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Abstract: Multiple imputation, as described by Rubin, 
has seen a wide variety of applications. 
Counterexamples, presented by Fay (1991), and new 
methods, such as those of J.N.K. Rao and J. Shao, 
that can asymptotically disagree with the multiple 
imputation approach, have raised questions about the 
validity of multiple imputation. This paper identifies 
critical restrictions on the practical application of 
multiple imputation. It also discusses alternatives that 
can provide asymptotically valid inferences for some 
of the situations in which multiple imputation fails. 

1. INTRODUCTION 
Rubin (1978, 1987) has proposed multiple imputation 
as a general technique to represent the increased 
uncertainty in analysis of survey data from treating 
imputations for missing data as if they were known. 
Although relying initially on a Bayesian motivation, 
he and others have argued that multiple imputation 
can be used to provide valid inferences from both 
Bayesian and frequentist perspectives in a variety of 
contexts. 

For example, Clogg et. al. (1991) employed 
multiple imputation to create two augmented Public 
Use Samples from the 1970 census, of approximately 
800,000 cases each. The augmented samples each 
include five imputations of 1980-equivalent industry 
and occupation codes from the existing 1970 census 
codes. The Census Bureau doubly coded a subsample 
of approximately 125,000 1970 census cases, coded 
originally by the 1970 coding scheme, by recoding 
them according to the 1980 scheme. A complex 
system of hundreds of logistic regression models to 
predict the 1980 codes on the basis of 1970 codes and 
other characteristics, derived from fitting the doubly 
coded sample, formed the basis for the multiply 
imputed codes. The authors have made the resulting 
data sets available to researchers with encouragement 
to use multiple imputation techniques for inference 
from these data. In other words, analysts are to apply 
complete data methods to each of the five sets of 
imputations, and to estimate total variance as the sum 
of 1) the average variance estimated for the five 

imputed sets (where, in effect, n=800,000), treating 
imputed values as if they were known, and 2) 
variability in the estimates between the five imputed 
sets (to represent the variance from estimating the 
800,000 cases from the subset of n---125,000 doubly 
coded cases). 

There have already been several articles and studies 
offered in support of the validity of multiple 
imputation inferences. Consequently, the title of this. 
paper appears to raise a question that has already been 
answered. In fact, this paper will show how previous 
work on multiple imputation is not adequate to assure 
the validity of complex applications, such as that by 
Clogg et. al., without highly restrictive conditions on 
the form of the subsequent analysis of the multiply 
imputed data set. 

The focus on this paper will be on limitations of 
multiple imputations in the context of simple random 
samples, although these deficiencies are related to 
other limitations that are evident in the attempt to 
apply multiple imputation to complex samples. The 
theory developed for multiple imputation provides 
relatively little detailed discussion of the interaction 
between missing data uncertainty and the design- 
based variance methods typically applied in the 
analysis of complex surveys. A paper of Fay (1991), 
initially intended to augment the existing theory of 
multiple imputation on this point, instead outlined an 
alternative basis of inference from complex survey 
data with missing values. In some instances, the new 
methods give results asymptotically equivalent to 
those of multiple imputation (assuming an increasing 
or infinite number of multiple imputations). The 
paper also presented several counterexamples where 
this was not the case, however. Some 
counterexamples involved specific complex sampling 
situations, while others required only simple random 
sampling. On the other hand, Fay (1991) proposed 
specific alternative methods only for a restricted class 
of missing data procedures, such as mean imputation, 
and omitted consideration of important other methods, 
such as the hot deck. Thus, this initial work 
attempted to cover several issues: the establishment of 
a new general inferential basis for sample surveys 
involving missing data; discussion of appropriate 
methods for mean imputation, including imputing 
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probabilities for categorical data; and identification of 
counterexamples where multiple imputation yields 
inconsistent inferences, both involving complex 
samples and simple random samples. 

