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1 Introduction 
In Empirical Bayes estimation problems, estimates 
are desired for some quantities (domain-specific pa- 
rameters) measured with error "n a number of do- 
mains or for a number of units. The usual speci- 
fication involves some exchangeable model for the 
domain-specific parameters of interest, and a sam- 
pling model for the observable measurements given 
the parameters. Auxiliary information on the do- 
mains is incorporated through regression modeling, 
yielding a mixed model with fixed effects for auxil- 
iary variables and random effects for domains. The 
observables are assumed to be unbiased but noisy 
estimates of the parameters, while the Empirical 
Bayes procedure yields estimates that are biased 
but less noisy. Empirical Bayes estimates have been 
shown to be superior to unbiased estimates in many 
situations by loss measures such as mean squared 
error as well as for ranking of domains on a mea- 
sure. 

In this paper, we consider problems in which there 
are a number of sources of information pertaining 
to the same parameters, such as measurements of 
the parameters and estimates of the bias of these 
measurements. 

Example 1. Nurses in the surgical wards of a hos- 
pital evaluate the severity of the condition of pa- 
tients daily. Each ward reports the distribution of 
severities; annual averages are used in determining 
staffing and budgeting for the next year. A team 
from the central nursing administration does an in- 
dependent evaluation of severity for a small sample 
of patients from each ward in order to detect bias 
in the statistics reported by the ward nurses. [3 

Example 2. The Census of Population produces 
measures of population for domains; these census 
counts are known to be biased, differentially un- 
dercounting different racial groups and geographi- 
cal areas. The Post Enumeration Survey (PES), 
conducted in a sample of census blocks after the 
census, is combined with census data to generate 
corrected "Dual System Estimates" (DSE) of pop- 
ulation in particular domains of interest. The DSE 
is also biased although probably less so than the 
census. Information from a number of evaluation 
programs and sensitivity analyses, conducted after 
the PES and generally involving still smaller sam- 

pies, is combined to generate estimates of DSE bias 
(Zaslavsky 1991; Zaslavsky 1992a). [] 

Example 3. Federally-funded welfare programs 
are administered by states through local welfare of- 
rices. The local offices determine the amount of pay- 
ments to which applicants are entitled in accordance 
with state and federal guidelines. The state welfare 
administrations are required to audit a sample of lo- 
cal determinations and calculate an estimated error 
rate, i.e. bias of the local determinations. Auditors 
from federal agencies then re-audit a small sample 
of the state audit cases to estimate the bias of the 
state audit relative to the federal interpretation of 
the eligibility requirements. It is desired to obtain 
estimates of state error rates and particularly of the 
probability that  a state's error rate in a year ex- 
ceeded a penalty threshold (Fairley, Izenman and 
Bagchi 1990; Hansen and Tepping 1990). t::l 

In each of these problems, the data may be ar- 
ranged along two distinct dimensions. There are 
two or more information sources measuring a quan- 
tity of interest or the bias of other measurements of 
these quantities, and there are a number of differ- 
ent domains for which estimates are desired, which 
may be defined spatially or, as in Example 3, both 
spatially and by time. Direct estimates of parame- 
ters may be subject to substantial biases, while es- 
timates of the biases are based on relatively small 
evaluation or audit samples and therefore are sub- 
ject to large sampling errors. Hierarchical Bayes 
methods therefore may yield composite estimators 
which are superior to both the biased uncorrected 
estimates and the unbiased but noisy estimates ob- 
tained by subtracting sample estimates of bias from 
the uncorrected estimates. 

In this paper, we develop a general modeling 
framework for problems such as these, using nor- 
mal hierarchical models. Methods are described for 
drawing inferences from these models that  are ap- 
plicable to a wide range of cases likely to appear in 
practice. 

2 M o d e l  specification 
We begin by specifying the overall hierarchical 

model in general terms, followed by a discussion of 
the details of the specification of level of the model, 
in which much of the substance of the methodology 
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resides. We then show how the examples presented 
above can be represented in terms of this model. 
2.1 T h e  h i e r a r c h i c a l  m o d e l  

Our hierarchical Bayes model consists of three parts. 
The sampling (or measurement) model specifies the 
distribution of the data  given the parameters. The 
structural model expresses the relationships among 
the parameters; assumptions of exchangeability or 
of varying degrees of similarity among different do- 
mains are represented in this part  of the model by 
joint distributions of the parameters conditional on 
hyperparameters  whose values are not known a pri-  
ori. The parameters may include quantities of sub- 
stantive interest that  are not directly observable, as 
well as latent variables that  are not of intrinsic inter- 
est but that  facilitate specification of the model. Fi- 
nally, the hyperparameter  model specifies the prior 
distribution of the hyperparameters,  which are vari- 
ance components of the structural model. 

