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Abstract: The time series approach to small area estimation offers important advantages not only in achieving efficiency gains over the direct 

survey estimator but also in facilitating analysis of the characteristics of the true underlying series. In this paper, signal extraction is applied to 

state labor force data taken from the Current Population Survey (CPS). Because of this survey's complex design, the behavior of the observed 

sample estimates differ in important ways from that of the true values. An overlapping sample design and changes in reliability induce strong 

positive autocorrelation and heteroscedasticity in the sampling errors. Along with high variability due to small sample sizes, theses 

characteristics greatly complicate analysis. It is shown that signal extraction achieves major reductions in variability and that the trend and noise 

component can be seriously confounded by not controlling for the dynamics of the sampling error. 
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1. Introduction 

Much of the small area estimation literature deals with 

the problem of how to improve the reliability of data drawn from 

small samples for a large number of areas but collected for only 

one or a few points in time. In this context, cross-sectional 

modeling has often been an effective way to improve on the direct 

survey estimator. However, many of the most interesting 

population characteristics behave in a highly dynamic way over 

time. To provide data users with up-to-date information requires 

periodic sampling at frequent intervals. Often these periodic 

surveys are designed to provide reliable national statistics but the 

sample is spread too thin geographically to provide acceptable 

reliability for small areas. An alternative way of reducing variance 

in the survey estimator is to pool data across time rather than over 

areas using signal extraction techniques developed in the time 

series literature. Scott and Smith (1974) were among the first to 

suggest this approach to survey data. 

In recent years, there have been a number of 

applications of signal extraction techniques to small area 

estimation, see, e.g., Bell and Hillmer (1990), Binder and Dick 

(1989), Pfeffermann (1991), and Tiller (1992). This approach 

provides a powerful unifying framework for analyzing time series 

data generated from periodic surveys. The conventional sampling 

approach treats the underlying population values as fixed and 

seeks to develop an efficient sample design but is too costly to 

provide reliable statistics for small areas. In contrast, traditional 

time series analysis treats the population as stochastic and provides 

a method for estimating the population values from a noisy series. 

Most time series applications assume that sampling error, if 

present, is approximately white noise. However, most periodic 

sample data are generated from complex designs that produce 

sampling errors with complicated forms of autocorrelation. By 

accounting for variation due to the stochastic behavior of the 

population and the sample design, the signal extraction approach 

not only can achieve efficiency gains over the sample estimator 

but also improve on the time series analysis by more effectively 

accounting for the dynamics of the sampling error. 

In this paper, signal extraction is applied to state labor 

force data taken from the Current Population Survey (CPS). 

Because of this survey's complex design, the behavior of the 

observed sample estimates differ in important ways from that of 

the true values. Section 2 discusses those features of the CPS 

design that have an important effect on the properties of the 

sampling error. In Section 3 a time series model, consisting of a 

signal and noise component that represent the true population 

values and sampling errors, respectively, is fit to employment data 

from the Nebraska CPS sample. Section 4 presents the 

conclusions. 

2. The Current  Population Survey 

The CPS is a nationwide monthly sample of about 

59,000 households designed to produce estimates of employment 

and unemployment and other labor force characteristics of the 

population. While estimates of key labor force variables with 

acceptable reliability are produced for the nation as a whole, at the 

state level these same statistics have much higher variability. In 

the discussion to follow, we focus on those features of the design 

that have an important effect on the time series properties of the 

sampling error. 

An important characteristic of the State CPS estimator 

is its changing reliability over time which results in heteroscedastic 

sampling errors. This occurs because of redesigns, sample size 

changes, and variation in labor force levels. The CPS is 

redesigned and a new sample selected each decade to make use of 

decennial census data to update the sampling frame and estimation 

procedures. Most recently, a state-based design was phased in 

during 1984/85 along with improved procedures for non 

interviews, ratio adjustments and compositing. This redesign had a 

major effect on the state variances. Special sample 

supplementations under the old national design have also had an 

effect on the reliability of selected state samples in the late 1970's 

and early 1980's. Even with a fixed design and sample size, the 

error variance will be changing because it is a function of the size 

of the labor force characteristics of the population being measured. 
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In those states that experience major fluctuations in their labor 

force, we can expect the variance to follow a similar pattern. 

