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Introduction: 

The 1990 Census Sample Tolerance Check (STC) tests for 
sample selection bias in list/enumerate Address Register 
Areas (ARAs), where traditional door-to-door Census 
enumeration persists, and the enumerators themselves 
select the Census systematic sample, distributing long form 
questionnaires to selected housing units as they list and 
interview. Under conventional list/enumeration, the 
enumerators who collect the data can become an intrusive 
presence in the Census itself, and this is particularly true for 
the sample survey component of the Census. Concern for 
the integrity of such samples is no recent phenomenon. 
The distortion effect interacting enumerators have on their 
respondents' data was first incorporated into Census error 
models by Morris Hansen in 1951.' At a more basic level, 
before the interviewing begins, enumerators can intervene 
to bias the list/enumerate sample at the initial stage of 
sample selection, injecting a radical kind of nonsampling 
error into the survey component of the Census. The STC is 
concerned with one manifestation of this sample selection 
bias, bias in the sample estimator of the population total. 
This kind of bias creates major discrepancies between the 
100% count, the core statistic delivered by any census, and 
the sample estimate of the total population. 

It is, of course, a primal function of the Census to provide a 
hundred percent count of the U.S. population; the Census 
sample was not designed to provide estimates of population 
totals. Yet any primary distortion of the sample total 
estimator has a secondary impact on sample characteristics 
correlated with household size. Total estimator bias has a 
potential to skew a wide range of sample estimates--among 
the vulnerable items from the sample (long form) 
questionnaire: income; health; fertility; employment; current 
school attendance; years of schooling completed; property 
taxes and mortgage 2. We would expect these relationships 
to show intense local variation. 

In 1990, there was powerful motivation for the most 
common form of total estimator bias--a financial incentive; 
enumerators received a bonus for number of cases in 1990, 
and previously had been paid on a piecework scale. It still 
paid to finish as many cases as possible, as soon as 
possible. Smaller households can be enumerated faster on 
long forms--and the smallest possible households, vacant 

units, go the fastest. There has been experimentation with 
modifying enumerator pay structure. Notably, the 1970 
Census pretest in New Haven made enumerators' wages 
dependent on the number of Census person records 
brought in on long forms. The result in New Haven was 
merely a directional switch in total estimator bias--creating 
unanticipated overestimates of the 100 percent count. 

Certainly, total estimator bias is not the only conceivable 
form of sample selection bias. But motivation for other 
kinds of sample selection bias appears more subjective, 
hence less common, less powerful. The biasing 
mechanisms involved probably require greater prior 
knowledge of local demography than the simplest forms of 
total estimator bias. Thus, we would expect to encounter 
alternate forms of sample selection bias less frequently; 
they should not have as wide-ranging an impact as total 
estimator bias. Also, many are far from easy to verify--e.g., 
skipping occasional individuals perceived to be "difficult," or 
"socially dangerous," or sometimes omitting certain kinds of 
housing units based on enumerator perception of household 
income. 

Extant controls for selection bias are inadequate. The basic 
traditional controls include: 

1. the address register, as a randomization guide for 
systematic sampling, either 1-in-6 or 1-in-2, for list- 
enumerate ARAs; 

2. the vacant/delete check--primarily intended to catch 
fraudulent vacancy declarations; 

3. the fixed starting point and directional indications for 
list/enumerate circuits, intended to guarantee random 
enumeration paths and a random systematic sample. 

For systematic sampling, the traditional injunction has been 
to start in the northwest corner of the block and enumerate 
clockwise (enumerators, however, are not robotistic 
"random walkers," but thoughtful human agents; many of 
them worked in familiar territory and knew where the 
vacants were). Moreover, the northwest corner starting 

*This paper reports the general results of research undertaken by Census Bureau staff. The views expressed are 
attributable to the authors and do not necessarily reflect those of the Census Bureau. 
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point had been found so difficult to apply that it was 
dropped from Census field procedure for 1990. 

