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1. INTRODUCTION 

It is well-known in the survey literature that when 
responses are obtained from respondents in sample 
surveys, the actual observed values of measured 
characteristics may differ markedly from the true 
values of the characteristics. Evidence of these so- 
called measurement errors in surveys has been 
collected in a number of ways. For example, the 
recorded response may be checked for accuracy 
against administrative records or legal documents 
within which the true (or at least a more accurate) 
value of the characteristic is contained. An 
alternative means relies on revised reports from 
respondents via reinterviews. In a reinterview, a 
respondent is recontacted for the purpose of 
conducting a second interview regarding the same 
characteristics measured in the first interview. Rather 
than simply repeating the original questions in the 
interview, there may be extensive probes designed to 
elicit a more accurate response, or the respondent may 
be instructed to consult written records for the "book 
values" of the characteristics. For some reinterview 
surveys, descrepancies between the first and second 
interviews are reconciled with the respondem umil the 
interviewer is satisfied that a correct answer has been 
obtained. Forsman and Schreiner (1991) provide an 
overview of the literature for these types of 
reinterviews. Other means of checking the accuracy 
of survey responses include" a) comparing the survey 
statistics (i.e., means, totals, proportions, etc.) to 
statistics from external sources that are more accurate; 
b) using experimental designs to estimate the effects 
on survey estimates of interviewers and other survey 
personnel; and c) checking the results within the same 
survey for intemal consistency. 

The focus of the current work is on estimators of 
measurement bias from data collected in true value 
remeasurement studies, i.e., record check and 
reinterview studies, where the objective is to obtain 
the true value of the characteristic at, perhaps, a much 
greater cost per measurement than the original survey. 

Because of the high costs typically involved in 
conduct ing  re in terv iew studies,  repeated 
measurements are usually obtained for only a small 

fraction of the original survey sample. While the 
sample size may be quite adequate for estimating 
biases at the national and regional levels, they may 
not be adequate for estimating the error associated 
with small subpopulations or rare survey 
characteristics. In this paper, our objective is to 
consider estimators of response bias having better 
mean squared error properties than the traditional 
estimators. The basic idea behind our approach can 
be described as follows. 

In a typical remeasurement study, a random 
subsample of the survey respondents are selected and, 
through some means, the true values of the 

characteristics of interest are ascertained. Let n 1 

denote the number of respondems to the first survey 

and let n 2 denote the number selected for the 

subsample or evaluation sample. The usual estimator 
of response bias is the net difference rate, computed 

for the n 2 respondents in the evaluation sample as 

where Y2 is the sample mean of original responses 

and ~2 is the sample mean of the true measurements. 

A disadvantage of the NDR is that it excludes 

information on the n I - n  2 units in the original 

survey who were not included in the remeasurement 
study. Further, the estimator does not incorporate 

information on auxilliary variables,x, which may be 

combined with the information on y and Ix available 
from the survey to provide a more precise estimator 
of response bias. 

Given that we have a stratified, two phase sample 

design and resulting data (y, Ix,x), our objective is to 
determine the "best" estimator of measuremem bias 
given these data. Our essential approach is to identify 

a model for the true value, Ix~, which is a fi-nction of 

the observed values,y~, i = 1,... ,n I , and any auxilliary 

information, x, that may be available for the 

population. The model is then used to predict Ix~ for 

all units in the population for which Ix~ is unknown. 

These predictions can then be used to obtain estimates 
of the true population mean, total, or proportion. 
Thus, estimators of the response bias for these 
parameters can be derived from the main survey. 

64 



Since the approach provides a prediction equation 

for ~t~ which is a function of the observations, 

estimators of response bias can be computed for areas 
having small sample sizes. In this case, the prediction 

equation for ~t~ may be augmented by other 

geographic and respondent variables such as: 
demographic characteristics, type of unit, unit size, 
geographic characteristics, and so on. 

The basic estimation and evaluation theory for a 
prediction approach to the estimation of response bias 
is presented in the following sections. Under 
stratified random sampling, estimators of means and 
totals, their variances and their mean squared errors 
are provided. Results from application to National 
Agricultural Statistics Service (NASS) data are also 
presented. 

2. M E T H O D O L O G Y  FOR ESTIMATION AND 
EVALUATION 

2.1 The Measurement  E r ro r  Model 
To fix the ideas, we shall consider the case of 

simple random sampling without replacement 
(SRSWOR) from a single population. Generalizations 
to stratified random sampling are straightforward and 
will be considered subsequently. 