The second key characteristic of the CPS is the 

complex pattern of sample overlaps generated by a multi-stage 

rotating sample design. Once selected, PSUs, consisting of a 

county or groups of contiguous counties, remain in sample for 10 

or more years. Within sampled PSUs, USUs, compact clusters of 

about 4 housing units, are rotated in and out of the sample over a 

period of 16 months. USUs selected for the sample are 

systematically assigned to 8 separate panels or rotation groups. 

The panels are introduced into the sample once a month for 8 

months using a 4-8-4 scheme; i.e., each panel is interviewed for 4 

correlations is used to improve the precision of estimation by 

means of compositing (Bureau of the Census, 1978). 

A few empirical studies of the CPS autocorrelation 

structure at the national level (Train, Cahoon, and Makens, 1978, 

Lent, 1991) have been done using conventional designed based 

estimation methods. Because of the large processing costs 

involved, these studies are infrequently conducted and limited to a 

small number of time series observations. 

Recently Dempster and Hwang (1991) have 

investigated the autocorrelation structure of the CPS at the state 

level. Using 48 months of data for each of the eight rotation 

groups, the authors used a mixed model to compute state-specific 
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months, dropped for 8 months, and then interviewed for 4 

additional months. Each rotation group may be treated as an 

independent random sample of the state population. 

This rotation scheme generates significant overlaps. 

Each month three-fourths of the sample from the previous month is 

interviewed, one-eighth of the sample is interviewed for the first 

time and one-eighth is resuming interviews after being out of 

sample for 8 months. Also, each month one half of the households 

being interviewed were interviewed in the same month a year ago. 

Figure 1 shows the propoaion of the sample consisting of USUs in 

the current sample that were also in the sample k months ago. For 

example, 75% of the USUs in sample this month were in sample 

last month, 50% were in two months ago, etc. Note that samples 

from 4 to 8 months and over 15 months apart have no USUs in 

common. 

The use of a rotation system requires the periodic 

replacement of the sample. To cover a decade under the 4-8-4 

scheme, 15 samples are needed. A key feature of the replacement 

scheme is that successive samples are generated in a dependent 

way. Once an initial sample of USUs is selected, replacements are 

obtained from nearby addresses. For each original USU, the 14 

succeeding ones needed to cover the decade are usually taken from 

the same neighborhood. 

Since the labor force characteristics of state populations 

are positively correlated over time, we can expect the sample 

overlaps to induce autocorrelation in the sampling errors as well. 

In fact, the strong effect of the rotating panel on the sampling error 

autocorrelations for employment and unemployment. Their model 

consists of 4 variance components, representing variance among 

streams (rotation groups), variance among different samples of 

USUs within a stream, variance between the first and the second 

year within a sample within a stream, and a residual variance. The 

use of the aggregate rotation group data is not as efficient as an 

analysis based directly on the sample unit data but has an 

important advantage in cost and provides information on error 

correlations at long lags. 

The results for the state of Missouri, which are fairly 

typical of most states, are shown in Figure 1. The effect of the 4-8- 

4 rotating panel design is clearly revealed, the autocorrelation is 

highest at the low lags and falls at higher lags as the proportion of 

identical USUs common to both samples. While employment is 

more strongly autocorrelated than unemployment, the overall 

pattern is the same for both. Note the strong peak at the 12-month 

lag corresponding to the 50% overlap in identical housing units 

from year to year. Also, after a lag of 15 months when there is no 

longer any overlap of identical housing units, the autocorrelations 

fail to completely dampen out. Since replacement USUs are 

rotated into the sample from the same neighborhood, postive 

autocorrelations beyond 15 months can be expected. Because the 

stream variance is fixed in the Dempster and Hwang model, there 

is no decay in the correlations between different USUs in the same 

stream. This seems to be unrealistic since over a 10 year span 

neihgboorhood characteristics may change and general economic 

conditions are likely to change as well. In the example described 
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later in this paper, autocorrelations beyond 15 lags are assumed to 

slowly decay. 

