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1. INTRODUCTION 

The paper deals with a likelihood-based 

approach to survey sampling when non- 

response is present.  Consider a finite pop- 

ulation consisting of N units where N is ass- 

umed known. The units are labelled 1,..., N, 

and Yi is the value of a univariate variable of 

interest for unit i. The aim is to make infer- 

ence about y = (Y l, .... ,YN), usually in the 

form of a function of y. In this paper we are 

concerned with estimating the total t=Zy i. A 

sample s (a subset of { 1, . . . ,N}  ) of size n 

is chosen according to some sampling design 

p(s l y), a probability distribution over all 

subsets of { 1 , . . . ,  N}. We shall assume 

that p(s I y) = p(s) ,  i.e. the probability of 

choosing s does not depend on y. 

We regard y as a realized value of a 

random vector Y with distribution charac- 

terized by unkown parameters 0. Under a 

population model inference about t becomes a 

prediction problem about the unobserved part 

of t. The sampling design is ignorable acc- 

ording to the likelihood principle. Hence, all 

analysis is done conditional on the actual s 

chosen. 

In almost all sample surveys one has to 

expect that some units in the survey do not 

respond, i.e., we have nonresponse in the 

survey. The nonresponse will usuallly be at 

least 5-10%, and it is not uncommon with a 

nonresponse of 30-40%. In order to perform 

a realistic and relevant statistical analysis it is 

therefore necessary to include into the pop- 

ulation model a model of the process that 

leads to nonresponse.To describe the resp- 

onse pattern we define the response variables 

R i = 1 if unit i responds and 0 otherwise. 

(Yi,Ri) are assumed to be independent 

for i = 1 , . . .  ,N. We regard situations where 

auxiliary information x i - (Xi l , . . . ,Xip)  is 

available for all units in the population. The 

Yi's are assumed to be normally distributed 

with mean xi~ 1 and variance c~ 2 . Here, 131 

is a p-dimensional column-vector. The 

response mechanism, i.e. the conditional 

distribution of R i g iven  Yi = Yi, is mode l l ed  

by latent variables, a model that was first 

considered by Heckman (1976). 

The response sample is s r = { i ~ s : r  i = 

1 }, and n r is the size of s r .The observed Yi- 

values in s are denoted by Yr = (Yi: i e s & 

r i = 1). The problem is to make inference 

about the total t which is a realized value of T 

= X Yi + Z1 + Z2 , where Z 1 = X Yi 
i~sr i~ s-st 

and Z 2 - i~sYi . Since Z Yi is observed, 
ie Sr 

estimating t can be regarded as the problem 

of predicting the value z of Z -  Z 1 + Z 2 . We 

shall focus on constructing confidence inter- 

vals for z, based on a predictive likelihood 

approach. 

Section 2 reviews the the general 

concept of predictive likelihood and shows 

how predictors and confidence intervals can 

be constructed from a predictive likelihood. 
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Section 3 describes the response model. The 

profile predictive likelihood for z is consid- 

ered. Section 4 contains the results of four 

simulated cases and Section 5 considers 

evaluation of the predictive intervals based on 

the profile predictive likelihood. 

2. PREDICTWE LIKELIHOOD 

The main aim of the paper is the likeli- 

hood approach to the prediction of the unob- 

served part z of the total t. This section gives 

a short description of likelihood prediction 

generally. For a more complete exposition we 

refer to BjCrnstad (1990). 

Let Y = y be the data. The problem is to 

predict the unobserved or future value z of a 

random variable Z, usually by a predictor and 

a prediction interval. (Y,Z) has a density or 

discrete probability function fo(y,z). This is 

the joint likelihood for the two unknown 

quantities z and  0 ; /y(Z,0)  = fo(y,z). The 

aim is to develop a likelihood for z, L(z I y), 

by elminating 0 f rom ly. Any such likelihood 

is called a predictive likelihood. 

Different ways of eliminating 0 give rise 

to different L. One way is by maximizing 

/y(Z,0) with respect to 0, giving us the so- 

called profile predictive likelihood: 

Lp(z I y) - maxofo(y,z). 