Let U = {1,2 ..... N} denote the label set for the 

population and let S 1 = {1,2 .... ,nx}, without loss of 
generality, denote the label set for the first phase 

SRSWOR sample of n~ units from U. For y~, i 6 S~, 

assume the model 

Yl = Yo + Yil ' t t  + ~t (2.1) 

where i~ is the true value of the measured 

characteristic, Yo and ~'I are constants, and c~ is an 

independent error term having zero expectation and 
2 conditional variance, o,l. 

Since the focus of our investigation is on the bias 

associated with the measurements yj, consider the 

expectation of y~. For a given unit, i, 

E(yi l i )  = ~o + v ~', (2.2) 

and, hence, the unconditional expectation is 

E(y~) = Yo + yl~ (2.3) 

where M = ~i llilN. Thus, the measurement bias 

is 

B = E(y~ - btj) = Yo + (Y-1)IVI. (2.4) 

The parameter, Y0, is a constant bias term that does 

m 

not depend upon the magnitude of M. Note that Y o 
is consistent with the usual definition of measurement 
bias obtained from the simple model 

Yt = I~t + l~ (2.5) 

with ~j-(Y0,o2a). (See, for example, Biemer and 
Stokes, 1991.) 

Consider the estimation of B. Assume that a 

subsample of size n 2 of the original n, sample units 

is selected and the true value, l~t, is measured for 

these n 2 units. The true value may be ascertained 
either by a reinterview, a record check, interviewer 

observation, or some other means. Lets  2 ~ S~ 
denote this so-called second phase sample. The usual 
estimator of the measurement bias is the NDR defined 

in (1.1). If the assumption that "the true value, I~t, is 

observed in phase 2, for all ieS2" is satisfied, then 

NDR is an unbiased estimator of B. It may further 
be shown that the variance of NDR is 

,,,:,,= 

where s~ : Z / , s ,  (it/ - ~,)Z/(n,-  1) with analogous 

definitions for sr 2 and s~.y, and b=s,y/S2r. 
The NDR may be suboptimal in a number of 

situations which occur with some frequency. To see 
this, consider estimators of the form 

/itlu = 'Yti - ~ l ~  (2.7) 

where ~, = Z l , s ,  y Jng, # = 1,2, 

~ t  - ~l + a(Y'l - Y':) (2.8) 

and "~2 = ~-q,s~ I~jln2' for a a constant given the 

subsample, S1. It can be shown that the value of a 

that minimizes Var(~g~) is 

a - b for g=l,  or 
= b-I for g=2. (2.9) 

Thus, for g = 1 or 2, the "optimal" choice of/Jgo is 

i ~ ,  = Y"l - [~2 + b (37' - 92)] (2.10)  

which differs from NDR by the term (b - 1) (Yl - Y2)" 

Since, in general, Y'x * Y2 , NDR is optimal only if 

b = 1. It can be shown that this corresponds to the 

case where y i in (2.1) is 1. 
In this paper we shall explore alternatives to NDR 
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which incorporate information on y for units in the 

set S 1 ~ S 2 as well as information on some auxilliary 

variable,x. Our objective is to consider "no-intercept" 

linear models initially, i.e., ~'0 " 0 in (2.1). 
However, a subsequent paper will examine both 
"intercept" and "no-intercept" models. 

2.2 Model Prediction Approaches To Estimation 

Model prediction approaches to the estimation of 
population parameters in finite population sampling 
are well-documented in the literature. Cochran (1977) 
and other authors have demonstrated the model-based 
foundations of the ubiquitous ratio estimator. There 
is also a considerable literature on the choice between 
using weights that are derived from explicit model 
assumptions in estimation for complex surveys or 
eliminating the sample weights. Proponents of so- 
called model-based estimation recommend against the 
use of weights in parameter estimation (see, for 
example, Royall and Herson, 1973; and Royall and 
Cumberland, 1981). They contend that the 
probabilities of selection in finite population sampling, 
whether equal or unequal, are irrelevant once the 
sample is produced. The reliability criteria used by 
model-based samples are derived from the model 
distributional assumptions rather than sampling 
distributions. If an appropriate model is chosen to 
describe the relationship between the response 
variable and other measured survey variables, "model- 
unbiased" estimators of the population parameters 
may be obtained which have greater reliability than 
estimators which incorporate weights. 