We began documenting operating mechanisms for sample 
selection bias in Washington State, after the 1988 Census 
Dress Rehearsal. In the most common scenario, the 
enumerator derandomizes--plans the enumeration circuit 
before listing, setting the starting point to target the smallest 
households available (vacant units, if any), as sample 
housing units. Repeated applications of this minimizing 
tactic bias the sample total estimator. Alternatively, large 
households may be targeted for short forms (exclusion from 
sample), with the same biasing effect. Enumerators may 
falsely claim long form housing units vacant. Or a simple 
mix-up may occur, (wrong address register, set for 1-in-6 
sampling, not 1-in-2) with the same downwardly biasing 
effect. 
Although the phenomenon is much less frequent, we have 
come across cases of systematic upward biasing of the 
population estimator, possibly intended as displays of 
sample collecting virtuosity (1990 evidence from Oregon). 

Historically, the Census response to enumerator-induced 
nonsampling error has been to reduce the list/enumerate 
modality. Although it cannot be totally eliminated, 
list/enumeration (LYE) has been largely supplanted by mail, 
from the initial mailing experiments of 1960 to the present. 
From constituting 100% of Census enumeration areas, the 
L/E areas shrank to 30% of U.S. housing units by 1970. By 
1990, list/enumerate covered only 5.4% of U.S. households 
and the same percentage of the U.S. population. Still, 
list/enumerate territory constitutes more than 50% of the 
land area of the continental U.S.; excluding the southeast, it 
includes most of the U.S. west of 100 ° W. longitude, outside 
metropolitan areas, along with the upper Midwest, and a 
strip of northern New England), Alaska (except Anchorage), 
as well as the island of Hawaii. 

Most important: L/E areas contain significant 
subpopulations, a distinct demography. Eliminating these 
areas could exclude from the Census: 

- most American Indians and Alaska native 
peoples (58% of this population in 
households, according to 1990 Census 
hundred percent count data); 

- 15% of the elderly in households, again based 
on 1990 Census hundred percent count data ; 

- much of rural America: 21% of persons 
reporting at least $1000 worth of 
agricultural produce outside the southeast, 
and 24% of such persons reporting at least 
$10,000 of agricultural produce, are our 
estimates from the 1990 Census sample. 

An Operational Overview: 

The test was conducted for L/E ARAs in 78 of the 79 type 3 
District Offices (DOs) in the US and Puerto Rico; Alaska 
was excluded after cancellation of resampling in remote 

ARAs. The 1990 Census Sample Tolerance Check was the 
first automated STC. The test was run on headquarters 
software in each DO's processing section. The basic unit 
for testing is the ARA, an enumerator's geographic 
workload. 

Automation allowed much greater control over STC 
procedures than in the past, when any testing had to be 
administered by clerks in the DOs. We could now achieve 
uniformity in testing and aspire to a less simplistic 
methodology. The basic numeric data appear in the table 
below, with continental U.S. figures in the column to the 
right. 

STC OPERATIONAL DATA 

32,761 ARAs tested: 

6,745,305 total HUs 
1,920,870 sample Hus 

13,401,626 total pop 
3,481,123 sample pop 

5,564,708 US 
1,735,782 US 

10,075,220 US 
2,970,228 US 

6.9% failure rate 

The global failure rate was 6.9%, with many more ARAs 
failing than would be expected to fail randomly, in the 
absence of selection bias, under our distributional 
assumptions. ARAs failing the test were resampled. 

The test statistics for the STC, the total estimator, the test 
score, and the STC test itself, appear below. The test 
statistic for the STC is the absolute difference between the 
sample estimator of the total and its expected value, divided 
by an estimator of the standard deviation of the sample 
total estimator: 

9= (N/n) YL; 
Z= (9-Y) / (NS/~[5) Vr[I-n/N) . 

The test is derived in large sample theory, the asymptotic 
normality of a scaled sample total, divided by its 
(appropriately scaled) standard deviation. The standard 
deviation estimator posits simple random sampling; its 
accuracy in a systematic sampling environment depends on 
low intraclass correlation of the sample. The null 
hypothesis posits the equality of the sample total estimator 
and the hundred percent count; the alternative asserts their 
inequality. The test is two-sided, allowing for 
underestimation and overestimation. The critical value (cut- 
off score) was 2.5, (standard normal o~ level, .0124). 

