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1. I N T R O D U C T I O N  

Press releases issued by the Census Bureau must be 
reviewed in accordance with the Bureau's standards for 
presentation of errors in data. Specifically, our concern is 
to verify the statistical validity of comparisons made in 
census of agriculture press releases. 

Often, this verification process takes the form of ranking 
k populations. For example, we may be interested in 
publishing the leading state in value of agricultural products 
sold. Or, we may be interested in reporting the leading 
crop in sales in a particular state. 

The method used to perform statistical tests of 
hypotheses for these comparisons for the 1987 Census of 
Agriculture was the Least Significant Difference (LSD) 
method. The reason for our reevaluation of this method 
along with the presentation of alternative methods and an 
empirical study of these methods is given in this paper. 

2 .  T H E  L S D  M E T H O D  

Use of the LSD method requires each pairwise 
comparison to be performed with level of significance a. a 
is the comparisonwise error rate; that is, the probability of 
making a type I error on an individual comparison. 

The LSD method ignores the fact that over all 
comparisons in a set of comparisons necessary to rank k 
populations, the probability of making at least one type I 
error -- the experimentwise error rate -- is greater than u. 

For the LSD method, the experimentwise error rate is 

( = 1 -  (1 -~ )  c (1) 

whor  is th. tot , num .r comparisons 

made in ranking a set of k populations. Eq.(1) assumes all 
tests are independent. ~id&k (1967) has shown eq.(1) to 
be an upper bound for normally distributed random 
variables. 

For example, if we want to rank four populations, the 
experimentwise error rate, using a .10 comparisonwise 
error rate and assuming independence of tests, would be 

I- (1-. i0)6=.469 . 

Although an upper bound, this is a far greater probability of 
type I error than we intended. 

3 .  F O U R  M U L T I P L E  C O M P A R I S O N  

M E T H O D S  

It is generally accepted that if we want to control the 
experimentwise error rate we should employ multiple 
comparison methodology. In this paper, we examine four 

multiple comparison methods that control the 
experimentwise error rate: the Scheff6, Bonferroni, ~id&k 
and Tukey-Kramer methods. There are many other multiple 
comparison methods, but these are the four most 
applicable to our press release data review situation. 

In general, for each pairwise comparison, a test is 
performed based on the test statistic 

t . . . .  ~ , -% (2) 

where J>=, J>: are the estimated totals (or means) for 

populations i and j, respectively, and s e ( g i - ~  ~) is the 

standard error of the difference. In census of agriculture 

testing procedures, we force t to be positive by specifying J>i 

to be the larger of the two operands. This necessitates the 
use of a two-sided test. Thus, all tests considered in this 
paper are two-sided. 

Assuming normality of the underlying distribution, t has 
a t-distribution. With the large sample sizes, ranging from 
the hundreds to tens of thousands, encountered in census 
of agriculture applications, t is assumed to have a standard 
normal distribution. 

All four multiple comparison methods work the same 
way: for each comparison, a decision is reached by 
comparing t to a critical value. It is on the basis of the 
critical values that the four methods differ. 

The critical value of Scheff6"s method, based on the 
critical value for the overall F-test in an analysis of 
variance, is 

~/(]<-1) "F=.k_,. af o 

where k= the  number of populations to be compared, 
dfe=degrees of freedom for error, e=the predetermined 
experimentwise error rate. 

Application of Scheff6's method proceeds as follows. If 
Y~ and Yi are being compared, with ~'i > ~'i, then Yi is said 

to be greater than Yi if ~i - J>~ is greater than 

~/(Jc-1) "F=.,_z.dt ~ . This test may be performed for all 

pairwise combinations of items with an experimentwise 
error rate less than or equal to E. 

Scheff6's method goes one step further, though. It 
allows all possible contrasts to be tested. So, not only may 
items be compared pairwise, but also all other contrasts of 
items may be performed with guaranteed experimentwise 
error rate e. Pairwise comparisons are a subset of this 
larger group. Consequently, the comparisonwise error rate 
must be very small to account for all possible contrasts 
while maintaining the experimentwise error rate at e. This 
fact makes Scheff6's method a little conservative. 
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Bonferroni's method has critical value 

t ~  .dze 

where the comparisonwise error rate, o, is set equal to 

• =_e to ensure an experimentwise error rate of 
k ( k - 1 )  c 

2 

less than or equal to ~; c=k(k-1)12=number  of 
comparisons to be performed; dfe = degrees of freedom. 