Separate work of Rao and Shao (1992), 
independently of Fay, developed methods to assess 
the uncertainty of estimates based on a single set of 
imputations from a hot deck with specific restrictions 
on the method of selecting the imputed values. The 
initial motivation of their work was to provide a valid 
inferential basis for the single-imputation hot deck. 
They recognized that large survey organizations such 
as Statistics Canada were likely to continue to prefer 
singly imputed data sets instead of the more complex 
multiply imputed versions, so their work focused on 
providing adequate measures of uncertainty reflecting 
the effect of missing data without resorting to 
multiple imputation. Thus, their paper addressed a 
critical interest not handled by Fay (1991). Rao and 
Shao modified the stratified jackknife; their findings 
are pertinent both to simple random samples and to 
multistage stratified samples. Again, this research 
was initially motivated by complex sampling 
problems, but the authors' results have important 
implications for simple random samples as well. 

Although valid inferences for complex samples will 
be an important topic for additional research, the 
focus of this paper will be to identify some of the 
limitations of multiple imputation in the simplest of 
contexts. This paper investigates missing data 
uncertainty under conditions studied earlier by Rubin 
and Schenker (1986), that is, a simple random sample 
of size n from an infinite population, even though 
some of the literature, for example, Rubin (1987), 
also treats the instance of a sample of size n from a 
finite population of size N. Further, the comparisons 
will be simplified in two additional ways: 

i) Section 3 considers only the properties of 
multiple imputation as if an essentially 
unlimited number, m, of imputations were 
available, i.e., m = ~. The examples of 
Section 4 employ a generous m = 10 
imputations. This choice avoids 
complexities that occur for small m from 
limited degrees of freedom to estimate part 
of the variance; and, 

ii) Section 3 considers properties for large n, 
retaining terms only through O(1/n) in 
expressions for variance. The use of n = 
100 observations in Section 4 corresponds 
closely to the behavior predicted by this 

order of approximation. 
Section 2 reviews the theoretical foundations for 

multiple imputation, both for its properties under 
special conditions and arguments advanced for its 
suitability for more general problems. To help fix 
ideas, Section 3 revisits the last example offered in 
Fay (1991). In this relatively simple example, it is 
possible to approximate analytically the multiple 
imputation inferences as well as to obtain the 
asymptotic variances and covariances of the same 
es t imators  through s tandard f requent is t  
approximations. The multiple imputation approach 
implies inferences with a valid frequentist 
interpretation for the overall sample, but is incorrect 
for simple subdomain estimates. Examples in section 
4 illustrate the differences between multiple 
imputation and the new approaches. 

2. Foundations for Multiple Imputation 
As noted earlier, there is a considerable literature on 
multiple imputation. Rubin's book (1987) represents 
a systematic statement of the underlying theory, and 
this section will primarily use this source as a point of 
reference. 

Rubin's (1987) first chapter announces the general 
purpose nature of multiple imputation through four 
examples, including the coding of industry and 
occupation later appearing as Clogget. al. (1991). 
After the preliminaries in the second chapter, the third 
chapter systematically demonstrates that, under a 
given Bayesian analysis of the data and missing data 
mechanism, multiple imputations represent draws 
from the posterior distribution of the missing data, 
given the observed. Rubin shows that, for posterior 
inferences that can be well approximated by a normal 
distribution, the analysis under the multiple imputation 
approach yields valid inferences asymptotically 
equivalent to the full Bayesian analysis. 

Chapter 4 assesses the validity of multiple 
imputation from a frequentist perspective, by a 
mixture of argument and simulation. The examples 
of the chapter are based, however, on circumstances 
in which the Bayesian and frequentist analysis of the 
complete data would be in virtual agreement in the 
absence of missing data. 

Consequently, one might distinguish four issues in 
the validity of multiple imputation based on the 
underlying similarity of the assumptions for the 
complete data set if no missing data were present: 

1) applications to Bayesian inference, when 
both the imputer and analyst work with the 
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same Bayesian distribution, 
2) applications to frequentist inference when the 

Bayesian analysis of the complete data case 
essentially agrees with frequentist inference, 

3) applications in which the imputer and analyst 
have different Bayesian priors, and 

4) applications in which the frequentist 
inference for the complete data is 
fundamentally different than the Bayesian 
model employed by the imputer. 

Essentially, Rubin recognizes and discusses these 
issues, although without emphasizing the distinction 
between 2) and 4). 