Evaluation of the 1990 Census 
STC 

Because of space constraints, we took a 1/6 representative 
sample from the housing unit-level files available for every 
type 3 DO (13 of the 78 list/enumerate DOs 3 in the 
continental US-yielding 4492 sample ARAs). These files 
were used to analyze resampling and to re-examine the 
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original sampling. We submitted all ARAs testable to three 
kinds of tests: sample tolerance check reconstructions; 
contingency table tests for homogeneity of distribution of 
household size by form type; and tests of the fit of the 
reconstructed sample tolerance check statistics to a 
standard normal distribution. A total of 4319 of our sample 
ARAs yielded a 100% count of at least 25 Hus, not all 
vacant; these were subjected to STC testing. Initial failure 
rate among them was 5.4%. 

We applied our own STC procedures to the housing unit 
level sample file at two stages: after initial data collection, 
and at conclusion of field follow-up. Since the original 
sample tolerance check assumed that prescribed sampling 
rates of 1/2 or 1/6 were attained, so did our initial 
reconstruction. In the subsequent check (that is, after field 
follow-up), we used the empirical sampling rate to compute 
an STC statistic, since the prescribed sampling rate was 
often unrealized. After resampling, the global failure rate of 
the sample ARAs sank to 1.5%. On the DO level, with o~ 
set at .05, 8 of the 13 sample DOs passed Wilk-Shapiro 
tests for normality--we still had local undersampling with 
persistent extreme values among the z scores. 

A major analytic tool for the evaluation was provided by 
contingency table testing. We applied two contingency 
table models to examine various distributions of household 
sizes in the sample, comparing them with the analogous 
distributions over the nonsample (short form) households. 4 
Homogeneity tests for the distribution of housing unit size 
groups by questionnaire form type (sample vs. nonsample) 
were performed on the initial housing unit-level data and on 
the housing unit-level data after resampling, for ARAs with 
a sample size of at least 25--smaller samples generate 
excessively small cell sizes, invalidating the test. Size 
distributions analyzed for each 

ARA in the sample DOs were a vacant/nonvacant 
dichotomy, and a more comprehensive trichotomy 
consisting of households of no more than one person, 
households containing two or three persons, and 
households of more than three persons. The test statistics 
applied were the usual Pearson chi-squares, 1 degree of 
freedom for the 2x2 table (vacancy status by form type), 2 
degrees of freedom for the 3 x 2 (household size by form 
type). We checked specifically for the most common ways 
of biasing an ARA's sample estimate, e.g., inclusion or 
exclusion of a disproportionate number of vacants. If the 
probability of a random occurrence of this event is 
sufficiently small, the ARA in question will fail the test for 
homogeneous distribution of vacants over form type-- 
analogously, disproportionate counts of household size 
groups in sample, compared to the nonsample distribution, 
could result in failure on the household size test. Testing 
was performed at two e~-Ievels, .05 and .01. ARAs were 
studied by DO, as well as pooled, by STC score group. 
These tests provide valuable corroboration for the STC-- 
interpretive evidence. Still, to understand precisely how the 
disparate distributions arose, it would be necessary to 
consult the address registers themselves, and, in some 
cases, to physically retrace enumeration paths. The pooled 
test results are shown below. 
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Address Register Areas' Homogeneity Test Failure Rates 
by Sample Tolerance Check Score Group** 

ARAs by 
S amp i e 
Tolerance 
Check 
Test 
Score 

z>2.5 
Resample 

1.96 <z 
<=2.5 

1.65<z 
<=1.96 

z<=1.65 

ARA Count 
in STC 
Score 
Group 

Homogeneity 
Test Size 

=.05 

# of 
Failed 

Fail 
Rate 

Homogeneity 
Test Size at 

=.01 

# of 
Failed 

Fail 
Rate 

192 5.8% 
194 

230 6.9% 

2 2 5  6.8% 

2668 80.5% 

ARAS 

115 
37 

97 

4 8  

2 0 2  

.599 

.191 

. 4 2 2  

.213 

.076 

ARAs 

79 
13 

37 

17 

38 

.411 

.067 

.161 

.076 

.014 

Total 331s 100, II 

The table displays failure rates on one or both of the two 
homogeneity tests, at levels .05 and at .01 for the pooled 
sample ARAs, by STC score group. Thus, z-scores over 
2.5, the STC failures, 5.8% of homogeneity testable sample 
ARAs (192): 59.9% of these failed the homogeneity test at 
o~=.05; 41.1% of them failed at o~=.01. The STC failures 
were resampled. After 
resampling, we had 194 testable initial STC failures, whose 
failure rate on homogeneity testing at o~=.05 dropped to 
19.1%. At both o~ levels, the sample data 
show a consistent positive association between STC score- 
group magnitude and homogeneity failure rate; the 
higher the score group, the higher the homogeneity failure 
rate. 