For all pairwise comparisons, Y= vs. Yi, with $i > ~'i, Y= is 

said to be greater than Yi if I~t - ~J is greater than 

~-~ od.t'e " 

By Bonferroni's inequality, it is seen that using ~/c as the 
level of significance for each test yields an experimentwise 
error rate of less than or equal to ~. Bonferroni's method 
produces critical values smaller than Scheff6's method. 

~id&k's method is based on a comparisonwise error rate 
of 1-(1-~) 11=. This comparisonwise error rate is derived in 
such a way that it maintains the experimentwise error rate 
at or below ~ for a set of c tests. If all tests are 
independent, the experimentwise error rate equals ~. 

~id6k's critical value for each pairwise comparison, for a 
two-sided test, is 

t .~ . dz  e 

where a=  1-(1-~')11c is the comparisonwise error rate. 
~id&k's comparisonwise error rate turns out to be slightly 

greater than Bonferroni's. Thus, the critical value used in 
this test is slightly lower than Bonferroni's. 

The Tukey-Kramer method is based on a critical region of 
the studentized range distribution, denoted by q. 

Using this method, with ~'i > ~'i, Yi is said to be greater 

than Yi if ~1 - ~ is greater than c/='k'at= . For 

values of the q-distribution, see Harter (1960). 
The Tukey-Kramer method produces critical values 

smaller than those of the other three previously-mentioned 
multiple comparison methods. It also controls the 
experimentwise error rate at approximately ~ (see Dunnett 
(1980)). 

4. POWER CONCERNS 

At the core of the debate over whether to use the LSD 
method or a multiple comparison method are the issues of 
experimentwise error rate and power. In sections 2 and 3, 
we talked about the experimentwise error rate. In this 
section, we discuss power. 

The power of a test is defined as the probability of 
rejecting a false null hypothesis. In general, the approach 
of the statistician is a conservative one. In this case, it is 
to guard against a type I error; i.e. to control the 
experimentwise error rate. This allows us to assert with a 
high degree of confidence (say, 1-a=.9)  that there is truly 
a population difference if we find significant evidence of 
this in our sample data. However, the power of the test 
suffers. Thus, if we do not find significant evidence of a 

population difference, we have very little confidence stating 
there is no difference. We usually just say we have not 
found enough evidence to indicate a population difference. 

If, however, we know the power of a test is .9, and our 
test provided a nonsignificant result, we feel a good degree 
of confidence stating there is no population difference. 
Basically, there is a 90% chance that if a population 
difference exists, we will find it; i.e. reject the null 
hypothesis. Thus, if we don' t  find evidence of a difference, 
we feel fairly confident stating there is no population 
difference. So, in comparing multiple comparison methods, 
we judge not only by the method's ability to control the 
experimentwise error rate, but also by the power of the 
method. 

In an application such as ours, usually very little work is 
done to determine the power of a test. Most likely, we can 
determine a or ~, but have no idea of the power. Most of 
this is due to the fact that determining the power of a test 
depends, in large part, on the true population value which 
is unknown. However, with a little knowledge of our data, 
we may be able to form a general idea of the power of a 
test for a meaningful region of population values. 

When we determine the null hypothesis to be equality of 
the two population values and the alternative to be 
inequality, this supposes that irrespective of the size of the 
true difference in the population values, this difference is of 
interest. Usually, however, there is a region of 
indifference. That is, there is a set of values for which the 
population difference is so small that we are, in general, 
not interested in the difference. For example, let's say we 
are interested in the sales of four particular crops in the 
state of Kansas. For this example, we want only to prove 
the null hypothesis wrong if the sales of a crop is at least 
$1,000,0OO more than another crop. So, if the difference 
in sales is actually less than $1,0OO,O00, we would say 
this difference is rather meaningless relative to the 
magnitude of our estimates, and we are thus not very 
concerned with the power of the test in this region. We 
can, however, determine the power of the test if this 
difference is at least $1,000,O00. Determining the power 
of the test when the difference is $1,000,OOO will give us 
the minimum power of the test over the population values 
of interest. 

Assuming the true population standard deviation is 
700 ,000 for the estimated sales of the four crops of 
interest and assuming a comparisonwise error rate of .10 
for the LSD method and an experimentwise error rate of 
.10 for the four multiple comparison methods, allows us to 
construct Table 1. 

Table 1 provides us with the power of the LSD method 
and the four multiple comparison methods for different 
choices of indifference region for this example. If, in fact, 
we are not concerned with differences of less than 
$1,000,OO0, we can see from the table that the probability 
the LSD method will reject a null hypothesis is at least 
.2611 when the difference is in the region of interest. For 
the Tukey-Kramer method, this probability is at least. 1003. 
Thus, we have gained an idea of the power of the methods 
for this particular example. Perhaps, in this case, with the 
power as low as it is, we would want  to find some way to 
increase the power on the region of interest. 