Lp typically works well when 0 has low 

dimension. An application of Lp to nonresp- 

onse problems is given by BjCrnstad & Wal- 

see (1991). If 0 consists of many parameters 

Lp can be misleadingly precise and needs to 

be modified. Such modifications have been 

suggested by Butler (1986 rejoinder, 1989) 

and are also considered in BjCrnstad (1990). 

We shall assume that any L considered is 

normalized as a probability distribution in z. 

The mean of L is called the predictive 

expectation, Ep(Z), and is a natural predictor 

for z. L(z I y) gives us an idea of how likely 

different z-values are in light of the data, and 

can be used to construct prediction intervals 

for z. An interval Iy - (ay,by) is a (1-o0- 

predictive interval based on L if 
by 

L(z I y)dz - 1 - o~. 
ay 

If L is unimodal the shortest (1-o0 predictive 

interval is of the fo rm Iy - { z: L(z l y) > c }. 

3. A LATENT MODEL FOR 

NONRESPONSE 

Response for unit i is assumed to be con- 

trolled by an unobserved, latent, variable ~,i" 

R i - 1  ¢:~ ~ , i>0 .  

The joint distribution of (Yi,~,i) is ass- 

umed to be bivariate normal with E(Yi) - 

Xi~ 1 , V a r ( Y  i) = 0 '2, E01, i) - xil~2 , V a r  (~i) 

= 1 and Coy (Yi,ki) = P(~. It follows that the 

conditional distribution of R i given Yi is 

given by 

P(R i = l l y i ) =  

tl)( xi~2 + P ~ - I ( y i -  x i [~ l ) )  . 

~/1 _p2 

Let 0 ([~l,[~2,~,p) and r s - ( r i - i  ~ s). 

In general, f(.) and f(.I.) denote the distrib- 

ution and the conditional distribution of the 

enclosed variables.The profile predictive 
likelihood is then 

Lp(z I y) - maxofo(Yr,rs,Z), where 

f0(Yr, rs ,z) - { l"I  f0(Yi)P(Ri - 1 lyi) } X 
i~ Sr 

{ l-I P(P~-O)}fo(z Irs) • 
ie S-Sr 

Let us first consider the i.i.d, case where 

there are no auxiliary variables and E(Yi) - 

and E(~,i) - c .  Z -  Z 1 + Z 2 where 
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Zl - ies-srZ Yi depends on r s, and Z 2 = i~sYi 

does not.  Z 2 is normally distributed with 

E(Z 2) = (N-n)p and Var(Z 2) - (N-n)(5 2. 

Let (~(x) and O(x) denote the density and 
distribution function of the N(0,1) distrib- 
ution. Given r s, Yi for i e s-s r are i.i.d, with 

¢(c) 
It* = E(Y i I r i = 0) - B - pt~ 1-O(c) 

t~ .2  = Var(Yi  I r i =0) 

= 1~2+(~202 (~(C) (C- (~(C) 
1-O(c-----S ]-O(c) )" 

It follows that approximately, Z 1 I r s is 

N((n-nr)kt*, (n-nr)t~ .2) and Z I r~ is 

N( (n-nr)l.t* + (N-n)l.t, (n-nr)(~ .2 + (N-n)o "2) 

such that ,  with 0 = (~t,c,t~,p), 

fo(y ,r ,z) -- 

I(~(Y i -~t ) (I)( c + p ( 5 - l ( y  i - ~ ) )  }X 
. !  2 

ies~ V 1 -P  

(1- O(c)) n-n 1 r X 
¢ (n-nr) (~.2 + (N-n)o "2 

z -  (n-nr)P* - (N-n)p 
¢( ). 