On the other side of the controversy are the design- 
based samplers. Instead of the model-based 
assumptions, design-based samplers assume that an 
estimator from a survey is a single realization from a 
large population of potential realizations of the 
estimator, where each potential realization depends 
upon the selected sample. The distribution of the 
values of the estimator when all possible samples that 
may be selected by the sampling scheme are 
considered is referred to as the sampling distribution 
of the estimator. Criteria for evaluating estimators 
under the design-based approach then consider the 
properties of the sampling distributions of the 
estimators. Under this approach, weighting of the 
estimators is required to achieve unbiasedness if 
unequal probability sampling is used. 

Although the estimators of B considered here are 
representative of all three classes of estimators, it is 
not a major objective of this paper to compare design- 

based, model-assisted, and model-based estimators. 
More importantly we first seek to develop a 
systematic approach for evaluating alternative 
estimators for a given two-phase sample design. The 
major problem considered is the following: Given a 

two-phase sample design and estimators of B denoted 

by B1, /~2 . . . . .  /~p, how does an analyst identify which 
estimator minimizes the mean squared error? A 
second objective of the article is to specify a number 
of alternative estimators, and apply a systematic 
approach for evaluating the estimators. As an 
illustration, the methodology will be applied to data 
from the December 1990 Agricultural Survey. 

2.3 The Estimators Considered in Our Study 

Extending the previously developed notation to 

stratified, two-phase designs, let N h denote the size of 

the hth stratum, for h = 1,...,L. A two-phase sample 
is selected in each stratum using simple random 

sampling at each phase. Let nlh and n2h ~ nth 
denote the phase 1 and phase 2 sample sizes, 

respectively, in stratum h. Let Slh andS2h ~ Sth 
denote the label sets for the phase l and phase 2 

samples, respectively, in stratum h. Assume the 
following data is either observed or otherwise known: 

outcome variables: y~ V i e Slh 

true values" ~t~ V i eS2h 

auxilliary variables: x~ V i ~ Slh 

Further assume that X h = ~ v h  x~ is known for 

h = l  ..... L where U h is the label set for the hth 
stratum. 

Weighted Estimators of M and B 

The usual estimator of M = NM is the unbiased 
stratified estimator given by 

~2~ -- E Nh'~2h (2.11) 
h 

where ~'2h = ~_,~s2, I.ti/n2h" The corresponding 

estimator of B is NDR defined in (1.1). For stratified 
samples, it is 

/~2,, = I~2,, - ~ (2.12) 

where Y~ = ]~-~h NhY~ and ~ = ~-,t~,a YJn2h" 

Note that (2.12) does not incorporate the information 
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on y for units with labels i ~ S~n ~ Sxh. An  alternative 

estimator that uses all the data on y is 

/~,u,, = 1~. - ~ I ~  (2.13) 

where I)u~- Z Nffth and ~h = ~_#,,sl~ yfln,h. 
h 

A number of model-assisted estimators can be 
specified for two-phase stratified designs. These may 
take the form of either separate or combined 
estimators (see, for example, Cochran, 1977, pp.327- 
330). Further, the ratio adjustments may be applied 
to either phase 1 or phase 2 stratum-level estimators. 
Because stratum sample sizes are typically small in 
two phase samples, only combined estimators shall be 
considered here. 

Consider a special case of the model (2.1) as 

follows. Letting ~'0 = 0, we have 

Y~ = ~'l'h + ¢~ (2.14) 

where ~, is an unknown constant and we assume 

e I - (0, o2, ~t~). The least squares estimator of y is 

= Y-z~ ['~2~t" Thus, a model estimator of ~t t is 

Yf[~ = "~2aY~[Yza and an estimator of M is 

_ ~ 2 ~  91~.  (2.15) 

Using this estimator of M, two estimators of B 
corresponding to (2.12) and (2.13) are 

/~2n~ = I ~  - M2~ (2.16) 

and 

/ ~  = I ~ s t -  M z ~  (2.17) 

A third estimator of B can be obtained via the 
model 

y~ = I~x~ + e~ (2.18) 

where 13 is a constant and ei~(0, 2 oex~). This leads to 

a ratio estimator of Y, 

I ~  = Y~---E~X (2.19) 
gis t  

Thus, the corresponding estimator of B is 

/ ~ a x  = lr=tR - ~z~.  (2.20) 

Finally, Sarndal, Swensson, and Wretman (1992, 

p. 360) suggest a general estimator of M in two 
phase sampling. Adapting their estimator to the 
stratified random sampling design yields 

= = .  

