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1. Introduction 
The 1987--88 Nationwide Food Consumption 

Survey was conducted by the Human Nutrition 
Information Service of the U.S. Department of 
Agriculture. The purpose of the household portion 
of the NFCS was to estimate the kinds and 
amounts of foods used by households in the United 
States. The original sample was a self--weighting 
stratified sample of area primary sampling units 
within the 48 conterminous states. Primary 
sampling units were divided into secondary units 
called area segments. Within sample segments, 
personal interviewing was used to collect household 
data. The field operation was conducted during 
the period April, 1987, through August, 1988, by a 
contractor under contract to the Human Nutrition 
Information Service. 

Approximately 37% of the housing units 
identified as occupied provided complete household 
food use information. The realized household 
sample contains 4495 households. Because of the 
low response rate, the Human Nutrition 
Information Service decided to use regression 
weighting in the estimation. Population totals for 
all characteristics except urbanization were 
estimated by the Human Nutrition Information 
Service from the March 1987 Current Population 
Survey. See Bureau of the Census (1987). The 
population totals for urbanization were furnished 
by the contractor. In our analysis, we treat the 
estimated population totals as if they were known 
population totals. 

2. Regresaion Weighting 
Regression estimation for survey samples was 

introduced by Cochran (1942) and Jessen (1942). 
Cochran (1977, Ch. 7) contains the basic theory. 
When a vector of population means (or totals) is 
known, the regression estimator of the mean for a 
simple random sample of n observations is 
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x. is the k-dimensional vector of control variables, 
J 

X is the row vector of population means of the 
control variables, the first element of x. is always 
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one, and the first element of X is one. 
weights have the property 
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where X. is the population mean of the j--th 
J 

control variable. An estimator of the variance of 

- is Yr 
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where the finite correction term is omitted. The 
estimator (4) was suggested in Hidiroglou, Fuller 
and Hickman (1976) and the consistency of the 
estimator was established by Fuller (1975). Also 
see Royall (1981), Wright (1983), and Sarndal, 
Swensson and Wretman (1989). 

The construction of the weights is easily 
extended to samples for which initial unequal 
weights provide unbiased estimators. Let Xl, x2, 

... x be proportional to the selection probabilities 
n 

for a sample of size n . A regression weight for 
mean estimation is 

_ n ix (5) w.=X ~ ~r. x' , 
1 t 1 1 1 

where we assume that the matrix ~t t=l  l r t lxtxt  

nonsingular. The weights of (5) minimize 
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•ii=l•riw• subject to (3). Thus, the restrictions 

the weights w. are as "close" to the initial weights 
I 

as is possible under the restrictions. The weights of 
expression (5) are relatively easy to compute and, 
once computed, can be used for estimation of any 
quantity. Several authors have discussed the 
construction of regression weights. Recent 
discussions include Bethlehem and Keller (1987) 
and Lemaitre and Dufour (1987), Copeland, 
Peitzmeier and Hoy (1987), and DeviNe and 

S~rndal (1990). 
The weights of (5) provide estimators with 

desirable large sample behavior. However, they 
may have undesirable properties in small samples. 
Because the weights are linear functions of the 
control variables, it is possible for some of the 
weights to be negative. Negative weights make it 
possible for estimates of positive parameters to be 
negative. 

Early research on methods of constructing 
nonnegative regression weights was conducted by 
Husain (1969). Huang (1978) designed a computer 
program to produce nonnegative regression weights. 
Huang and Fuller (1978) described the weight 
generation procedure and showed that the large 
sample distribution of the modified estimator is the 
same as that of the ordinary regression estimator. 
Also see Goebel (1976) and Huang (1988). 

The computer algorithm of Huang (1978) is an 
iterative procedure based upon the ideas of 
generalized least squares. If the first--round 
weights fall outside the desired range, then a second 
round of calculation is completed in which 
relatively small control weights are assigned to 
observations that are far from the mean of x and 
relatively large control weights are assigned to 
observations that are close to the mean of x .  This 
type of control weighting has much in common 
with procedures that are now known as 
bounded--influence and robust regression methods. 
That is, in the final estimator, the contribution to 
the estimation of the slope vector is reduced for 
observations that are far from the mean. See 
Hampel (1978), Krasker (1980), and Mallows 
(1983). Recent research in the area for survey 
samples is that of Deville and S~trndal (1990), and 
Akkerboom, Sikkel, and van Herk (1991). 