Much of the literature focuses on the validity of 
multiple imputation under 1) and 2). Herzog and 
Rubin (1983) and Rubin and Schenker (1986) assume 
simple random sampling without covariates, ignorable 
nonresponse, and a scalar outcome variable. Schenker 
and Walsh (1988) extended the results by including 
the effect of covariates in a linear model. Results 
were stated within the context of the overall model, 
so that investigations of this sort were not attuned to 
surfacing the consequences under situations 3) or 4). 

3. A Simple Counterexample: Proportions 
The concluding example in Fay (1991) presumed only 
simple random sampling, large n, and, effectively, m 
= oo multiple imputations. The example considers the 
simple case of estimating a binomial proportion. 
Suppose n~ out of the n sample cases have reported 
values, with missing data for the remaining cases, and 
that the proportion of responses, r = n/n, remains 
fixed as n --~ oo. 

Suppose that an imputer generates multiple 
imputations by assuming that the underlying 

proportion 0 is distributed approximately N(p, pq/n~), 
where p is the observed proportion for reported cases. 

For each set, 1/, of imputations, the imputer draws a0~ 

from this distribution and completes the data set by 
drawing independent Bernoulli variables with 

expectation 0~ for each missing case. For each set, 

let 8~ denote the estimated proportion based on the 

observed and imputed values. 
For a finite but large number, m, of imputations, 

multiple imputation provides inferences about the 

underlying true 0 through 0 ~ N(0 . ,  

approximately, where T denotes the estimated total 
variance comprised of variance in the completed data 
set plus variance due to imputation of the missing values: 

where 

17" - I~'+ (1 * m-n)/~ 

n l  

O. = 6,, 

M 

lie - m - ' ~  lit ,  
~-1 

(2.1) 

- m 

ml _, ~ 0. ,(1 - 0.,) 

and 
M 

_ -  (0 , , -0 , )  2 
~-1 

As n, m ~ c¢, Schenker (1988) and Schafer and 

Schenker (1991) note that /~ will be composed of 

contributions of approximately (1 - r) 2 0 ( 1  - O ) / n r  

due to sampling 0~ and approximately 

( 1 -  r) 0 ( 1 -  O) /n  due to the independent draws 

for each imputation, while Ii: approaches the standard 

binomial variance, 0.(1 - 0.) /n.  Asymptotically, It 

approaches 0(1 - O)/n~, the binomial variance based 
on the number of complete cases. Thus, multiple 
imputation provides the same answer as the 
frequentist analysis of the problem. 

Suppose that an analyst attempts to employ the 
multiply imputed data set to make inferences about 
two subdomains. Suppose further that the two 
subdomains partition the original sample into n = n, 
+ rib, n I = nla + nlb , nr = n,r~ + nbrb, e tc .  Response 
rates 1". and r b, the underlying population proportion 

0, and the relative proportions of E(n~) and E(nb) 
remain fixed as n --, ~. 

The analyst forms separate estimates, 0.,, and O.b, 

for the two subdomains computed using only data 

from each respective subdomain. For example, O.. 

would be computed only from the observed and 
imputed values in subdomain a. Hence, the 

estimation of 0.a and 0,b does not exploit a specific 

assumption, namely that 0 was constant, built into the 
missing data model; yet, this example, in a simplified 
form, exemplifies the manner in which survey 
estimates for subdomains are produced. 

If the analyst uses the means of the imputed values 
as if they were known and computes the naive 
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estimate of the covariance of 0,a 

to O(1/n), would be: 

C n - 0 ( 1 - 0 )  

and t~b, the result, 

/ '¢  

0 
t l  a 

r b 

In the absence of complete response, this estimator 
will systematically understate the true uncertainty. 