While each situation will have its' own particular 
indifference region, the concept of indifference region can 
be a useful tool for evaluating the power of the testing 
method. 
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Table 1 
Power on an Individual Test, by Indifference Region, for an Example with k =4,  o =  700,000. 

comparisonwise 
error rate 

experimentwise 
error rate 

Power on an Individual Test 

Indifference Region 

$5OO,OO0 I $1,OOO,OOO $5,OOO,OOO 
I 

LSD .10 .47" .1271 .2611 .9997 

Scheff6 .012 .10 .0233 .O681 .9946 

Bonferroni .016  .10 . 0 2 9 4  . 0823  . 9960  

~id&k .017 .10 .0307 .0853 .9962 

Tukey- Krame r .0 22 .10 .0375 .1003 .9971 

5.  E M P I R I C A L  S T U D Y  

To highlight the differences among the four multiple 
comparison methods, an empirical study of census of 
agriculture data was conducted. The purpose of the study 
was to quantify the power differences among the four 
multiple comparison methods and examine the applicability 
of these methods to data review of census of agriculture 
press releases. 

Data from the 1987 Census of Agriculture were used. 
These data consisted of estimates and coefficients of 
variation (CVs) for items that would commonly be found in 
a census of agriculture press release. 

The study was naturally divided into two parts: 1) within 
state comparisons and 2) across state comparisons. Within 
state comparisons were comparisons for which the main 
concern was the ranking of different items within one 
state. For example, the ranking of the sales of different 
types of crops in Kansas was a within state comparison. 
Across state comparisons were comparisons for which 
states were ranked for one item. For example, the ranking 
of the 50 states on farm production expenditures was an 
across state comparison. 

All tests necessary to perform the rankings were 
conducted and the total number of significant results for 
each set of tests, i.e. each ranking, was observed. 

Now, before we get to the actual results of the empirical 
study, we need to note some adjustments applied to the 
multiple comparison methods. 

An assumption made in the discussions of previous 
sections, and particularly in the use of eq.(2) as the test 
statistic, is that of homogeneity of variances for the k 
populations being investigated. 

The test statistic actually used in the empirical study was 

t = h- % . ( 3 )  
~/se=(ti) + se=(~) 

Eq.(3) assumes heterogeneous variances. 
With heterogeneous variances, the pooled estimate of 

variance is not appropriate and, as a result, t no longer has 
a t-distribution. This problem results from the fact that the 
denominator no longer has a chi-square distribution. An 
adjustment to the degrees of freedom, proposed by 
Satterthwaite (1946), however, allows us to approximate 
the distribution of the denominator by a chi-square 

distribution with the adjusted degrees of freedom. This 
adjustment allows the distribution of t to be approximated 
by the t-distribution. 

Satterthwaite's adjusted degrees of freedom is 

d f e ' =  [V(:PI) + V'=,~'J='~%] 
+ I v ( % ) ]  = 

r i rj 

(4) 

where V (:pi) and V (:P~) denote the variances of 

:P~ and :P~ , respectively, ri and rj, the sample sizes 

minus 1 from populations i and j, r e s p e c t i v e l y ,  denote the 

degrees of freedom for V(:Pi) and V(:P~) . Dunnett 

(1980) notes that dfe' is always between the degrees of 

freedom for V(g i )  andV(:P~) . 

With r= and r i sufficiently large, as in our case, dfe' should 
be sufficiently large to assume the approximate distribution 
of t is standard normal. 

So, the empirical study was conducted assuming that t 
had an approximate standard normal distribution and thus 
the Scheff6, Bonferroni and ~id&k methods are used 
unaltered from the discussions in section 3. 

The Tukey-Kramer method is founded on the distribution 
of the studentized range statistic 

:P(1) - :Pc,) 
q = s e  (9(z)  - :P(,) ) 

where :p(z) and :P(,) denote, respectively, the largest 

and smallest of the k estimates and se ( :p (z )  - :p(k)) is 

estimated by a pooled estimate of standard error. 
If there is heterogeneity of the variances of the k 

populations, the statistic 

9(lj  - £(k) 
q = (5) 

J ee= (9(~)) + ee= (to,i) 

no longer has a studentized range distribution and the 
foundation of the Tukey-Kramer method is weakened. 
Games and Howell (1976), though, proposed using 
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Table 2 
Cumulative Totals of Number of Tests Rejected for the Across State Comparison of Total Net Cash Income. 