Both the heteroscedastic and autocorrelated properties, 

just discussed, have important implications for time series 

modeling. The next section describes how the special structure of 

the sampling error is accounted for in the time series modeling. 

model assumptions, it is also a design consistent estimator from a 

sample survey point of view (Bell and Hillmer, 1990). 

To illustrate the signal-plus-noise approach to CPS data 

we consider the employment-to-population ratio estimates in 

Nebraska from January 1976 to December 1991. This variable is 

defined as 

CPSEP = 100*CPS Employment /Population. 

Figure 2 CPS Autocorrelations for Missouri 
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3. Signal-Plus-Noise Modeling 

Let the observed series Y(0, be the sum of a signal, 8(0, 

and a noise process, N(t), 

y ( t )  = O ( t )  + N ( t ) .  

Signal extraction is the process of separating the signal from the 

noise process when only their sum is directly observable. It 

requires specification of the stochastic processes generating the 

unobserved components of the time series. From this specification 

is derived an estimator of the unobserved components that has 

certain desirable statistical properties. 

The typical economic time series is characterized by 

strong trend and seasonal variation and a white noise residual. The 

basic approach is to specify plausible a priori properties for both 

the signal and noise along with a sufficient number of constraints 

to ensure identification. Accurate estimation of the signal follows 

because the ratio of the signal to noise variance is high over those 

frequencies accounting for most of the variation in the signal. 

The state CPS data, subject to large sampling errors 

with strong positive autocorrelations, do not conform to the typical 

economic series. For the CPS, the signal to noise ratio will be 

relatively weak in the low frequency range that accounts for most 

of the variation in the signal resulting in a substantial increase in 

the mean squared error of the estimated signal (see Hausman and 

Watson, 1985). 

However, when the time series arise from a design 

based survey, information is available on the behavior of the noise 

that can aid in the identification of the signal and thus reduce the 

mean squared error of the estimated signal. Given a model for 

0 ( t ) and design-based information on the covariance structure of 

N(t), the observed sample series may be decomposed into its signal 

and noise components. While this estimator is optimal given the 

To implement the signal-plus-noise approach, the 

signal is represented by a 3 variance stmctural time series 

components model (Harvey 1989) and the noise component is 

represented as an ARMA process with parameters determined 

from the variance-covariance structure of the CPS sampling error. 

First, we consider the sampling error characteristics of 

this variable. To capture the autocorrelated and heteroscedastic 

structure of e(O, we express the noise component in multiplicative 

form as 

N ( t )  = V ( t ) N  ( t )  (3.1) 

with y(t) representing the heteroscedastic part of the CPS 

-1 
V ( t )  = o N , Oe( t )  (3.2) 

where o e(t)  is the standard deviation of the sampling error, and 

N '  ( t ) representing the autocorrelated part of the CPS, 

parameterized in ARMA form as 

(1 - .  98L)N ( t )  = ( 1 - . 3 6 L - .  08L 2 - .  14L 3 - . 3 2 L  4 + . 0 1 L  5 

+ . 02 L6 +. O3 L7 - .  o3 LS ) ( l +. 23 L12 ) ~l~ ( t ) 

(3.3) 

The time varying standard deviation, o e ( t ) '  was 

estimated using the method of generalized variance functions. The 

estimated values range from 1.2 to 1.8 percentage points and the 

CVs vary between 1.6 and 3.0 percent. While the sampling error 

may appear to be low in an absolute sense, only 10% of the 

monthly changes are as large as two standard deviations of month 
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to month change in the CPS. The behavior of the CPS standard 

deviations will be discussed in more detail below. 

The autocorrelation structure is represented by equation 

(3.3). An ARMA(1,8)(0,1)12 multiplicative seasonal model was 

fit to these autocorrelations. The autoregressive operator picks up 

the slowly decaying autocorrelations at high lags due to long- term 

sample overlaps. An autoregressive root close to unity usually 

suggests first differencing, but in this case the variance of N '  can 

not be infinite. An eighth order MA term is included to account 

for the sharp drop and leveling out of the correlations in lags 1 

through 8 as identical USUs are rotated into and then out of the 

sample. The seasonal MA operator accounts for the transitory 

seasonality induced by the 50% overlap of identical USUs from 

year to year. 