Mssw = faz,,R + O"--__e_~ (X-~?x. ) 
X2st 

(2.21) 

Note that the addition of the unbiased estimator of 

zero to the ratio estimator ~ ~  in (2.18) results in an 
estimator which may have smaller variance than 

~ffo~a~ if this term is negatively correlated with ~ K "  

their estimator of Y reduces to I~nR Likewise, 
defined in (2.19). Thus the corresponding estimator 

of B is 

Bssw = ~'~R - ~lssv¢" (2.22). 

Note that :Bssw " B~asa~ - (the additive term in 
(2.21)). 

Unweighted Estimators of M and B 

Rewrite M as 

M - E + E + Z . ,  
1~5 2 f~51-5 z t~U-51 

(2.23) 

= M(2 ) + MO_2) + M(_ D, 

L 

say, where S s -- [3 Ssh, 8--1,2. The strategy for 
h--t 

unweighted, model-based estimation is to replace ~ 

in MO_2) and M(.x) by a prediction, fq, obtained from 
a model. 

Using the model in (2.14), an estimator of tx~ is 

fh = Yt/~ 

where now ~ = Y'21 ~z" Thus an estimator of Mo_2) 
is 

Mo) = nt-~y 1 
2 

(2.24) 

where Ys = ~ s  m Y,[ns' ~2 = ~ s  2 ~,[n2' and 

ns = ~,h nsh' for  g -- 1,2. Further, using the model 

~t i = 8x i + ~ (2.25) 

where 8 is a constant and ~-(0,o~x~),  we obtain 

• ' ~ 2  X . 

where Xv_s, = ~ ,  
fcU-,S 1 

estimator of M is 

(2.26) 

X i. Thus, a model-based 
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1VIM = M(2) + 1~(1~2) + ~~1)  (2.27) 

Likewise, Y can be rewritten as 

v - E r ,  ÷ E Y ,  
|~S t f~U--S t 

= YO-2) + Yc-t) (2.28) 

and we wish to predict yf in Yc-t)" Using the model 

in (2.18) a model-based estimator of Y~-t) is 

YI Xe_s  ~r (~ l ) -  x'I 

and, thus, an estimator of Y is 

I~M = Y(1-2) + I7(-1)" (2.29) 

Thus, B is estimated as 

/~M = l~u - 1Qlu (2.30) 

In addition to these estimators, robust versions of 

/~2~,Biz~, /~aa ,  and /~M were evaluated. These 

estimators, denoted by B~a,Blz,,R,B2~a~,andBM, 
respectively, were obtained by eliminating regression 
outliers from the model-based or model-assisted 
estimators. To illustrate, consider the estimator 

bIz~ R in (2.15). For this estimator, we computed 

2 (Y&t - ~ ~l'/g )2 
(n2h - 1)Sr~: = ~ , (2.31) 

~M ~ $t~ 

the sum of squares of residuals for the model (2.14). 

T h e n ,  o n l y  t h o s e  u n i t s  i ~ S2h = 

= {i ~ S2h: [Yih - ~tt~h[ <3S,~,h f~-~h~ }were included 

in the calculation of  the estimator of ~. Denoting 

this estimator of ~, as ~, the estimator of M is 

~2~R = $ I71~ where $ = 3~2~/~2~ and ~2~ and )~2st 

are the stratified means of I~ and yf for 

igS2h • The other robust model prediction 

estimators are computed analogously. 
Many other unweighted, model-based estimators 

may be explored in the context of our two phase 
design. For example, an intercept term may be added 
to models (2.14), (2.18), and (2.26). Further, slope 
and intercept parameters may be specified separately 

for each stratum or combination of strata. 

2.4 Estimation of Mean Squared Errors Using 
Bootstrap Estimators 

Although it is possible, under the appropriate 
design-based or model-based assumptions, to derive 
closed form analytical estimates of the variance of the 
estimators we are considering in this study, we have 
elected instead to use a computer-intensive resampling 
method. First, we seek a method which is easy to 
apply since there are potentially many estimators 
which will be considered in our study. Secondly, it 
is important to evaluate each estimator using the same 
criteria and a consistent method of variance estimation 
is essential to achieving this objective. Thus, it is 
essential that we employ a variance estimation method 
which can be applied to estimators of any complexity, 
under assumptions which are consistent and which do 
not rely upon any model assumptions. It is well- 
known that model-based variance estimation 
approaches are quite sensitive to model failure (see, 
for example, Royall and Herson, 1973; Royall and 
Cumberland, 1978; and Hansen, Madow, and 
Tepping, 1983.) Royall and Cumberland (1981) 
discuss several bias relevant alternatives including the 
jackknife variance estimator. 

