, then the WALD-F = SAT-F. 

Under the null hypothesis, the "F-statistic" should be 
close to one. In practice, the F-statistic is treated as 
having a standard F distribution with (dfl,df2) degrees 
of freedom, where dfl = df(hypothesis), though for the 
SAT-F, a Satterthwaite correction is used, and df2 = 
degrees of freedom associated with the estimator of ~'. 
For the MODEL-F, SRS-F, or WR-F the 
df2 = (sample s i ze -  rank(X)), which is treated as 
infinite for large data sets, i.e., F is treated as having a 
distribution defined by a Chi-Squared variable divided 
by its degrees of freedom ,x2(df~)/df~. For a one-stage 
design, Stratum, PSU, df2 is usually taken as (number 
of PSUs - number of strata). This is only a rule of 
thumb. One set of sampling conditions where the rule 
is reasonable is : same size PSU's, PSUs sampled with 
probability proportional to size, and each stratum has 
the same population PSU variability. In many designs 
the first-stage random units sampled are structurally 
different in different strata, and this rule cannot be 
applied. SUDAAN uses this rule of thumb in its 

probability computations. Thus, for many designs the 
SUDAAN p-values are not applicable to the design. 

III Examples from the National Health Interview 
Survey. 

The points discussed in I and II above will be 
illustrated using the 1987 National Health Interview 
Survey Cancer Epidemiological Supplement (NHIS-C) 

The NHIS-C has about 22,000 sampled persons. 
The following hierarchical sampling structure seems to 
capture the essentials of the actual sampling 
mechanism. 

Stratum : 52 s e l f - r e p r e s e n t i n g  (SR), 
non-self-representing(NSR) 

73 

Primary Sampling Unit(PSU) : select 2 per NSR stratum 
using Durbin's method 

Substratum: partition of PSU into at most 3 substrata 
for subsequent disproportionate sampling rates 

Second Stage Unit (SSU): cluster of housing units 
within substratum (about 8 target households) 

Sample household: a sample of households (usually all) 
is designated for interview 

Sample person: one sample adult within family per 
household is selected for interview. 

The systematic sampling mechanisms used to define 
sample at the second and higher sampling levels do not 
admit usual variance estimator formulas. The following 
assumptions are made to allow "classical" variance 
estimation formulas to be used: 

1. Within substrata the SSUs result from a simple 
random sample with replacement and 

2. All stages of sampling within a SSU will produce 
an unbiased estimator of that SSU's total. 

Given the above framework, the following design- 
based structure is considered the "best" practical 
choice of sample design parameters with the SUDAAN 
software: 

Full-Complex Design: 

NSR strata: sample two PSUs using available Durbin 
individual and joint probabilities of selection, sample 
SSUs with replacement within Substrata of PSUs. 

SR strata: sample SSUs with replacement within 
Substrata. 

Unfortunately, confidentiality constraints, often 
require that some design information be omitted from 
the NCHS public-use data taPes. Also, some complex- 
design software may not allow the design detail of 
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SUDAAN. in such circumstances analysts are often 
required to impose the less efficient one-stage design: 

First-Stage Design: 

NSR strata: two sample PSUs are sampled with 
replacement within a stratum 

SR strata: SSU's are randomly partitioned into two 
pseudo-PSU's and treated as sampled with 
replacement. 

This latter design would usually have 125 = 73 + 52 
degrees of freedom associated with its variance 
estimator, while the former design would have at least 
this many. As a cited rule of thumb, degrees of 
freedom is not applicable here since PSU's and SSU's 
are not comparable units. A WR-design where weights 
are used, but clustering ignored, will be considered for 
comparative purposes. 

First, a logistic regression for cancer status is 
considered. Our study is focused upon design 
structures and not the relations of health and socio- 
economic-demographic variables, for such a study a 
much more detailed analysis would be required. 

Response: Y = 1 (0)if the sampled individual has ever 
(never) been diagnosed as having cancer. 

Predictors: 

Class variables and levels 

intercept 
sex(2): male, female 
race(2): black, nonblack 
region(4): NE,MW, S,W 
family cancer(2): yes,no 
smoking status(3): never,former,current 
industry(5): 5 classes 

continuous variables: age, log(income) 

The variables race, region, industry, log(income) 
should be highly correlated with the NHIS geographic 
stratification variables. 

This is a non-full rank model; there are 21 
parameters, but the rank of the X matrix is 15. The 
comparisons of the different designs structures are in 
Table 2. In this table the F-tests are testing the 
hypothesis Ho: specified level parameters = 0. 