¢ (n-nr) (~.2 + (N-n)(~ 2 

For the general regression model, under 

regularity conditions sufficient for Linde- 
bergs condition to hold we have again that, 
approximately, Z 1 given r s is normal, now 

with 

E(Zllrs)= ~ E(Yilr i-0)  
i~ S-Sr 

¢( 132) 
-- E (Xil~l -P(~ 1- O(xi[32) ) 

ie s-s r 
and 

Var(Zllrs)- ~ Var(Yilri=0)= 
ie S-Sr 

Z { (~2+ (~202 (~(Xi~2) 
1 ~ 2 )  (xi~2 - 

i~ s-st 

)}. 
1-0(xi1321 

Z 2 is normally distributed with E(Z2) = 

~ x i ~  1 and Var(Z2) = (N-n)(~ 2. 
ies 

Let  Uzlo = E(Z Irs ) = E(Zllrs) + E(Z2) 

and O'2zlO = Var(Z I r s) - Var(Z 1 I r s) + 

Var(Z2). 

It follows that 

1 yi-Xi~l 
fo(Yr,rs, z) -- { 1-I ~ (~( - - -~- - )  x 

ie Sr 

. (  xil32 + P c - I ( Y i -  x i l ~ l ) ) } x  

~/1 _p2 

z-  gzlO 
I-[ (1- cI)(xi[~2)) 1 ( ~ ( ~ ) .  

ie s-st O'zl0 O'zl0 

Lp(z I Yr,rs) is computed numerically for 

a finite sufficient set C of chosen z-values 
and then normalized to be 

Lp(z I Yr, r s ) / ~  Lp(z* I Yr,rs). 
z*e C 

95% predictive intervals Iy - (ay,by) are 

computed by letting ay and by be the lower 

and upper 2.5% points in Lp" 

~YLp(z I Yr,rs)dz = ~°Lp(z I Yr,rs)dz = .025 
-oo by 

computed as sums from the discrete numer- 
ical version of Lp. 

To evaluate the intervals we estimate, by 
simulation, the unconditional level 

C/(0) = P0(av < Z < by) 

and the conditional level 

C0(y) = Po(ay < Z < by I y). 
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4. S IMULATION CASES (111) L i . d . c a s e .  N -  50, n - 3 0 ,  n r - 21.  

Four simulation cases are presented, two 

i.i.d, cases (with N = 4637,n = 300 and N = 

50, n = 30) and two simple regression cases 

with the same (N,n) - values. CPU time for 

computing Lp on a CRAY X-MP/216 was 

about 8 minutes for the large sample cases 

and 35 seconds for the small sample cases. In 

each i.i.d, case one simulaton is made for the 

parameter  values l.t - 3.5, c - 7, ( y -  1, 9 - 

-.5. The regression cases with E(Y i) = ~1 + 

131X i and E ( ~ ,  i) - 0; 2 + [~2Xi uses the same y- 

data as in the corresponding iid cases and 

x i - values are simulated from the N(yi,.5)- 

distribution. It follows that in the regression 

c a s e s  O~ 1 - - . 7 ,  [~1 - - . 8 ,  O~ 2 -- 2.1 and [3 2 = 

-.4. In all four cases E(T/N) = IX = 3.5. 

]?s- ;; 3?s ,i -4?s s -s?s- 

(IV).  R e g r e s s i o n  case .  N -  50,  n - 3 0 ,  

n r - 21. 

z?5 3?s 4?s 

P l o t s  o f  Lp(z  lYr, r s) on  the sca le  z / (N -n  r) 

(I)  L i . d . c a s e .  N =  4 6 3 7 ,  n - 3 0 0 ,  n r = 

2 3 0 .  

. . . . .  ,,,, Jrjllllllillllllll II ,, . . . .  

3~2 3~4 316 3~8 

(H).  R e g r e s s i o n  case.  N =  4 6 3 7 ,  17 - 

3 0 0 ,  n r - 230 .  

" 3:z 314 31s 31G 

Table 1 summarizes the results of the four 

cases.  The estimate of t/N is 
1 

~p/N- -~ (nrY r + Ep(Z). 

For imputation, the imputed values in s - 

Sr are E(Yi I r i - 0 )  with the unknown param- 

eters substituted by maximum likelihood 

estimates, computed by the EM-algorithm. 