For this series we estimate two types of models: Model 

1 incorporates sampling error and Model 2 ignores it. Several 

varieties of Model 2 will be examined to clarify the effects of 

ignoring sampling error. In each case, the model of the signal is 

held constant so that the models differ only in how the noise 

component is specified. 

The signal is specified as the stun of stochastic trend 

(T), seasonal (S) and irregular (I) components 

O(t) = r(t) + S(t) + l(t) (3.4) 

T(t) = T(t - I) + R(t - I) + ~T(t) (3.5) 

R(t) = R(t - I) + UR(t) 

S(t) = ~ Sj(t), p = {12, 6, 4, 2} 
J 

(3.6) 

(3.7) 

Sj(t) = cos(o~j)Sj(t - I) + sin(o~j)Sj(t - I) + "osj (t) 

$j(t) - -sin(oj)$j(t - I) + cos(oaj)Sj(t - I) + usj (t) 

-1 
coj = 2gpj , p = {12, 6, 4, 21 

t ( t )  = ~ t ( t )  (3.8) 

Each of the components contains a white noise shock, 

2 
~i ( t ) with its own variance, o~i . The trend is represented as a 

local approximation to a linear trend with adaptive level (3.5) and 

slope (3.6) components. The seasonal component (3.7) consists of 

the 12 month frequency and three of its harmonics, specified to 

have a common variance. The irregular is specified as white noise. 

The signal-plus-noise model described above is 

transformed into state space form. The unknown parameters of the 

variance components of the signal are estimated by maximum 

likelihood using the Kalman filter (KF) algorithm (Harvey,1989). 

Given these parameter values, the filter also calculates the 

expected values of the signal and noise components at each point 

in time conditional on the observed data up to the given time point. 

It also calculates the conditional variances so that standard errors 

of each component can be computed. As more data become 

available, previous estimates are updated by a process called 

smoothing (Maybeck, 1979). 

Since time series are typically influenced by exogenous 

disturbances that affect specific observations, an additive outlier 

component was added to the model. 

O ( t )  = ~. ~ j w j ( t ) ,  t j  = {Aug90,  Sept 90}  (3.9) 
J 

I 
I, t - tj 

wj(t) - 
O,t~tj 

Two outliers were identified, as indicated in (3.9). Outliers are 

defined in terms of the one-step ahead errors in predicting the 

actual CPS observations generated by the Kalman filter recursions. 

Those errors that were at least three times their standard deviations 

were designated as outliers. The estimated parameters for this 

model appear in Table 1 under the column labeled Model I. 
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Table 1. Parameter Estimates and Diagnostics 

A. Parameter Estimates Model 1 Model 2a Model 2b 

Trend 

2 
Level (t~VT) .11 .94 .55E-01 

2 
Slope (t~VR) .54E-07 .91E-06 .10E-05 

2 
Seasonal (t~ V,T ) .19E-05 .19E-07 .19E-06 

Irregular 

2 
Variance (oVl )  .13 .16 .97 

Coefficient ( oc I ) .00 .00 .63 

Noise 

With sampling error yes no no 

Standard Deviation 1 ~?-1.8 .40 1.27 

B. Diagnostics Model 1 Model 2a Model 2b 

Ljung-Box[-12] 15.9 18.1 15.7 

Ljung-Box[-241 21.4 24.3 22.2 

Heteroscedasticity 

With time .99 2.0 * 1.9" 

Cusum of  Squares - * * 

Bera-Jarque Normality .72 3.8 4.9 

Skewness -.12 -.30 -.30 

Excess Kurtosis .19 .30 .50 

*sign~icant at .05 level 

Part B of Table 1 presents the results of a battery of 

diagnostic tests performed on the one-step-ahead predictions of the 

actual CPS estimates generated from the KF. Conditional on the 

parameters, these predictions should behave as normally 

distributed white noise variables. The usual tests for various 

departures from these properties are shown (Harvey, 1989). A 

residual seasonality test, based on the periodogram of the 

prediction errors, was also performed to detect significant variance 

at one or more of the seasonal frequencies. Based on these tests 

Model 1 appeared to be performing adequately. 