Our approach is similar to that of Royall and 
Cumberland except rather than using a jackknife 
estimator, we employ a bootstrap estimator of the 
variance. For independent and identically distributed 
observations, Efron and Gong (1983) show that the 
bootstrap and the jackknife variance estimators differ 

by a factor of hi(n-l) for samples of size n . 

Thus, the robustness properties Royall and 
Cumberland demonstrate for the jackknife estimator 
also hold for the bootstrap estimator. 

Other properties of the bootstrap estimator have led 
us to choose it above other resampling methods. The 
jackknife and balance repeated replication (BRR) 
methods are not easily modified for the two-phase 
sampling design of our study. However, the bootstrap 
is readily adaptable to two-phase sampling. Further, 
Rao and Wu (1988) provide evidence from a 
simulation study that the coverage properties of 
bootstrap confidence intervals in complex sampling 
compare favorably to the jackknife and BRR. 

Our general approach extends the method developed 
by Bickel and Freedman (1984) for single phase, 
stratified sampling, to two-phase stratified sampling. 
Since the bootstrap procedure is implemented 
independently for each stratum, we shall, for 
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simplicity, describe the method for the single stratum 
case.  

2.4.1 Estimation of Variance 

Let S t and S 2 denote the phase 1 and phase 2 

samples, respectively, selected from U using 

SRSWOR. Let St_ 2 denote the label set, St~S 2. Let 

t~ = 0(St_2,$2) denote an estimator of 0 which may 
be a function of the observations corresponding to 

units in both S 2 and St_ 2. Define N, n t, n 2 andnt.  2 

as the sizes of sets U, S t, S 2 , and S a_2, respectively. 
Consider how the bootstrap is applied to obtain 

estimates of Vat (6). 

The simplest case is when N/n I is an integer, say 

k. First, we form the psuedo-population label set 

u; = u;c )u 

where U,t'c2 ) consists of k copies of the units in $2 

and U,~'tt.2) consists of k copies of the units in St_ 2. 
We then perform the following three steps" 

1. Draw a SRSWOR of size n 2 from U~*C2 ) and 

denote this set by $2". 

2. Draw a SRSWOR of size nt_ 2 f rom UA*(I~2) and 

denote this set by St_ 2. 

3. Compute 0~ = 01(SI* 2 , S ; )  w h i c h  has  the s a m e  

functional form as 0(St_2,$2), but is computed for 

the n t = nl_ 2 + n 2 u n i t s i n S  t = St_ 2 U $ 2 .  

Repeat steps 1 to 3 some large number, Q,times to 

obtain 0x,...,00. Then, an estimator of Vat(6) is 

varBs s (0) - 
q-1 Q-1 

where 0.* = ~ - t  O~/Q. 
Using the methods of Rao and Wu (1988), it can 

now be shown that varms(0 ) is a consistent 

estimator of Vat(0). 

If N = kn 1 + r, where 0 < r < n t, the procedure 
is modified as follows using the Beckel and Freedman 

procedure. First, form the pseudo-population U,~ as 

above consisting of kn t units. In addition, form the 

pseudo population U~ = UBtt_2) U U~2 ) of size 

(k+l)n t where Ua'tt_2) and Um(2) consist of k + 1 

copies of the labels in St. 2 and S 2, respectively. 

Then, for a Q  of the bootstrap samples, select 

S 1 = SI_ 2 U S  2 from U,t and for (1 - a ) Q  

samples, select S t from the psuedo-population, U a 
using the three-step procedure described above, where 

a - ( 1  - r )  ( 1 -  r 
N -  i ) 

2.4.2 Estimation of Bias and MSE 

The bootstrap procedure can also provide an 
estimate of estimator bias. The usual bootstrap bias 
estimator (see Efron and Gong, 1983; Rao and Wu, 

1988)is b(0) = 0.* - O where 0." = ~ q  O~ / (2 and0 

is the estimate computed from the sample. Note that 
O ,  q (q=l . . . .  Q) and 0 have the same functional form 
and are based upon the same model assumptions. 