We performed further analysis by DO, on homogeneity test 
failure rates of the four STC score groups. One-sided sign 
and paired t tests confirmed a post-resampling drop in the 
average homogeneity test failure rate of the DOs' STC 
failures. Kruskal-Wallis 5 and median 6 tests established 

that, for the sample DOs, the expected homogeneity test 
failure rates for ARAs in the four STC score groups were 
not all equal. In addition, four different Anova multiple 
comparison tests were run on both sets of transformed 7 
scores, those resulting from homogeneity testing at each of 
the two o~ levels. These tests established that for the four 
initial STC score groups, the average DO homogeneity test 
failure rates represent distinct subpopulations. Though they 
defined the subpopulations differently, the four tests 
concurred in setting the first, highest STC score group apart 
for both data sets (homogeneity testing at both o~ levels), 
concluding that the expected homogeneity test failure rate 
is highest for ARAs failing the initial sample tolerance 
check? For the o~=.05 data, none of the tests could equate 
the second scoring group (initial STC scores between 1.96 
and 2.5) with the fourth, safely passing, low-scoring group, 
and three testing procedures classified the second highest 
score group as unique--in which case, its failure rate seems 
dangerously high. Two of four multiple comparison tests of 
failure rates, from homogeneity testing at o~=.01, concur. 

Conclusions 

"The base for any rate consists of all testable ARAs in the respective STC score category, regardless of DO affiliation. Thus, 
there were 192 ARAs in the failing STC category (STC scores above 2.5), 230 ARAs in the passing category, with 1.96<z<2.5, 
225 in the passing category with 1.65<z< 1.96, and 2668 ARAs in the passing category with z not exceeding 1.65. Here, "z" 
refers to the absolute-valued STC score. Adjustments in housing unit population at resampling, deletions and additions of HUs in 
ARAs whose sample size, near 25 HUs, placed them at the borderline of eligibility, accounted for the disparate 194 (not 192) 
testable ARAs failing the original STC, and eligible for homogeneity testing after the resampling operation. 
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Homogeneity testing supports the sample tolerance check 
results. We may conclude that the highest STC scores, the 
STC failures, are associated with the highest homogeneity 
test failure rates, indicating biased sampling. Resampling 
reduces total estimator bias. However, the multiple 
comparison data suggest that the sample tolerance check 
cut-off score of 2.5 may have been overly generous; 
lowering the 1990 STC's passing score could improve the 
test, making it more stringent. Still, homogeneity-failing 
ARAs in the doubtful second-highest STC score range 
constitute fewer than 3% of all ARAs in our homogeneity 
testing sample; the workload increase, from about 6% of 
ARAs to about 13%, may not be justified. Ultimately, we 
prefer preventive to corrective measures against bias. 
Certain modifications in I/e operations could result in major 
reductions in the resampling workload. We feel that 
improved training for enumerators, and the use of Census 
computerized mapping to set random starts for block 
enumeration, would substantially improve sampling in 
list/enumerate ARAs. 

ARA should be resampled and assigned for follow-up 
interviewing. 

For evaluation purposes, contingency table analysis could 
be applicable beyond list/enumerate ARAs. Bias related to 
household size may affect sampling and resampling in 
areas of computerized mailing lists (TAR areas). 

We have found contingency table analysis extremely useful 
for obtaining answers to specific questions on sampling 
execution. We plan to continue using this methodology in 
future censuses. Homogeneity testing could be automated 
for District Office use and applied alone or in conjunction 
with the Sample Tolerance Check to determine whether an 
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1. See Hansen, Hurwitz, Marks, Mauldin, 'Response Errors in Surveys', JASA, 6, 147-190. 

2. Item numbers for these specifically long form questions are P32, P18-19, P20, P21-27, P11, P12, and H23-H25, respectively. 

3. District Offices selected in sample were Hyannis, Massachussetts; Portsmouth, New Hampshire; State College, Pennsylvania; 
Green Bay, Wisconsin; Hays, Kansas; Boise, Idaho; Bend, Oregon; Yakima, Washington; Mesa, Arizona; Pueblo, Colorado; Santa 
Fe, New Mexico; Ogden, Utah; and Bakersfield, California. 