Figure 3 plots the estimated signal (solid line) and the 

CPS (dotted line) in the upper panel, the estimated sampling error 

in the middle panel and the standard deviation of the CPS (gray 

line) and the standard deviation of the signal (black line) in the 

lower panel. As expected, the signal has a much smoother 

appearance than the sample estimates. The heteroscedasticity of 

the sample data is readily apparent. Prior to 1980 the signal did 

not track the CPS as closely as after 1980 (upper panel), a 

reflection of larger fluctuations in the estimated sampling errors 

(middle panel) which is explained by the large values of the 

standard deviations in the CPS (gray line in the bottom panel). 

Note the downward shift in the standard deviation (SD) of the CPS 

occurring in 1980 and again in 1985. The first corresponded to a 

supplement to the Nebraska sample under the old national design 

which resulted in a 10% drop in the SD. The drop of 12% in 1985 

resulted from the introduction of a new state design. 

The efficiency gains due to modeling depend on the 

amount by which the variance of the error in estimating the signal 

can be reduced over the survey estimator. To assess these gains, 

the SDs were estimated for the smoothed estimates of the signal 

conditional on the estimated parameters (black line in bottom 

panel). The signal SDs always lies below that for the CPS, 

averaging about 76% of the latter or an efficiency gain of 24%. 

Also note that the long mn difference in SDs has narrowed as a 

result of the previously mentioned sample supplemenation and 

redesign, resulting in a narrowing of the difference between the 

signal and sample estimates. This last result is a reflection of the 

design consistency property of the estimator of the signal: as 

sample size increases, the estimator of the signal will differ little 

from the sample estimator (Bell and Hillmer, 1990). 
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Figure 4 shows estimated subcomponents of the 

observed CPSEP series. The smoothness of the signal is due to a 

slowly changing trend (upper panel), a stable seasonal pattem 

(second panel) and a small irregular component (third panel). The 

estimated outlier effects are shown in the bottom panel. 

Table 2 presents estimates of the relative contribution 

of the components of CPSEP to the variance of change over 

different length intervals. The contribution of the sampling error 

(1 - ot l ) N ( t )  = ~ b ( t )  

~b(t) ~" NID(O, o b ) 
(3.1b) 

The noise parameters were estimated directly from the 

aggregate time series ignoring the sampling error information. The 

results are shown in Table 1. Model 2a has a trend level variance 

Table 2. Variance Components* of Change in CPSEP 

% Noise % Sig_na__ 1 
Total Tr end Seasonal lrre g ular 

48.5 51.5 1.2 45.8 4.5 

38.2 61.8 1.8 59.1 0.9 

67.0 33.0 30.3 0.0 2.7 

5.6 94.4 44.5 49.9 

1.0 99.0 38.1 60.9 

2.0 98.0 98.0 0.0 

57.6 42.4 0.3 42.1 

40.0 60.0 0.6 59.4 

85.0 15.0 15.0 0.0 

A variance component is defined as Y~ { y ( t ) - y ( t - j ) } 
t 

to month-to-month variation in CPSEP is substantial, accounting 

for at least half of the total variation. It is also substantial for year- 

to year variation, a reflection of the strong autocorrelation induced 

by the rotating sample design. (The decline in the relative 

contribution at the 3-month interval is due to the strong seasonal 

nature of the signal rather than a reduction in the amplitude of the 

noise.) 

While variance reduction is an important benefit of 

signal-plus-noise modeling, Table 2 also suggests that accounting 

for the dynamics of the noise is also very important. We 

investigate this issue next by estimating models that ignore the 

structure of the sampling error. Model 2a specifies the noise 

component to be white noise, a common assumption in time series 

decomposition. For this model (3.1) is replaced by 

S ( t )  = N I D ( 0 ,  o a ). (3.1a) 

As shown below, Model 2a produces clearly unsatisfactory results 

and this would likely suggest to a time series analyst a need for a 

correlated noise component. Accordingly, Model 2b assumes the 

noise is a first order autoregressive process, 

2 
j = 1 , 3 . 1 2 .  

almost 9 times larger than Model 1. The white noise irregular 

component, acting as a proxy for the noise, has a SD of .40, only a 

fifth to a third the size of the CPS SD. Allowing for a correlated 

irregular in Model 2b, results in a small value for the trend 

variance, .06, and an SD of the noise equal to 1.3, 

i . e . ,  Orb / (1 - ot I ) . In both cases the models, by 

specifying a fixed noise variance, fail to capture the 

heteroscedasticity of the CPS as indicated by the diagnostics. 