Thus b(O) does not reflect the contribution to bias 
due to model failure. We propose an alternative 
estimator of bias which we conjecture is an 

improvement over b(O). 

Recall from (2.4) that B = E(y~ - Pt) where E0 

denotes expectation over both the measurement error 
and sampling error distributions. Thus, B may be 

N 
rewritten as B -- ~ (Yl - ~tt)lN where Yj = ELy, 10. 

t=1 
Unfortunately, Y~ and ~t~ are unknown for all i eU.  
Therefore, we shall construct a pseudo population 
resembling U, denoted by U*, such that 

B* = E* (yl - ~q) is known, where E*() is expected 
value with respect to the measurement error 
distribution and the sampling distribution associated 

with U*. 
/., 

Let U* = U Uh* where U h~ consists of 
h-'-I 

k h = Nh[nth copies of the units in Slh. Here we 

have assumed k h is an integer, but will subsequently 

relax the assumption. Further, define y / f o r  i~ U asy~ 

for the corresponding unit in S~h.  Thus, the 

population total of the y / i s  Y* = E Yt* = lTlst for ]~la 
ieU* 

defined in (2.13). Analogously, define the true value 
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for unit t~ U* as ~j = I~j for ic U corresponding 

to j e S 2 . For j ¢Sl. 2, pj is unknown; however, for our 
pseudo-population we could generate pseudo-values 

for the Ih such that M* = E tti = M2~ where~r~ 
teU" 

is defined in (2.13). Thus, for U*, 

B* = Y'-I~ - ~2~ = /}12~ defined in (2.13). As we 
shall see, it is not necessary to generate the pseudo- 

values for p~ in order to evaluate the bias in the 

estimators of B*. 

Note that under stratified sampling, U * =  U~ 
defined in Section 2.4. Further, the bootstrap 
procedure described in this section is equivalent to 

repeated sampling from U* and the altemative 

estimators 61,...,~ p of B may also be considered 

estimators of B*. Since B* is known, the bias of 6 

as an estimator of B* is /~* = 6 - B* and the 
corresponding MSE may be estimated as 

M~E" - ~ (0~ - a 3 2/Q 
q 

= varss s (6 )  +(6". - B * ) 2  

• are defined in Section where varas s (6) , O q ,  and ~* 
2.4. It can be easily verified that these results still 

hold when k h is non-integer. 
Thus, the bootstrap procedure provides a method 

for evaluating the MSE of alternative estimators for 

estimating B *. Further, the pseudo-population U* is 

a reconstruction of U based upon copies of the values 

for the units in 51 and S 2. Thus, it is reasonable to 

use I~* and MSE* to evaluate alternative estimators 
of B. 

3.0 APPLICATION TO THE AGRICULTURAL 
SURVEY 

3.1 Description of the Survey 

Each year the National Agricultural Statistics 
Service (NASS) conducts a series of surveys, 
collectively referred to as the Agricultural Survey 
(AS) program, to estimate specific agricultural 
commodities at the state and national levels. 
Reinterview studies designed to measure response bias 
in Computer Assisted Telephone Interviewing (CATI) 
collected data were conducted in Indiana, Iowa, 
Minnesota, Nebraska, Ohio, and Pennsylvania in 
December 1988-1990. 

The reinterview techniques used by NASS are 
similar to those of other organizations (i.e., the U.S. 
Census Bureau). The NASS focus, however, is on 
response bias rather than response variance or 
consistency of response. For the reinterview surveys 
NASS used supervisory or experienced field 
interviewers for face-to-face reinterviewing of selected 
items from a subsample of AS respondents. All 
reinterviews were conducted within 10 days of the AS 
CATI interview. Any differences between the 
original AS and reinterview responses were reconciled 
to determine the "true" value. This use of the 
reconciled value in bias calculations assumes that it 
represents a reasonable proxy for the truth. 
Considerable effort is expended in procedural 
development, training, and supervision to ensure that 
this is the case. 

The reinterview samples were chosen from CATI 
respondents to the AS because CATI accounts for a 
large percentage of the AS data coRected, provides 
considerable control of the reinterview process, and 
affords flexibility in the computer generation of 
reconciliation forms. Parent survey (AS) CATI 
interviews were completed in the state offices of the 
states in the reinterview study. A separate corps of 
supervisory and/or experienced field interviewers was 
used to conduct the foUowup face-to-face 
reinterviews. 