For iid cases 1 and 3, the imputation estim- 
_ 1 

ator is based on y s -  n ~ Y i ,  while for the 
1E S 

regression cases 2 and 4 with E(Yi) - o~ 1 + 

[~xxi, the imputation estimator is based on 

1 
f / N -  ~ ( Z Y i  + Z ( ~ l  + 131xi)) 

~Es i~s 

where (6~ 1 , 131) are the least squares estim- 

ates based o n  ( x i , Y i ) ,  i E s. 

The predictive interval for t/N based on 

Lp is  given by 

1 1 
[~-(nrY r + ay),  ~-(nrY r + by)] 
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Table la 

nr 

Yr 

Ep(Z)/(N-nr) 

i p / N  

Imputa t ion  

t 
- - -  interval  
N 

Case 1 

4 6 3 7  

300  

230  

3 . 3 4 5  

3 . 4 8 6  

3 . 4 7 9  

3 . 6 5 2  

( 3 . 1 5 , 3 . 7 0 )  

Case 2 
, i  

4637- reg  

300  

230  

3 . 3 4 5  

3 .466  

3 . 4 6 0  

3 .525  

(3 .31 ,3 .62 )  

Table lb 

nr 

yr  

E p(Z)/(N-nr) 

t p / S  

Impu ta t ion  
i 

t 
- - -  interval  
N 

Case 3 

5O 

30 

21 

3 . 3 5 3  

3 . 5 3 2  

3 . 4 5 7  

3 . 8 5 8  
i i i 

( 3 . 1 5 , 3 . 7 0 )  

Case 4 

50-reg 

30 

21 

3 . 3 5 3  

3 .553  

3 . 4 6 9  

3 .553  

(3 .11 ,3 .89 )  

It seems that the likelihood method does 

better than imputation. 

5. EVALUATION OF PREDICTIVE 

INTERVALS 

Estimated confidence levels are computed 

only for i.i.d, cases. Unconditional levels 

for the 95% predictive interval are estimated 

for the following parameter configurations: 

01 • ~t - 3 . 5 ,  c - . 7 ,  c r -  1 , 9  - - - 5  

0 2 " 1 . t - 3 . 0 , c - . 7 ,  o -  1 . 5 , p = - 5 / 6  

03 " I t -  3 . 0 ,  c - 0 ,  o -  1 . 5 ,  p = -  5/6 

Table 2. Confidence levels for 
95% Lp- intervals 

N n 

0 1 4 6 3 7  300  

01 50  30  

02  50  30  

02  4 6 3 7  300  

03  

Cl(O) 
, , 

496 
508 - .977 

348 
= .956 

186 
201 - .925 

, 

193 
205 - .941 

337 
4 6 3 7  300  353 - .955 

CPU time for 500 simulations in large 

sample cases on a CRAY X-MP/216 was 

about 45 hours.For 01 with N - 50 and n - 

30, 6 cases of data were simulated and for 

each case the conditional coverage C0(y) 

were estimated from 100 000 simulations of 

z. The results are given in table 3. 

Table 3. Conditional coverage 
probabilities for 95% Lp- intervals 

Case C 
o l  

1 .9903  

2 ,9979  

3 . 7696  

4 . 3 0 2 0  

5 .5421 

6 . 9997  
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For the c a s e  03, N = 4637, n = 150, 32 

datacases were simulated and the conditional 

coverage estimated by 1000 simulations of z. 

In 50% of the cases the conditional coverage 

is larger than the nominal level of 0.95. 

Specifically, in 11 cases C o 3 - 0, in 14 cases 

Co 3 = 1, and the remaining results are in 

table 4. 

Table 4. Conditional coverage 
probabilities for 95% Lp- intervals 

Case Co3 

1 .969 

2 .189 

3 .117 

4 .002 

5 .933 

6 .999 

7 .900 

Table 2 indicates that the nominal 95% 

likelihood intervals have a confidence level 

close to .95, although very few cases are 

considered. The conditional probability of 

coverage seems to be less than .95 more 

often than desired, suggesting that Lp may 

lead to intervals that are too narrow if we use 

the conditional Co(y) as evaluation criterion. 
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