Futher evidence that the stochastic properties of the 

signal are substantially affected by ignoring sampling error is 

provided by the behavior of the variance components of change 

presented in Table 2. Under the white noise assumption of Model 

2a, the relative contribution of the trend component to short run 

fluctuations of less than 12 months is unusually high for what 

should be a low frequency component. Moreover, the contribution 

of the noise component is unusually low and the seasonal variance 

not much changed, indicating that much of the autocorrelated 

sampling error is absorbed into the trend. 

Under the Model 2b assumption of a first-order 

autoregressive noise component, about half of the trend variance 

over a 12-month span appears to be absorbed into the noise 
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component, resulting in an over smoothed trend. These results are 

illustrated by Figure 5 which compares the Model 1 trend with 

Model 2a and 2b respectively. 

It is also important to note that the Ljung-Box statistics 

(Table lb) indicates no residual autocorrelation for either Model 2a 

or 2b. Theses models appear to explain the autocorrelation in the 

CPS series even though their assumptions about the noise 

component are incorrect and result in biased estimates of the 

variance components for the signal. 

We note that the seasonal component is not much 

affected by ignoring sampling error. The seasonal pattern is not 

much different and remains very stable for all 3 models as shown 

in Table 1. This is also evident in Table 2 where the seasonal 

contributions are of roughly equal magnitude for all 3 models. 

These results may also have important implications for 

the practice of seasonal adjustment of time series with large and 

strongly autocorrelated errors. The conventional assumptions 

about the noise component, non-autocorrelated and constant 

variance, are likely to have a significant impact on the reliability of 

the seasonal adjustment. Model based approaches to seasonal 

adjustment, however, can be adapted to account for sampling 

error, as illustrated by this study. On the other hand, non-model 

based approaches appear to be too inflexible. 

A related study by Hausman and Watson (1985) 

reached similar conclusions from their study of the effects of 

measurement error on X-11 when adjusting national CPS 

unemployment rate data. The consequences of ignoring sampling 

error are even more severe when dealing with employment series 

at the state level where the relative size of the sampling error is 

higher and the autocorrelations stronger. 

Another point to consider is the effect of the 

specification of the noise component on the signal extraction 

variances. The assumption that the variances of the noise 

component in (3.1a) and (3.1b) are constant imply that the 

variance of the signal will reach a steady-state. However, the true 

noise variance is heteroscedastic indicating that no such steady- 

state will be approached. The effect of this misspecification 

appears to be a downward bias in the SD of the signal (see Figure 

6). The SD for Model 1 has been at a level of around .98 since 

1984. In contrast, Model 2a and 2b reach steady-state values of 

.35 and .60 respectively. (The large spike in the Model 2a 

variances indicates a greater sensitivity to the August and 

September 1990 outliers.) Unlike Model 1, these latter two models 

are not design consistent. 

4. Conclusions 

This study applied the time series approach to survey 

data containing sampling error with high variance and strong 

autocorrelation. Specifically, a signal plus noise model was fit to 

employment data taken from the Nebraska CPS sample. The 

results indicated the potential for significant gains in efficiency 

over the sample estimator and the pitfalls in not properly 

accounting for the influence of the sampling error. When 

sampling error was ignored, bias in key variance components 

substantially altered the stochastic properties of the signal and the 

estimates of the signal extraction variances had a large downward 

bias. Moreover, diagnostic testing did not reveal any serious lack 

of fit to the data. In short, the use of sample design information in 

the estimation of unobserved components of time series can be 

very important in guarding against serious distortions in the 

estimated signal caused by making inappropriate assumptions 

about the noise component. 
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Figure 3. CPS and  s ignal  f o r  Nebraska's Employment-to .Population Ratio 
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F i g u r e  5.  T r e n d  C o m p o n e n t s  
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