Interviewers were instructed to complete the 
reinterview and reconciliation within 10 days of the 
original CATI interview to minimize recall problems. 
In general, the questions reinterviewed relate to values 
of a particular item as of the first of the month. The 
average time between the original CATI interview and 
the reinterview ranged from 6.4 days in March 1988 
to 5.9 days in December 1989. 

Questionnaires used in the reinterview were similar 
to the AS questionnaires with respect to question 
wording. However, not all questions asked on the 
original interview were reasked on the reinterview. 
The goal of the reinterview was to obtain the best 
possible information for the subsampled operation; 
therefore, interviewers were to contact the person 
most knowledgeable about the operation. Since it 
was not the purpose of the study to investigate 
response variance, it was not necessary to recontact 
the same individual originally interviewed on the AS. 

The Sample: 

The December AS is a stratified random sample 
survey based on a multiple frame survey design that 
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uses independent list and area frames. The 
reinterview subsamples were drawn from the portion 
of each state's AS list sample that was completed on 
CATI. Samples eligible for reinterview included 
completed interviews, out-of-business operations, and 
interviews with operations that could not (or would 
not) report for some items but did report for other 
items. The reinterview response rate was 87%. 

Table 1 presents the reinterview sample sizes for 
the December 1990 Reinterview Survey whose data 
are analyzed in this report. 

Table 1 Sample Sizes by Survey Item 

Item x 

U 
All Wheat Stocks 108,267 
Corn Planted Acres 225,269 
Corn Stocks 225,269 
Cropland Acreage 278,045 
Grain Storage Capacity 207,460 
Soybean Planted Acreage 171,761 
Soybean Stocks 171,761 
Total Land in Farm 276,450 
Total Hog/Pig Inventory 248,571 
Winter Wheat Seedlings 108,267 

y ~t 

s~ s 2 
8,176 1,157 
8,211 1,157 
7,990 1,115 
8,274 1,141 
8,126 1,104 
8,211 1,156 
8,113 1,130 
8,309 1,159 
8,247 1,142 
8,211 1,150 

3.2 Comparison of the Estimators of M and B 

Using the December 1990 Agricultural Survey, the 
estimators developed in the previous section were 
compared. Estimates of standard errors and mean 
squared errors were computed using the Bickel- 
Freedman bootstrap procedure described in Section 
2.4, with Q = 300 bootstrap samples. Table 3.2 

displays the results for six of the estimators: B~a, the 

traditional difference estimator, /~z, ta, the weighted 

ratio estimator, /~x2~, the robust (outlier deletion) 

version of/~x2~; /~ssw, the Silrndal, Swensson, and 

Wretman estimator;/3M, the unweighted model-based 

estimator; and BM, the robust (outlier deletion) 

version of/~M" 

3.3 Summary of Results 

Table 2 presents a summary of the results from our 
study. The first data column is the known value of 

B* = E (Yi - ~tt), the bias parameter for the 

pseudo-population, U*. The other data columns 
contain the values of the estimators with their 
s tandard errors  in parentheses ,  where 

s.e. (~) = ~varns s (0).  The last four rows of the 
table correspond, respectively, to : a) the number of 
items (out of 10) for which a 95% confidence interval 

would contain B*; b) the average coefficient of 

variation (C.V.); c) the average square root ofMSE* 
(RMSE); and d) the average absolute relative bias. 

A striking feature of these results is the large 
disparity among the six estimators across all 
commodities; particularly for All Wheat Stocks. For 
this commodity, the range of estimates is -94.2 to 
103.2. 

Also indicated (by the , symbol) in Table 2 is 
whether a 95% confidence interval, i.e., 

[0 - 2 s.c. (6), ~ + 2 s.e. (0)], covers the parameter 

B*. The best performer for parameter coverage is 

BsswWhich produced confidence intervals that 

covered B* for eight out of ten commodities. Bz~ 

was the next best with six and Bu was third with 
five. The traditional ratio estimator and its robust 
version were the worst performers with only one 

commodity having a confidence interval coveting B *. 
The mean square error criteron tells a different 

story. Here, /]U emerged as the estimator having the 

smallest average root MSE. However, B~w a n d ~  

are not much greater. Further, Bssw was the 
estimator having the smallest average absolute relative 
bias. Only two commodities were estimated with 
significant biases using this estimator. Thus, it 

appears from these results that Bss~, is the preferred 
estimator using overall performance as the evaluation 
criterion. 