In some situations it is desirable to restrict the 
weights to the nonnegative integers. This is true 
when estimates of totals are being constructed and 
the population contains well defined units, such as 
people. Nonnegative integer weights then provide 

more comfortable estimates, in that the estimates 
are physically attainable. Integer weights can be 
constructed so that no rounding is necessary when 
building tables. With integer weights, all multiple 
way tables will automatically be internally 
consistent. 

The Huang program contains an option to 
round the real weights to integer weights in a 
manner that maintains the sum of the weights. 
After rounding, the equalities (3) will generally no 
longer hold exactly. To construct integer weights 
satisfying (3) exactly would require solving an 
integer programming problem. We have found that 
by iterating the Huang algorithm using the 
first--round integer weights as initial weights, 
integer weights can be constructed such that there 
is a very modest deviation from equality for 
expression (3). 

The early theoretical developments for 
regression estimation assumed the sample to be a 
probability sample from the population. However, 
it has long been recognized that regression 
estimation can be used to reduce the bias that 
arises from imperfections in the data collection 
procedure. The most obvious of these imperfections 
is nonresponse. In all large samples of human 
subjects, some of the subjects fail to provide 
information. If the nonrespondents differ from the 
respondents, direct estimates constructed from the 
respondents will be biased. Given auxiliary 
information, regression estimation provides a 
method of reducing the bias. The degree to which 
the bias is reduced depends upon the relationship 
between the control variables and the variable of 
interest. See Little and Rubin (1987) for a general 
discussion of this issue. 

In practice, one can often identify x--variables 
that are correlated with the probability of response 
and (or) correlated with the y--variables. For 
example, in the 1987--88 Nationwide Food 
Consumption Survey, the response rate was lower 
than expected among high--income households. 
Therefore, use of this variable in a regression 
estimator is expected to reduce the bias in 
estimated characteristics that are correlated with 
income. However, one cannot guarantee that all 
bias has been removed by regression estimation. 

If the sample is a probability sample, the use 
of regression estimation will generally reduce the 
variance of the estimated mean of y , and this is 
the reason for using the estimator. Furthermore, if 
the item of interest is not correlated with the 
control variables, the possible increase in variance is 
of small order. 

206 



In samples that are unbalanced because of 
nonresponse, it is possible for the variance of the 
regression estimator to be larger than the variance 
of the simple estimator by a term that is 

--1 
order n . 

Formula (4) identifies the two effects of 
regression estimation on the variance of' an 
estimated mean for an original simple random 
sample. If the y variable is correlated with x ,  
the correlation tends to reduce the variance of the 
regression estimator relative to the simple estimator 
because 

E{(Yi -- ~fl)2) (_ E{[y i _ E(Yi)]2}. 

The second effect is through the weights. If the 
sample means of the control variables differ from 

2 --1 
the population means, then ~ .  w. ~ n , 

i - 1  1 

--1 
where n is the sum of squares of the simple 
weights. The correlation effect reduces the variance 
of the estimated mean while the increase in the 
sum of squares of the weights increases the variance 
of the estimated mean. 

3. Application to Nationwide Food Consumption 
Survey 

Fifteen characteristics were selected by the 
Human Nutrition Information Service for use in 
generating regression weights. These characteristics 
were season of interview, region, urbanization, 
household income as a percent of poverty, 
household receives food stamps, ownership of 
domicile, race of household head, age of household 
head, household head status, female head of 
household worked, exactly one adult in household, 
exactly two adults in household, presence of child 

7 years old, presence of child 7--17 years old, and 
household size. These characteristics were chosen 
because the information was gathered by the 
questionnaire, the population estimates are 
available, and they are considered to be related to 
eating habits. 