Impact of Analysis Structure on Inference: 

Analyses using .05 level tests are considered. 
Since the sample size is quite large, the "F-statistic" 
values for the WR, SRS and the model-based designs 
are compared to a chi-squared distribution divided by 
its degrees of freedom. For the Full complex or First- 

Stage designs, the SAT-F and WALD-F it is really not 
clear whether the rule of thumb denominator degrees 
of freedom 125 is reasonable. We suggest 
considering: 

minimum {df2: P(F(dfl,df2) > observed ) <  .05.} 

for a given test. If this value is "small" the analyst 
may feel confident the F-test is significant. 

An examination of Table 2 shows that there is a strong 
positive correlation of the various F-statistics. For all 
structural designs and weighting one would have 

Not significant: Industry 
Significant: Age, Race, Sex, Region, Family 
Cancer, Smoking Status 

Inference on Log(income) is mixed. For an un- 
weighted model design or unweighted WR-F = SRS-F 
the observed F would be judged significant since 
P(Fl,oo > 3.85) = .05. 

Some comments on the NHIS-C analyses 

1. Relative comparisons among the different structures 
show a lack of uniformity in magnitude. No one 
structure gives larger or smaller F statistics. 

2. As one might expect, for a fixed weight structure, 
the ModeI-F and SRS-F's seem reasonably comparable. 

3. For the Full and First-Stage design options, the 
SAT-F is considered to be more stable than the WALD- 
F and is the preferred design-based test statistic. In 
most of these cases we see that the SAT-F is of 
smaller magnitude than the WALD-F. If SAT-F > SRS- 
F then estimated design effects (DEFT = ratio of 
complex to SRS-sampling standard errors ) may be less 
than one. A small estimated deft may be the result of 
instability of the complex design variance estimator, 
but it may also indicate insufficient data. There is also 
the possibility that the survey stratification was 
extremely effective, but this seems rare in population 
surveys. The weighted estimate for the race effect had 
DEFT < 1. An examination of the sampling weights 
associated with the black-male sample showed a large 
amount of variability with the bulk of cancer cases 
concentrated on the smaller weights. This distribution 
may contribute to the small DEFT. For the unweighted 
design the DEFT is greater than unity. 

4. The First-Stage design tend to produce larger 
variance estimators than the Full-Complex design. 
Most of the F statistics for the former are smaller. 

5. The SAT-F value tends to be smaller than the 
MODEL-F or SRS-F for a fixed design. 
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6. The WR-F and SRS-F statistics are biased 
A 

estimators for V(131 true complex design) but should 
be more stable than the WALD-F statistics based upon 
clustered data. Except for the test of Regression the 
weighted WR-F was close to SAT-F(FulI-Complex). 

In the next NHIS-C example we consider two 
variables which should be independent of the design 
structure but also have similar distributional properties: 
month of birth January and month-of-birth March. The 
predictors used are age, sex, race, region, poverty and 
education as in the first example. For the response 
month-of-birth January the over-all test for regression 
was not significant, but for month of birth March, the 
overall test of regression could be argued to be 
significant between the .01 and .05 levels using the 
various structures, (see Table 3). Regional and Poverty 
parameters may also be judged significant. While such 
observations can be attributed to chance, it must be 
kept in mind that the data are also subject to non- 
sampling errors which we have little knowledge or 
control. Extra care must be taken in interpreting 
marginally significant results. 

From these NHIS examples, it seems that one major 
difficulty in testing the hypotheses is determining a 
denominator degrees of freedom so that the F-statistics 
can be assessed from an F-table. The various F- 
statistic are highly correlated, if one F is of "large" 
magnitude then most likely they all are. Inference 
made on "large" magnitude F-statistics is probably 
sound. Making decisions on a perceived moderately 
sized p-value, say .01 to .05, with survey data seems 
risky since underlying assumptions of "large sample" 
theory may not actually hold. 

Recommendations 

A complete analysis of survey data involves some 
justification of the imposed probabilistic structure on 
the data. A design based analysis using the weights 
and clustering is the only one that can easily be 
defended since it is a consequence of the actual 
sampling mechanism. The SAT-F is the preferred 
statistic for the design-based approach. Highly 
modified design-based approaches would have to be 
justified with respect to biases resulting from 
restructured clustering and weighting. The model- 
based analysis assumes a controlled experiment. The 
justification of this methodology seems more 
complicated. Some design-based analysis 
recommendations are now presented. 

1. Perform some diagnostics on the design weights 
and the clustering. It might be reasonable to truncate 
the largest sampling weights somewhat. The resulting 
additional design-based bias may be traded-off against 
increased stability of the variance/covariance. 

2. Use a conceptional design that is efficient as 
possible. 

3. Use the Satterthwaite adjusted F statistic. 
4. In an analysis one should assess the fit of the 

logistic regression model. As discussed in Hosmer et 
al (1991 ) and Pregibon (1981 ), measures of residual, 
leverage and influence should be considered. 
Many of the Pregibon diagnostics are programmed in 
SAS PROC LOGISTIC for the model-based approach. 