T h e  s a m p l i n g  m o d e l :  Conditional on parame- 
ters, the data  are normally distributed with known 
covariance and with mean related linearly to the pa- 
rameters" Y IX, ' I"  ~ N ( A X ,  V ) .  

T h e  s t r u c t u r a l  m o d e l :  Conditional on vari- 
ance component hyperparameters r ,  the pa- 
rameters are normally distributed with mean 0 
and a pat terned covariance matr ix  determined 
by r" X I "r .~ N ( O , S ( I r ) ) ,  S ( ' r )  = 
d iag (S(1 ) ( r (1 ) ) , . . . , s ( a ) ( r ( a ) ) ) .  Details of this 
model are discussed in Section 2.3. 

T h e  h y p e r p a r a m e t e r  m o d e h  The variance 
component hyperparameters have a non-informative 
prior distribution, and the components r (g) corre- 
sponding to each block S(a) are independent: iv 
7r, lr(~') -- I I  ~rg(r(g)). The specification of this 
distribution is discussed in Section 2.4. 

I n f e r e n t i a l  t a r g e t s :  The targets of interest are 
linear combinations C X  of the parameters X (pos- 
sibly including components of X themselves). 

The following notation is used above and through- 
out the paper. 

X - ( X ~ , . . . , X ' a ) '  = a vector of parame- 
ters, where g - 1 , . . . , G  indexes different 
"groups" of parameters.  Furthermore, Xg = 

I 
(X~I ,  . . . , XgM9 f where Kg-vector or scalar 
Xgrn is a componen t  of Xa, m - 1 , . . . ,  Mg. 

Y - (Y~,. . . ,Y~,) '  - a data  vector, where V - 
1 , . . . ,  P indexes different types of data; Yp is a 
componen t  of Y. 

A - known coefficient matr ix relating X and Y. 

V - sampling variance-covariance matr ix of Y, as- 
sumed known. 

7- = ( r ( 1 ) , r ( 2 ) , . . . , r  (a)) = G-tuple of variance 
components scale factors, each of which may 
be a scalar, possibly infinite, or a symmetric 
positive (semi)definite matrix.  

S(g)(v(g)) - structural variance-covariance matri- 
ces, known except for scale factors from v(a), 
g - - 1 , . . . , G .  

7re(r(9) ) - prior density of r (g). 

d i ag (S1 , . . . ,  S a )  - block diagonal matrix.  

Xam(k ) = scalar element of component Xam corre- 
sponding to domain k, k = 1 , . . . , K g .  (Ordi- 
nary subscripts refer to components of X or Y 
or corresponding blocks of matrices, while sub- 
scripts in parentheses refer to individual scalar 
elements within a component or block.) 

Note  1: If there are K domains, some or all pa- 
rameter components may be K-vectors correspond- 
ing to the K domains. Similarly, Y may contain ob- 
servations corresponding to domains so that  some or 
all of the Yp are K-vectors. In Example 3 below, on 
the other hand, parameter  components in different 
groups are of different lengths corresponding to the 
dimensions of a cross-classification of domains. In 
Example 2(b), Y2 consists of observations for a more 
highly aggregated set of domains than those for )I1, 
so each element is a weighted mean corresponding 
to a combination of the original domains. 

Note  2: If the components of both X and Y are 
K-vectors as described in Note 1, a typical specifi- 
cation of A is A - Ao ® I g ,  where the operation 

® is defined by D ® E -  " ".. " . 

d1~E . . .  d l j E  
Then Y(k) = A o X ( k )  where X(k ) ,  Y(k) = vectors of 
elements of X,  Y respectively that  correspond to 
domain k. In words, the expectations of the obser- 
vations combine the components in the same way in 
every domain. If not all parameters are of this form, 
the block of A corresponding to the K-vectors of X 
and Y may take this form. 