, 
E E  

Scheff6 Bonferroni ~;id~k Tukey- I Number of tests 
Kramer ~ performed 

Number of tests 490 756 760 770 I 1225 

m 

I rejected 

Satterthwaite's adjustment for the degrees of freedom in 
this case. Using the adjusted dfe given by eq.(4), eq.(5) 
has an approximate studentized range distribution with dfe' 
degrees of freedom. 

Again, since our sample sizes are large, the studentized 
range distribution with dfe' degrees of freedom is closely 
approximated by a studentized range distribution with oo 
degrees of freedom. Thus, the critical value of the Tukey- 
Kramer method used in the empirical study remains 

q,.,. JV~ • 

6. RESULTS 

As stated earlier, the method that has the most power 
and controls the experimentwise error rate is the preferred 
method. While it is obvious that the Tukey-Kramer method 
is the most powerful of the four methods, the use of actual 
press release data helps to quantify how much more 
powerful the Tukey-Kramer method is in the given setting, 
that of the review of census of agriculture press releases. 
It also sheds some light on the usefulness of multiple 
comparison methods for this application. 

The results of a comparison of all 50 states on total net 
cash income is provided in Table 2. This table provides the 
number of tests found significant when ranking was 
performed for the 50 states on this particular item. 

The Tukey-Kramer method rejected ten more tests than 
~id~k's method. As expected, Scheff6's method was quite 
conservative, rejecting far fewer tests than the other three 
methods. The Bonferroni and ~id&k methods were 
relatively close to each other in number of tests rejected. 

Since the empirical study was intended to provide a 
quantification of the differences among the four multiple 
comparison methods, let's look at the results from Table 2 
in terms of the power of each method for a hypothetical 
example. This example should give us an idea of the power 
of each of the four multiple comparison methods relative to 
the others. 

Suppose of the 1225 tests conducted, 300 null 
hypotheses were true; i.e. 300 tests were performed for 
equal totals. Since the experimentwise error rate was set 
at .10 for all four methods, it is probable that none of the 
multiple comparison methods made a type I error. This 
means that of the remaining 925 false null hypotheses, the 
Scheff6 method rejected 490 or 53.0% (see Table 3), the 
Bonferroni method rejected 81.7%, the ~id&k method 
82.2% and the Tukey-Kramer method 83.2%. These 
percentages are then the power of the methods over this 
set of tests under the assumption of 300 true null 
hypotheses. Thus, the Tukey-Kramer method was 1.0% 
more powerful than ~id&k's method, 1.5% more powerful 
than Bonferroni's and 30.2% more powerful than Scheff6's 
method under the assumption. 

Results similar to these in terms of the power of the four 
multiple comparison methods were found for some of the 
other results. However, something else quite interesting 
emerged. 

In Table 4, we find the results for the within state 
comparisons of three separate items each with several 
subcategories. This table provides the number of 
comparisons found significant when ranking was 
conducted, within each of ten states, for the subcategories 
of these three different items. The results depicted in this 
table are remarkable for the lack of appreciable differences 
exhibited by the four methods. All rejected fairly the same 
number of tests. 

The interesting thing to note here is that all four methods 
rejected almost all the tests for all three items. The total 
number of tests conducted was 910 for the rankings of 
sales of different crops. Scheff6's method rejected 99.3% 
of all tests and the Tukey-Kramer method 99.5%. Similar 
were the results for the livestock sales and farm production 
expenses categories. 

For the livestock sales category, there was a total of 150 
tests. All four methods rejected all of the tests. For the 
farm production expenses category, there were 1050 tests 
performed. Even though the Tukey-Kramer method 

Table 3 
Power of the Four Multiple Comparison Methods Assuming 300 of the 1225 Tests Conducted had True Ho. 

1 Scheffd ! Bonferroni ~idak 

number of false Ho 
rejected under 
assumption of 
925 false Ho 

POWER = number of false 
null hypotheses rejected 
divided by the number of 
false null hypotheses 

490 

53.0% 

756 

81.7% 

760 

82.2% 

Tukey-Kramer 

770 

83.2% 
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Table 4 
Cumulative Totals of Number of Tests Rejected for Within State Comparisons of Subcategories of Certain Items Within Each of 
Ten States (with Percentage of Total Number of Tests Rejected in Parentheses). 