Since ~ is the same as in SUDAAN, these diagnostics 
may be informative, even for the design-based 
approach. 

5. Examine the design effects for small values which 
may indicate insufficient data. 

6. P-values reported using large sample theory may 
be suspect. 

7. Do the analysis using several of the mathematical 
structures of Table 1. Conflicting results should require 
further study. 
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Table 2 NHIS DATA 

Weighted (W) and Unweighted (U) 

Full-Complex Design (DI) and 
First-Stage Design (D2) 
With-Replacement Design (WR) 

RESPONSE = CANCER STATUS 

TEST DF SAT WALD SRS 
DF F F 

SAT MODEL 
F F 

REGRESS 
W-D1 14 13.0 60 
W-D2 11.4 63 
W-WR 60 

U-D1 13.5 73 
U-D2 12.3 80 

72 

70 

54 
42 

68 
58 

58 

58 

AGE 
W-D1 1 * * 
W-D2 * * 
W-WR 474 

U-D1 * * 
U-D2 * * 

595 

571 

501 
392 

592 
510 

556 

542 

SEX 
W-D1 1 * * 
W-D2 * * 
W-WR 34.3 

U-D1 * * 
U-D2 * * 

45.2 

41.3 

33 .I 
29.7 

44.0 
36.4 

44.4 

41.2 

RACE 
W-D1 1 * * 
W-D2 * * 
W-WR 30.4 

U-D1 * * 

U-D2 * * 

24.5 

26 .i 

31.4 
31.9 

25.0 

22 .i 

24.8 

26.3 

REGION 
W-D1 3 2.9 ii. 9 
W-D2 2.7 i0.8 

W-WR 12.8 

U-D1 3.0 12.4 
U-D2 2.8 12.3 

16 .I 

12.3 

II .5 
8.6 

12.5 
Ii .I 

16.3 

12.5 

FAMILY CANCER 

W-D1 1 * * 
W-D2 * * 
W-WR 21.9 

U-D1 * * 
U-D2 * * 

27.8 

37.6 

22 .i 
19.0 

40.7 
34.8 

2 8 . 8  

38.8 

SMOKE STATUS 
W-D1 2 2.0 19.6 
W-D2 2.0 19.8 

W-WR 16.8 

U-D1 2.0 22.7 

U-D2 2.0 24.5 

21.3 

20.5 

17.5 
17.0 

20.2 
20.5 

21.4 

20.6 

Skinner, C.J., Holt, D., and Smith, T.M. (1989) 
Analysis of Complex Surveys, John Wiley and 
Sons, New York. 

SUDAAN (1989) Software for Survey Data 
Analysis, Research Triangle Institute, North 

Carolina. 

Table 2 NHIS DATA (continued) 

TEST DF SAT WALD SRS SAT MODEL 
DF F F F F 

INDUSTRY 
W-D1 4 3.9 1.8 2.2 1.7 2.3 
W-D2 3.8 1.8 1.5 
W-WR 1.9 

U-D1 4.0 0.85 0.87 0.86 0.91 
U-D2 3.9 0.91 0.83 

LOG ( INCOME ) 
W-D1 1 * * 2.0 1.7 
W-D2 * * 1.4 
W-WR 1.7 

U-D1 * * 4.0 3.5 
U-D2 * * 3.2 

2.1 

4.3 

* WALD-F = SAT-F SAT DF = 1 

Table 3 NHIS DATA 

RESPONSE = BORN IN MONTH OF MARCH 

Full-Complex Design (D1) 

DF SAT WALD SRS 

DF F F 
REGRESS 
W-D1 9 8.7 2.6 3.2 
U-D1 8.8 2.6 2.5 

SAT MODEL 

F F 

2.5 3 .I 
2.4 2.5 

AGE 
W-D1 1 * * 1.4 

U-D1 * * 1.3 

I.I 
1.2 

1.4 

1.2 

SEX 
W-D1 1 * * 0.18 
U-D1 * * 0.37 

0.12 

0.32 

0.18 
0.37 

RACE 

W-D1 1 * * 0.73 
U-D1 * * 0.12 

0.61 
0.12 

0.74 
0.12 

REGION 
W-D1 3 3.0 4.7 6.0 
U-D1 3.0 4.7 4.5 

4.7 
4.5 

6.0 
4.5 

POVERTY 
W-D1 1 * * 4.0 
U-D1 * * 4.9 

4.1 
5.0 

4.1 
4.9 

EDUC 
W-D1 2 2.0 2.1 2.5 
U-D1 2.0 2.0 1.8 

2.2 
2.0 

2.5 
1.7 

* WALD-F - SAT-F SAT DF = 1 
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