4. One caution: the chi-sqare statistics for these tests presuppose independent observations, multinomial sampling, but the 
Census sample design is systematic. Still, this sample design is not complex; we are dealing with single-stage sampling and 
unweighted data. Under these conditions, the fit of the contingency table model has generally been considered acceptable, since 
the chi-square testing yields conservative results--i.e., the true p-value of our test statistics should be smaller than the nominal p- 
values of the contingency table approximations. The authors wish to express appreciation to Robert Fay, for a very helpful 
discussion of the topic of chi-square adjustments. For situations in which adjustment is crucial, and for adjustment methodologies, 
see Rao and Scott, 'The Analysis of Categorical Data from Complex Sample Surveys: Chi-Squared Tests for Goodness of Fit 
and Independence in Two-Way Tables, JASA, 1981: 221-230; Fay, 'A Jackknifed Chi-Squared Test for Complex Samples,' JASA, 
1985: 149-157, and Singh and Kumar, 'Categorical Data Analysis for Complex Surveys,' Proceedings of the American Statistical 
Association, Survey Research Methods 1986, 252-257. 

5. The Kruskal-Wallis test, based on rank sums, tests the null hypothesis that all target subpopulations share the same 
distribution, versus the alternative that at least two distributions are different. 

6. The median test and the Kruskal-Wallis test share the same null and alternative hypotheses. The median test compares the 
observations in each subgroup with the median of the pooled observations. 

7. The arcsine transformation was applied to stabilize variances for Anova testing, after which multiple comparison tests, the 
Bonferroni test and the Ryan-Einot-Gabriel-Welsch multiple range test were run on the transformed scores. 

8. The multiple comparison tests performed were: the Least Significant Difference Test, which does not control experimentwise 
type I error--for this test, we ran the pairwise comparisons at o~ = .01; the Bonferroni Test, and the Ryan-Einot-Gabriel-Welsch 
Test, which do control experimentwise type I error, although the Bonferroni Test generally has a higher type II error rate than 
Ryan-Einot-Gabriel-Welsch (the experimentwise o~ for these analyses was set at .01); and, finally, the Bayesian Waller-Duncan 
test, for which the k-ratio, or ratio of seriousness of type I to type II error, was set, successively, at 100 and 500. For the data 
from the o~ =.05 homogeneity testing, The Ryan-Einot-Gabriel-Welsch Multiple Range Test, with experimentwise o~ fixed at .01 
could not distinguish between the second sample tolerance check scoring class (above 1.96 and not exceeding 2.5) and the third 
(above 1.65 and not exceeding 1.96), or between the third and the fourth (not exceeding 1.65). Mathematical transitivity does not 
hold in this situation; thus, the second highest scoring group remains distinct from the lowest scoring group. At experimentwise o~ 
=.05, this procedure classified the two highest groups as unique, while pooling the two lower ones. For the same data, the 
Bonferroni test yielded the same results as Ryan-Einot-Gabriel-Welsch at .01, at the experimentwise o~ levels of .01 and .05. For 
the same data, conventional pairwise t tests, Least Significant Difference testing with o~ set at .01 for any individual pairwise 
comparison, set the highest and the second highest score groups apart, as two distinct categories, while combining the two lowest 
scoring groups--when o~ was set at .05 each group was classified as unique. The Waller-Duncan test, which minimizes Bayesian 
risk under additive loss, distinguished each of the four scoring groups as a different population at the k-ratio of 500 and 100, 
successively. 

For the failure rate data from homogeneity testing with o~ at .01, Bonferroni and Ryan-Einot-Gabriel-Welsch procedures, also run 
with experimentwise type I error set at .01, concurred in isolating the highest scoring sample tolerance check group while pooling 
the three other groups as indistinguishable. The Waller-Duncan Test (k-ratio set at 500) isolated the highest scoring group, but 
could not detect a significant difference between the second and the third group, or between the third and the fourth; here, 
transitivity does not hold, and we cannot conclude that the second highest scoring group represents the same population as the 
safe, lowest-scoring group. The Least Significant Difference procedures, with pairwise comparison o~ set at .01 concurred with the 
results of the Waller-Duncan Test. 
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