Note  3: In most applications, V can be estimated 
from knowledge of the sampling or measurement 
process, from sample variances, or by standard sur- 
vey sampling variance estimation techniques such 
as the bootstrap or jackknife. In this paper V is as- 
sumed to be known with sufficient precision that  it 
may be treated as fixed; this is a s tandard assump- 
tion in Empirical Bayes modeling although not al- 
ways entirely realistic. V will have a block-diagonal 
structure if some or all of the components Yp are 
measured independently of each other. 
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2.2 Parametrizat ion and sampling m o d e l  

We now turn to the specification of the parametriza- 
tion and sampling model for each of our examples. 

Example 1 (continued)" Let Y l ( k ) -  average pa- 
tient condition severity reported by nursing staff in 
ward k, Y2(k) - est imate of the bias in Yl(k) based on 
evaluations by nursing administrat ion staff, Xl l  - 
average severity across all wards, X12 - average bias 
in severity ratings across all wards, X21(k) - de- 
viation from average severity in ward k, X22(k) - 
deviation from average bias in ward k staff rat- 
ings. Then Y1 "~ N((X11 + X~2)l + X21 + X22, Vii), 
]I2 ~ N(X121 + X22, V22), Y12 - Cov(Y1,Y2) ~ 0 
if the second sample is small. In matr ix  notation, 

( 1 1 )  
A -  ( A o N 1 g  AO®IN),  w h e r e A o -  0 1 " 

The quantities of interest are the true ward severi- 
ties Xl l  + X21(k) (for assessment of staffing require- 
ments) and the ward biases X12 + X22(k) (for feed- 
back to the ward on the accuracy of its ratings), so (10I 0)o 

0 1 0 I " 
Example 2(a) (continued): Suppose that  the same 

domains are used for calculation of estimated under- 
count rates and of estimated biases of the DSE. This 
is true if the domains are the Evaluation Posts trata  
(EPS), which are large domains defined for purposes 
of summarizing and presenting the relatively sparse 
evaluation data.  

The following specification focuses on relative un- 
dercount rates, defined as the ratio of error to true 
population share for each domain and measurement 
procedure. The data  are Y1 - estimated census 
undercount rates as estimated using the DSE as 
the standard,  and Y2 - estimated relative bias of 
the DSE estimates from evaluation programs. Let 
Xal - effects for census relative undercount rates, 
Xg2 - effects for expectation of DSE undercount 
rates (i.e. the relative bias of the DSE for domain 
shares), Ka - K,  g - 1 , . . . , G ,  so the census un- 
dercount rates are ~-'J~a Xal and the DSE biases are 
~g Xg2. 

Then (assuming that  the undercount rates are 
all small) ]I1 "~ N()-~g(Xgl - Xg2), Vd), ]I2 "~ 
N(~'~gXa2, Vb). Furthermore, A - 1' G ® Ao ® IK, 

( 1  - 1  ) ,  and V _ diag(Vd, V~ ) where A0 - 0 1 

where Vd, Vb are sampling covariance matrices for 
estimated census undercount rates and for esti- 
mated biases. The quantities of interest are the 
census undercount rates relative to true population 
shares, ~ a  Xal - CX,  C - 1~ ® (1 0) @ IK. [] 

Example 2(b) (continued): The DSE's are also 
calculated for more refined domains, the poststrata,  

but evaluation data  are not generated at this level of 
detail. Extending the specification of Example 2(a), 
Yp is a Kp-vector, p -  1, 2, where K1 is the number 
of posts trata  and K2 is the number of EPSs. Define 
X as in Example 2(a), except that  the domains are 

n ° w p ° s t s t r a t a ' T h e n A - l a ® (  I0 - I ) B  ,where 

B is the matr ix mapping pos ts t ra tum to EPS un- 
dercount rates, bjk - fraction of EPS j that  comes 
from posts t ra tum k. The specification of the quan- 
tities of interest is unchanged. [] 

Example 3 (continued): A natural  decomposition 
of effects for a cross classification is into an inter- 
cept, main effects, and interaction. Let X1 - grand 
mean (intercept) effect, X2 - state effect, X3 - 
year effect, X4 - residual effect. For each group 
g - 1 , . . . ,  4, let Xal - component for relative error 
in payments (error/ total  payments),  Xg2 - com- 
ponent for bias of state estimates of relative er- 
ror. Then K1 = 1,K2 = Ks  - number of states, 
K 3 -  Ky  - number of years, and K 4 -  Ks Ky.  