Suppose that the analyst instead employs the 
multiple imputation replicates to derive an estimated 

variance-covariance matrix of 0 a  and t~.b. The sum, 

(2.1), of the within and between components is: 

CM~ - 0 ( 1 - 0 )  

__1 
/1 a 

(1-r  a) (1-ra) 2 
+ ~  

/I a / i F  

(1-ro) (1-r b ) 

l i t  

!I-ra__)) (I -r__~_ / 
/ 

nr 2- I 
1 + (1-rb) + (I -r~) 

n b n b n r  J 

A covariance, proportional to (1-r~)(1-rb), now 
appears, which was absent from the naive estimate 

CN. This covariance derives from /~ of (2.1). The 

covariance is due to sampling 0, and using it to 

impute values for both subgroups concurrently within 
a single imputation. Thus, multiple imputation 

recognizes the covariance between O.  and O.b from 

their shared use of the observed data to estimate the 
missing data. In fact, however, design-based 
reasoning identifies three reasons for covariance 

between 0.,  and Oh" 

i) There is a covariance between the observed 
values for group a and the imputed values 
for group b, because the observed values in 
group a partially determine the imputations 
for group b. 

ii) There is a covariance between the imputed 
values for groups a and b, because they were 
imputed from the same model and estimated 
parameters. 

iii) Symmetrically with i), there is a covariance 
between the imputed values of a and the 
observed values of b. 

only properly In fact, multiple imputation is 
accounting for the contribution of ii). 

When a design-based calculation of the total 
variance-covariance matrix is performed, either 
through linearization or replication, the result, to 
O(1/n), is instead: 

r, + (l-ra z) (l-rar ~ 
?1 a / I t  / I t  

CDB = O(1-0)  
(1 - r , r~  r b (1-r~) 

F/ r  ?1 b ?~r 

Differences between the estimated covariances are 
larger than they might at first seem. For example, if 
r~ and r b are both .9, the design-based approach gives 
19 times the covariance of multiple imputation. 
Although less obvious from a quick comparison, the 

variances of 0. ,  and 0.b are each correspondingly 

less under the design-based approach. Both CM~ and 
CoB give the right answer for the variance of (naP, + 
ndzb)/n, the overall proportion, however. Hence, the 
design-based approach identifies the effect of typical 
missing data treatments is to produce higher 
covariances among subdomain estimates and lower 
increases in variance, relative to multiple imputation. 

This example can be extended to more than two 
subgroups with a similar effect, that is, multiple 
imputation understates the true covariances between 
subgroups and overstates their individual variances, 
while obtaining the same answer, asymptotically, as 
frequentist arguments for the reliability of the 
estimated overall proportion. 

Note that the analyst, in estimating proportions for 
the two populations separately, does not make the 
assumption reflected in the original imputation, which 

was that the binomial proportion, 0, did not depend 
on subgroup membership. If the analyst had 
remained entirely consistent with this assumption, 

then only t~. would have been produced as the 

estimate for the subdomain estimates for a and b, not 0.a 

and 0b.  Since multiple imputation inferences are 

valid for 0 ,  it is possible to say that subdomain 

analysis presents no special problems in this example 
as long as subsequent analysis employs the same 
assumptions as the missing data model. The next 
section provides a less trivial illustration of this 
phenomenon. On the other hand, such a limitation, if 
general, imposes severe restrictions on the validity of 
multiple imputation inferences for complex 
applications, such as Clogg et. al. (1991). 
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One of the several lessons here is that the validity 
of multiple imputation can depend on the form of 
subsequent analysis. In particular, assessing the 
performance of multiple imputation for the overall 
proportion or mean or similar global aggregates does 
not assure its validity for other uses. 

This example also illustrates that the decomposition 
of variance into within and between components is 
generally unable to reproduce CD~ except when r~ = 
r b = 1. Then: 

C u n -  If,' = 0 ( 1 - 0 )  

-(1 - r a) (1-r  2) (1-rart) 

n a n r  n r  

( l - t a r t )  -(1 -rt) (1-r~) 
n r  n b n r  

- 0 ( 1 - 0 )  

-(1 - ra)  0 

/l a 

-(1 -r~) 
0 

n b 

+ o ( 1 - o )  

(1 -r2a) (1-rart) 

n r  n r  

( 1 - r a r l )  (1-r~) 

n r  n r  

The second matrix in the last equation has a 
nonpositive determinant; it is consequently generally 
impossible to decompose CI~B along the lines of (2.1). 
Consequently, the underlying strategy of multiple 
imputation, namely to first compute variances for the 
completed data set as if the imputed data were 
observed and then to add an additional component 
due to uncertainty in the imputation, is fundamentally 
flawed for applications of this sort. 