Population and sample percents differed 
significantly for several of these characteristics. 
Although an at tempt was made to distribute 
interviews evenly over the year, the original sample 
was unbalancecl with respect to season of interview 
with nearly 41% of the interviews in the spring 
quarter and about 16% of the interviews in each of 
the summer and fan quarters. Interviews for the 

spring and summer quarters were done in both 1987 
and 1988. 

The sample was also unbalanced with respect to 
urbanization. There was a lower fraction of central 
city households than the population (24~ versus 
31%), and a higher fraction of nonmetropo]itan 
households than the population (29% versus 23~). 

The fraction of high income households was 
smaller in the sample than in the population. The 
sample percent with income > 5000~ of poverty was 
17.4, compared to 21.8~ of the population. The 
sample contained a higher fraction of households 
with both a male and female head than the 
population (68% versus 61%). The sample was 
mildly unbalanced with respect to several other 
socio--demographic characteristics. 

Because the characteristics above are believed to 
be related to food consumption behavior, the 
regression weighting procedure was used to bring 
the sample into balance. To implement the weight 
generation program, each of the categorical 
variables with k classes was converted to a set of 
k -  1 indicator variables. For example, three 
variables were created for the four--category 
characteristic, household income as a percent of 
poverty. If the household is in category i , then 
the value of the corresponding indicator variable is 
one. Otherwise, the indicator variable is set to 
zero. Using this procedure, 25 indicator variables 
were created. In addition, household size and the 
square of household size were used as continuous 
variables. 

The twenty--seven variables were used to 
generate regression weights using Huang's program. 
The weights were rounded to integers, where each 
integer weight is a weight in thousands. The sum 
of the weights is 88,942, which is the number of 
households in the population in thousands. The 
average weight is 19.787, the smallest weight is 6, 
and the largest weight is 47. Thus, the largest 
weight is 2.38 times the average weight. The sum 
of squares of the weights is 2,317,930. The average 
weight squared and multiplied by the sample size is 
1,759,884. Thus, if a variable has zero multiple 
correlation with the 27 variables, the variance of an 
estimate computed with the weights will be about 
1.32 times the variance of the simple unweighted 

-1 
estimator. The initial weights, analogous to ~. , 

used in the computation of the regression weights 
are all equal to the constant 19.787. The ratio of 
the largest weight to the smallest weight is less 

than (0.1)--1(1.9)= 19. 
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Ordinary Least Squares Weights 

Plot of final weights against the ordinary least squares weights, both expressed relative to 
the average weight. 

Figure 1 shows the regression weights computed 
by the Huang algorithm plotted against the 
ordinary ]east squares weights. Both weights are 
standardized by dividing by the average weight. 
Thus, the average for weights coded in this manner 
is one. Because there are 27 control variables used 
in the construction, the Huang weights tend to 
form a swarm of points about an S---shaped 
function of the original weights. If there were only 
one control variable, the points would fall on an 
S---shaped curve. The original weights for 
observations to the ]eft of zero were negative. 

To compare estimates constructed with weights 
to unweighted estimates, we use the variables 

Y1 - Adjusted total number of meals 

away from home (meals away), 
Y2 - Total money value of food used at 

home (home food), 
The adjusted total number of meals bought and 

eaten away from home is the sum of the 
proportions of meals eaten away from home in the 
interview week by household members, multiplied 
by 21. 

The total value of food used at home is the 
expenditures for purchased food plus the money 

value of home--produced food and food received 
free--of-cost that was used during the survey week. 
Expenditures for purchased food were based on 
prices reported as paid regardless of the time of 
purchase. Sales tax was excluded. Purchased food 
with unreported prices, food produced at home, 
food received as a gift, and food received instead of 
pay were valued at the average unit price paid for 
comparable food by survey households in the same 
region and season. 

The means of the variables, meals away and 
home food, computed using unweighted data, are 
given in Table 1 in the row headed, "Unweighted 
means." The standard errors of the estimates are 
given in parentheses below the estimates. The 
estimates and standard errors for the unweighted 
estimates were computed in PC CARP. See Fuller 
et al. (1986). The computations accounted for the 
fact that the sample is an area stratified cluster 
sample. 