Let Yl(su) - state estimate of mean relative error 
in payments in state s, year y, and Y2(su) - corre- 
sponding federal estimate of bias of state estimates 
of mean relative error. (Note that  the components of 
X have four different lengths (1, Ks,  Ky ,  K s K y ) ,  
and group 4 components are doubly indexed.) 

Then under an additive model for these ef- 
fects, and assuming independent sampling in each 
state and year, Yl(sy) ~ N ( X l l  -4- X21(s) + 
X31(y) + X41(,y) + X12 + X22(,) + X32(y) + 
X42(sy), Vl(sy)) and Y2(sy) ~ N(X12 + X22(s) + 
X32(y) + X42(,y), V2(8~)). If the doubly-indexed vec- 
tors {X41(sy)}, {X42(sy)}, {Yl(sy)}, {Y2(sy)} are or- 
dered columnwise in the component  vectors, e.g. 

X41(l l ) , .  • . ,X41(Ks1) , . . . ,X41(1Ky) ,X41(KsKy) ,  
then A - (A0  ® 1g,gu Ao ® 1go ® IKy Ao ® Ig~ @ 

1g. Ao ® IK.g~), where Ao - 0 1 " 

parameters of interest are the annual error rates of 
the states, Xl l  + X21(.) + Xal(y) + X41(,y), so C = 
(I~.K~ 0 1K. ® IK~ o IK~ ® IK. 0 IK.~  0). 
r-1 

2.3 S p e c i f i c a t i o n  of  t h e  s t r u c t u r a l  m o d e l  

While the sampling model (particularly the sam- 
pling variances V) describes the statistical proper- 
ties of the data-collection procedures, the structural 
model embodies the substantive scientific models 
underlying the analysis. The key ideas motivating 
the specification of S(T) are those of proximity or 
interrelatedness of domains and of exchangeability 
of parameters (Lindley and Smith 1972), ideas that  
must be rooted in some prior knowledge about these 
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domains and parameters (or a choice not to reflect 
such knowledge). In this section we consider prin- 
ciples relevant to generating scientifically sensible 
specifications for S(~'). 

The parameter  vector X is a concatenation of 
components Xl1, • •., XGMo. The specification of 
S(~') implies that  components Xam,Xg,m,,g ~ g' 
belonging to different groups are conditionally inde- 
pendent, given 1", in the structural model. Compo- 
nents in the same group g have conditional variance- 

covariance Cov(Xam Xg,n, I t ) -  S (a) (r (a)) 
, f T l f y l  / • 

The specification of the diagonal component 

blocks ~,,m¢(g)(r(g)) represents some notion of ex- 
changeability of elements of Xm, and similarly the 

off-diagonal blocks S (a) (r(g)), m # m' represent fTIWI  / 

some notion of exchangeable degree of relationship 
between Xgm and Xarn,. Exchangeability is relevant 
because Xm, m E Mg are all vectors of parameters 
for the same set of domains. 

°(g) r(g) _(g) TT(g) We specify the blocks as omm, ( ) - 
(--J fT~ f-t~ / i m i l l /  

where rr(g) is a prespecified constant matr ix and ( ' )  fl,~f}3 / 

r(g) is a scalar to be estimated. We assume g/1 t 

(g) 
that  Umm, = U(g), a single matr ix  for all blocks, 
so S(g)(r(g)) = r(g) ® U(a). This specification 
guarantees that  if r(g) is positive (semi)definite 
then S(a)(r (g)) is as well, and it is further sup- 
ported by arguments given below. (A more gen- 
eral specification meeting the definiteness condi- 

,~(g) 
tion allows rr(vma) y£ U2)m , and sets Umm, -- 
(rr(g))1/2(,,.(g) 2 

v r n m  t,,rn,rn,) 1/ ; we will not pursue this gen- 
eralization further.) 

We now turn to considerations to be taken into 
account in the specification of U(g). 

F l a t  p r io r s .  A uniform prior on Xm is a rea- 
sonable specification for a grand mean effect (such 
as the overall mean state error in Example 3), for 
domain-specific parameters that  are estimable from 
the data  but cannot way be regarded as drawn from 
a distribution with known mean, or for other param- 
eters that  can in no way be regarded as part of an 
exchangeable collection (such as a single regression 
parameter  - but see below, "Smoothing Models"). 

I n t e r d o m a i n  c o v a r i a n c e s  for  a s ingle  p a r a m e -  
t e r  c o m p o n e n t .  In many cases the parameters 
for individual domains within the same group of 
parameters may be regarded as a priori varying 
around 0. The following briefly describes some ap- 
proaches to elicitation of U(g), dealt with in more 
detail in Zaslavsky (1992b). 