Item Scheff6 Bonferroni ~,id&k 

sales of crops 

sales of livestock 

904 
(99.34%) 

150 
(100%) 

1012 
(96.38%) 

905 
(99.45%) 

150 
(100%) 

1021 
(97.24%) 

905 
(99.45%) 

150 
(100%) 

1021 
(97.24%) 

| 
Tukey- ~ Number of tests 
Kramer I performed 

905 910 
(99.45%) 

150 150 
(100%) 

1023 1050 
(97.43%) 

farm production 
expenses 

rejected 11 more tests than Scheff6's method, the Scheff6 
method still rejected 96 .4% of all the tests. 

The results displayed in Table 4 were not atypical. In 
many cases, a large proportion of the tests conducted were 
rejected by all four multiple comparison methods. 

This large number of significant results may indicate that 
most of the population totals were different. To illustrate 
this point, let's look at an example. 

Suppose we conduct a study in which we rank the 50 
states for a particular item. And suppose the true 
population totals for the 50 states can be divided into two 
groups. In group 1 are 25 (which 25 is unknown) states 
which have equal population totals, 

YI= Y~= Y3= ... = Y=s= Y . 

In group 2 are the other 25 states which have unequal 
population totals, 

Y~,Y:,Y, f o r  i , j  =26 . . . . .  50 

For the totals in group 1, the equal totals, there are 

(25)= 300 pairwise comparisons. Assuming the 

experimentwise error rate is .10, it is probable none of the 
300 tests of hypothesis on these equal totals will be 
significant. 

Let's also assume that all tests of hypothesis for pairwise 
comparisons of group 2 totals, the unequal totals, are 
significant; i.e. we commit no type II errors -- 
power = 100%. Thus, we know that since there are 300 
pairwise comparisons for group 2, these 300 tests are 
significant. 

And let's assume that the other 625 tests between totals 
from the two groups are all significant, resulting in another 
625 rejected tests; again, we commit no type II errors. 
This means that assuming 100% power on the tests of 
unequal population totals and an experimentwise error rate 
of .10 on the tests of equal population totals, 925 tests are 
found significant. 

Thus, even though 50% of the population totals are 
actually different, and the power of our tests is a perfect 
100%, in this example, only 75 .5% (925) of the 1225 
tests are rejected. This percentage is somewhat smaller 
than the percentage of tests rejected in the study this 
paper is concerned with. This percentage is 90% or above 
for many items. Thus, we would expect that far more than 
50% of the population totals in this study are actually 
different. 

In light of these results, a word of caution may be in 
order. While multiple comparison methods provide a way 
of controlling the experimentwise error rate, they are also 
a less powerful method than, say, the LSD method. In 
general, the approach to testing hypotheses is a 
conservative one: to protect against a type I error at the 
expense of allowing a greater chance of a type II error; 
hence, the use of multiple comparison methodology. 
However, if most population totals are different, i.e. most 
He are actually false, there are very few tests for which we 
need to worry about a type I error. Apparently, this is the 
case for most items under study in this paper. 

This situation highlights the fact that it is important to 
evaiuate the power of the test as well as the 
experimentwise error rate. 

7 .  C O N C L U S I O N  

The empirical study verified the obvious. The Tukey- 
Kramer method is the most powerful of the four multiple 
comparison methods and also controls the experimentwise 
error rate at a specified value very well. 

However, we also learned from the empirical study it is 
important to know the data with which we work. If there 
is an indication that many of the population parameters 
being estimated are different, perhaps results of previous 
censuses of agriculture would suggest this, then we might 
want to consider adding a little power to our testing 
procedure by tolerating a higher experimentwise error rate. 
This is one option. Or, perhaps we could use an approach 
that takes advantage of any a priori knowledge we may 
have. Further research needs to be conducted for this 
option. Keep in mind, though, that this is not a license to 
ignore the experimentwise error rate; it still must be 
accounted for. 

The caution given by the results of the empirical study is 
if few of the original null hypotheses are true, there are few 
tests for which we need to worry about making a type I 
error. The fact that we may want to be a little more 
concerned with the power of the tests, however, should 
not be viewed as a recommendation to use the LSD 
method. While the LSD method is more powerful than 
multiple comparison methods, the fact that it ignores the 
experimentwise error rate renders it unacceptable for our 
application. We need to use a multiple comparison method 
in order to control the experimentwise error rate. However, 
the empirical study forces us to realize that both the power 
and experimentwise error rate are important quantities. 
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For comparisons in which there is a need to control the 
experimentwise error rate, and this applies to most 
situations as well as the census of agriculture press release 
situation, the Tukey-Kramer multiple comparison method is 
clearly the choice of the four methods presented in this 
paper. 
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