The row headed "Weighted mean" contains the 
estimates computed with the regression weights. 
The standard errors were computed in PC CARP 
using formula (4). The variance calculation 
requires computing a regression for every variable. 
The standard errors for unweighted and weighted 
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Table 1. 
, 

Variable 

Properties of alternative estimators. 

Meals Home 
away food 

Unweighted 8.27 59.37 
mean (0.22) (1.12) 

Weighted 
mean 

Difference 

Relative 
efficiency of 
regression 

8.57 57.49 
(0.22) (0.91) 

--0.30 1.88 
(0.12) (0.39) 

2.56 5.60 

estimates are similar for meals away and home 
food. 

The estimated multiple correlations between the 
variables of the table and the 27 control variables 
are 0.29 and 0.44 for meals away and home food, 
respectively. If the sample means of the control 
variables were nearly equal to the population 
means, the standard error of the regression estimate 

of meals away would be about (1 -- 0.29) 1/2° 
-- 0.84 times the standard error of the unweighted 
estimate. In fact, the estimated standard error of 
the regression estimate is about 0.97 times the 
standard error of the unweighted estimate. The 

2 
difference is due to the fact that  ~ .  w. is 

1=1 1 
--1 

considerably bigger than n because the sample 
is unbalanced on a number of items. Note that 

0.97 " [(0.71)(1.32)l 1/2 , 

where ( 1 -  0.29) = 0.71 is the squared correlation 

and 1.32 - n~ii =lw2i . 

Table 1 also contains the estimated differences 
between the unweighted and weighted estimators. 
The difference between the unweighted and the 
weighted estimated total is 

n n n 
Nn--ly t - -  ~ wtY t = ~ ( n - - I N - - w t ) Y  t .  

t = l  t = l  t = l  

The difference between the estimated means is the 
difference between the totals divided by the 
population size. To compute the variance of the 
difference between the means, we note that the 
hypothesis of a zero difference is equivalent to the 
hypothesis that the correlation between w and y 
is zero. Therefore, we computed the unweighted 
regression of y on w and computed the variance 
of the regression coefficient under the design using 
PC CARP. The standard errors for the difference 
in Table 1 are such that  the "t--statistic" for the 
hypothesis of zero difference is equal to the 
" t-s tat is t ic"  for the coefficient of w in the 
regression of y on w .  

For both characteristics, the difference between 
the weighted and unweighted estimators of the 
population mean is significant at traditional levels. 
Thus, under the assumption that  the regression 
estimators are unbiased, there are significant biases 
in the unweighted estimators. We do not know 
that the regression estimator is unbiased, but it 
seems reasonable to assume that  the regression 
adjustment reduces the bias in the estimators of the 
population mean. 

The last row of Table 1 contains the ratio of the 
estimated mean square error of the unweighted 
estimator to the variance of the regression 
estimator. The estimated mean square errors for 
the unweighted estimators were computed as 

I~ISE - ~r + max(0,  (Diff) 2 -  (s.e. diff)2} 
u 

where ~r is the estimated variance of the 
unweighted estimate, Diff is the difference between 
the two estimates from Table 1, and s.e. diff is the 
standard error of the difference from Table 1. The 
second term of the estimated mean square error is 
the estimated squared bias. The estimated mean 
square errors of the weighted estimators are the 
variances of the weighted estimators computed as 
the squares of the standard errors of Table 1. 
Under the assumption that the regression estimator 
is unbiased, the expression for the estimated mean 
square error of the unweighted estimator is a 
consistent estimator. 

The estimated relative efficiency of the 
regression estimator to the simple mean was 2.56 
for meals away and 5.60 for home food. The 
regression estimator for meals away has the smaller 
estimated efficiency. The variances of the two 
estimators are similar, but because of the estimated 
bias, the regression estimate for meals away is 
estimated to have a mean square error that  is about 
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40% of that of the unweighted estimate. The mean 
square error of the regression estimate for home 
food is less than 20% of that of the unweighted 
estimate. In both cases, the squared bias is a very 
important component of the estimated mean square 
error. 

Even after allowing for the fact that the 
population totals from the Current Population 
Survey are not known population totals, it is clear 
that large gains are associated with regression 
estimation for the population means. 
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