4. Imputation for Normal Data 
The final counterexamples in this section compare 
multiple imputation with m = 10 imputations to the 
design-based approach for mean imputation and the 
method of Rao and Shao (1992) for single imputation. 
Thus, the estimators themselves are different, with 
mean imputation having the smallest variance, 
multiple imputation with m = 10 having a slightly 
higher variance, and the estimator based on a single 

imputation the highest variance. The relevant 
question is whether the variance estimation strategy in 
each case, that is, (2.1) for multiple imputation, the 
jackknife for mean imputation, and a modified 
jackknife for the single imputation, produce a 
variance estimate acceptably close to the actual 
properties its corresponding estimator. 

Table 1 presents an example based on 5,000 
repetitions, sampling 100 observations from N ( 0 , 1 ) .  

The population is divided into two groups, a, and b, 
of equal size, and the probability of response is .7 for 
each individual, with independent response among 
individuals. 

Table 1 Comparisons of averaged variance estimates 
under three procedures, with observed actual variance, 
5000 repetitions 

Var Y 

Var Y, 

C o v  

Mult Imp 

.0146 

.0146 

.0280 

.0224 

.0014 

.0071 

DB 

.0144 

.0141 

.0217 

.0215 

.0074 

.0069 

Rao+Shao 

.0174 

.0167 

.0278 

.0271 
, 

.0074 

.0066 

Note: Multiple imputation estimates are based on m = 
10 draws, and the estimator is the average over the 
ten draws; the comparison is between the multiple 
imputation variance estimate, (2.1), and the observed 
variance of the estimator. Similarly, the design-based 
approach employs mean imputation and the jackknife 
variance estimation for mean imputation; the 
comparison is between the average jackknife variance 
estimate and the observed variance using mean 
imputation. The approach of Rao and Shao produces 
a variance estimate for the single imputation hot deck 
based on a modification of the jackknife; the 
comparison is between the mean of their variance 
estimator and the actual variation. 

The results in Table 1 are analogous to those in the 
previous section. All three methods give acceptable 
inferences for the estimation of the overall total, but 
multiple imputation yields unacceptable results for 
subdomains, again exaggerating the variance increase 
while understating the covariance. 
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The first two examples have the disadvantage of 
appearing too simple. Imputations frequently are 
based on observed covariates. In the last example, a 
second variable forms a dichotomy of the population 
into classes s and t. For simplicity, these classes 
were also assumed of equal size in the population and 
to be independently distributed across a and b. Table 
2 shows the results of an imputation employing s and 
t as imputation classes to impute missing Y. As 
before, membership in a and b is not considered in 
the imputation. For example, s and t could represent 
two broad occupation groups, considered highly 
predictive of earnings, Y, and a and b could denote a 
characteristic not usually employed in the imputation, 
such as state. Table 2 presents the results. 

Table 2 Comparisons of averaged variance estimates 
under three procedures, with observed actual variance, 
20,000 repetitions 

Mult Imp 

Var Y .0145 

.0147 

Var Ya .0278 

.0222 

Cov .0014 

.0075 

Var Y, .0291 

.0298 

Cov Y,, .0000 

v, .0000 

DB 

.0145 

.0142 

.0219 

.0214 

.0074 

.0074 

.0296 

.0289 

.0000 

.0000 

Rao+Shao 

.0174 

.0172 

.0278 

.0272 

.0074 

.0073 

.0356 

.0348 

.0000 

-.0001 

Multiple imputation produces acceptable results for 
the overall mean and for means of the imputation 
classes, but not for subdomains a and b omitted from 
the imputation model. As before, multiple imputation 
may give valid results under restricted conditions that 
the imputer's model and analyst's estimator 
sufficiently agree, but the example also indicates that 
multiple imputation is inappropriate as a general 
purpose methodology for complex problems or large 
public use files. 

1 This paper reports the general results of research 
undertaken by Census Bureau staff. The views 
expressed are attributable to the author and do not 
necessarily reflect those of the Census Bureau. 
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