4. CONCLUSIONS AND RECOMMENDATIONS 

In this article, we proposed a number of weighted 
and unweighted model-based estimators of 
measurement bias for stratified random, two-phase 
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Table 2 Comparison of Estimators With, B*, the Pseudo-Population Value of the Bias, 

Characteristic 

All Wheat Stocks 

Com Planted Acreage 

Com Stocks 

Cropland Acreage 

Grain Storage 
Capacity 

Soybean Planted 
Acreage 

Soybean Stocks 

Total Land in Farm 

Total Hogs/Pigs 
Inventory 

Winter Wheat 
Seedlings 

B 
* 

42.3 

-1.8 

-6.4 

27.0 

-3.37 

-4.4 

-0.01 

-20.0 

-0.1 

-0.6 

-6.1 
(12.3) 

1.1~: 
(I.I) 

-5.4, 
(1.5) 

-19.6 
(8.3) 

1.4, 
(3.7) 

.8 
(.8) 

2.8* 
(3.1) 

-24.7, 
(lo.4) 

-2.1 
(0.9) 

-0.5, 
(0.4) 

Bx2stR 
103.2 
(17.6) 

11.7 
(1.3) 

2.4 
(1.6) 

-15.0 
(8.3) 

32.3 
(3.7) 

13.0 
(I.0) 

21.3 
(2.9) 

-18.8, 
(12.5) 

3.4 
(1.1) 

3.8 
(0.6) 

B x2stR 

-94.2 
(16.5) 

10.1 
(I.I) 

0.2 
(1.3) 

7.0 
(3.1) 

29.5 
(2.6) 

9.9 
(0.9) 

5.0 
(2.3) 

-2.6 
(7.6) 

-o.0, 
(1.o) 

1.8 
(0.5) 

'B$$W 
-0.9, 

(24.8) 

0.3* 
(1.2) 

-6.5, 
(1.6) 

-19.6 
(8.2) 

-0.1~: 
(3.9) 

-0.3 
(I.0) 

0.2* 
(3.5) 

-25.7, 
(10.7) 

-2.2, 
(1.1) 

-1.2:~ 
(0.6) 

Number of Items 6 1 

where C.I. covers B* 

Average C.V. 1.01 .30 
i 

Average RMSE ! 13.2 22.4 

Average IRelbias [ 30.8 220.0 
standard errors in parefitheses 
95 percem confidence interval covers the pseudo population parameter 

11.1 9.5 

25.2 12.9 

53.4 4.9 

~M 
19.2~ 
(16.5) 

-4.7, 
(1.9) 

-7.9, 
(2.4) 

-36.8 
(11.o) 

-6.9 
(3.0) 

-2.9 
(I.I) 

-11.0 
(3.6) 

-44.5, 
(13.4) 

-2.5, 
(1.3) 

1.1 
(0.4) 

~0.6, 
(16.7) 

-5.0 
(1.5) 

-9.3~: 
(2.2) 

-12.8 
(4.0) 

-6.8 
(2.5) 

-2.7 
(1.0) 

-8.9 
(3.4) 

-21.2 
(5.8) 

-1.6~ 
(1.o) 

1.1 
(0.4) 

3 

.41 .48 

14.9 10.8 

113.1 91.3 

sample designs. The proposed estimators incorporate 

information on the observations, y~, from the first 

phase sample, and an auxiliary variable, x. Our aim 
is to identify estimators which make optimal use of 

the data (y, ~t, x ). For the current study, the 

models proposed for Yt and ix i were confined to 
single variable, no-intercept models. 

We further proposed evaluation criteria based upon 
estimates of bias, variance, and mean squared error 
which utilized a bootstrap methodology. The method 
of Bickel and Freedman was extended to two-phase 
sampling for this purpose. It was shown both 
analytically and empirically that the usual NDR 

estimator is not optimal under the model prediction 

approach to estimating measurement bias. Our 
analyses found that an estimator derived from the 
work of Sardnal, Swensson, and Wretman was the 
best overall estimator among the six estimators 
considered under the proposed bootstrap evaluation 
criteria. 

For future research, we intend to incorporate 
multivariate intercept models in the estimation of 
measurement bias. Since the bootstrap evaluation 
criteria developed in this article is completely general, 
no changes in the evaluation methodology are 
required to handle the addition of variables in the 
estimation models. Further, the model assumptions 
and the methods for handling oufliers will be refined 
and evaluated in a subsequent paper. 
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