Independent or exchangeable domains may be 
modeled as independent, so U(g) is diagonal. 

Subjective similarity: subjective notions of sim- 
ilarity of domains may be represented by writing 
down a valid correlation matr ix  representing the de- 
gree of perceived similarity. 

Formal models of proximity may be appropriate 
when there is spatial or temporal  ordering of do- 
mains. 

Random effects models may be appropriate when 
domains are cross-classified on some categorical 
variables. 

Smoothing models extend this construction to 
continuous or mixed covariates. 

E x a m p l e s .  We continue here the discussion of the 
specification of the models for the examples, in par- 
ticular the specification of U (g). 

Example 1, continued: We treat all wards as ex- 
changeable and have two groups of parameters,  in- 
tercepts (a priori uniformly distributed) and ward 
effects (exchangeable). 

Example 2(a,b), continued: The posts trata  or 
EPSs are not fully exchangeable, but a structural 
covariance matr ix  U may be elicited as outlined 
above, incorporating ideas on random effects and 
smoothing models and constrained sums. Since we 
do not know a priori the relative contributions of 
dividing the components of interest (census under- 
count and DSE bias) into two or more components 
as described above, it would be appropriate to spec- 
ify several groups, corresponding to various specifi- 
cations of U(g). 

Example 3, continued: First a structural  covari- 
ance Us for states may be elicited using character- 
istics of the states as described above, or we might 
choose Us = I (for policy reasons, if we do not wish 
to make a state 's  estimate particularly dependent 
on those for nearby or similar states). Define Uy as 
described above to correspond to an autocorrelation 
model. Then there are four groups of components, 
for mean, state, year, and residual effects, U (1) - 1, 
U (2) = Us, U (3) = Ur, U (4) = Us ® Uv. 

2.4 P r i o r  d i s t r i b u t i o n s  of  v a r i a n c e  c o m p o -  
n e n t  h y p e r p a r a m e t e r s  

The choice of prior distribution 7r is limited by the 
requirement that  the posterior distribution 7" ] Y  
be proper (except in the case of a priori infinite 
components signifying flat prior distributions) and 
nondegenerate. A degenerate posterior would im- 
ply certain knowledge of the values of some vari- 
ance components. This claim of certainty cannot 
be justified from the data,  since any observed Y are 
consistent with all values of any variance component 
(except possibly zero). If the posterior distribution 
of a variance component is improper for all possible 
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data, putt ing infinite mass at infinity (i.e. above any 
given upper bound), then no borrowing of strength 
takes place across domains, regardless of the degree 
of similarity between domains demonstrated by the 
data. 

We will consider priors of the form 

7rs( r (a) ) - I  r(a) I "~ [R(r(a))l ~ (1) 

where R ( r  (a)) is the correlation matr ix correspond- 
ing to r (a). These priors are scale-invariant; we will 
find in Section 3 that  they are tractable as well. Za- 
slavsky (1992b) develops principles for selecting the 
parameters of these priors. 

3 Model fitting and poster ior  i n f e r -  

e n c e  via Gibbs sampling 

In much of the literature on hierarchical models, 
starting with Lindley and Smith (1972), a semi- 
Bayesian inference is conducted by fixing hyper- 
parameters at maximum-likelihood or method-of- 
moments estimates and basing inference on the pos- 
terior distributions of parameters. When the hyper- 
parameters can be fairly precisely estimated from 
the data, this procedure is adequate. Even when 
there is some uncertainty in hyperparameter  es- 
timates, there are approximate methods for esti- 
mating the resulting additional variance in parame- 
ters distributions using resampling (Laird and Louis 
1987) or asymptotic analytical approximations for 
special cases (Prasad and Rao 1990). 

However, these methods may be difficult to ap- 
ply to the models proposed here. First, these mod- 
els lack the i.i.d, structure required for some boot- 
strap methods (although "resampled" data could be 
simulated by sampling Y* ~ N(Y ,  V)).  The com- 
plexity of the models make general asymptotic ap- 
proximations difficult. Most important ,  the hier- 
archical structure is deliberately designed to per- 
mit overparametrization of the model, in the sense 
that  there may be many more parameters than data 
points, and therefore there may be random effects 
that  cannot be readily distinguished using the data. 
Under these circumstances, asymptotic assumptions 
are not reliable. 

Instead, we prefer to pursue a fully Bayesian 
strategy that  draws from posterior distributions, 
conducting inferences based on samples from the 
posterior. While this approach is computationally 
expensive, it yields an inference whose conceptual 
basis is unambiguous. 

Bayesian inferences are statements about the pos- 
terior distributions of functions of the parameters 
( C X )  given the data  (Y). Bayesian simulations 

require draws from these posterior distributions, 
which may be summarized for a variety of infer- 
ences. 

A simple and general computational procedure for 
drawing from posterior distributions is the method 
of alternating conditional distributions or Gibbs 
sampling (Carlin and Gelfand 1990; Gelfand and 
Smith 1990; Geman and Geman 1984). In this ap- 
plication, the vector of unknowns (X, r )  partitions 
naturally into two components X and r .  In the 
Gibbs sampling procedure, we alternately draw X It] 
from the conditional distribution X I r - r It], Y 
and r [t+fl from the conditional distribution r I X - 
X It], where t indexes iterations. With successive 
iterations the simulation distribution of (X It], r It]) 
converges to the joint posterior distribution. 

The series of draws from the posterior distribu- 
tions of r and X may be summarized to provide 
the desired inferences. Summary statistics may be 
accumulated simultaneously with sampling of X (t). 

4 Results: Es t imat ion of Census Un- 
dercount  for Pos t s t r a t a  

The data and models for estimation of undercount 
in the census have been described in Examples 2(a)-  
(b) of the preceding sections. Zaslavsky (1992a) 
fits a model equivalent to those proposed in this 
paper, with a single parameter  group, to data of 
the form described in Example 2(a), i.e. assum- 
ing that  all data sources are available for the same 
set of domains (EPSs). In an extensive simulation 
experiment, the hierarchical Bayes estimators were 
found to have good coverage properties and to have 
smaller squared-error loss (on the average across 
conditions) than several competing non-Bayesian es- 
timators. The Bayesian and non-Bayesian estima- 
tors were applied to two Census Bureau data sets, 
as well. 

Zaslavsky (1992b) extends those empirical results 
to more complicated models and data sets; the ap- 
plication and results are outlined in this section. 
The data are of the form of Example 2(b), and 
are derived from a repoststratified data set prepared 
in 1992 at the Census Bureau, based on corrected 
data from the 1990 census and PES. Undercount 
estimates are provided for 48 posts t ra tum groups 
(PSG), i.e. posts trata  collapsed acress age and sex, 
excluding three for Asians, Pacific Islanders and 
Native Americans for whom data were too sparse 
to compile bias estimates. Bias estimates are only 
available for ten EPSs, a more aggregated unit. 

The models we consider allow for several groups 
in the X vector, each with its corresponding vari- 
ance components r(g) and structural matr ix U(g). 
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We will fit a series of models, each incorporating 
different specifications of U(g), including the follow- 
ing: 

I: independent homoskedastic errors; 
UH = diag(Y1)+ .04: independent errors with 

variance proportional to (estimated) undercount; 
Us" a "similarity" matrix with equal weights for 

tenure, race, urbanicity, region, and independent er- 
ror, the variables (excluding the independent errors) 
define the poststratum groups. 

Fitted values (posterior means) for the true rela- 
tive undercount rate for each PSG may be plotted 
against the raw estimates under each of several dif- 
ferent models. Regressions of fitted values on raw 
estimates were calculated (excluding one outlier, 
PSG 48). Their slopes may be regarded as average 
shrinkage factors, i.e. average factors by which raw 
data are multiplied to obtain fitted values. (These 
coefficients are only calculated as a summary and 
are not part of the model used for smoothing.) 

As the models are made more complicated (with 
addition of groups of components), the slopes of the 
regression lines become larger, indicating that there 
is less smoothing of the adjustment factors. We 
would expect to find less smoothing under a model 
which detects systematic patterns in the data. The 
regression coefficients (and average posterior stan- 
dard errors of adjustment factors) are: I only, 0.56 
(.019); I and UH, 0.60 (.021); I and Us, 0.64 (.013); 
I, UH, and Us, 0.66 (.014). The large reduction in 
posterior standard errors when Us is added to the 
specification suggests that the model finds this a 
good fit and when it can "pull" the estimates to- 
ward it, relatively little residual variance is left. 
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