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S U M M A R Y  

A model involving random effects and autocorre- 
lated errors is proposed for small area estimation, 
using both time series and cross-sectional data. This 
model is an extension of the well-known Fay-Herriot 
model for cross-sectional data. A two-stage esti- 
mator (predictor) of a small area mean at a given 
time point is obtained under the proposed model, 
by firsl deriving the best linear unbiased predictor 
(BLUP) assulning that the variance components and 
the autocorrelations that determine the variance- 
covariance matrix are known, and then replacing 
them with their consistent estimators. Extending 
the approach of Prasad and Rao (1986, 1990) for 
the Fay-Herriot model, an estimator of the mean 
square error of the two-stage estimator, correct to a 
second-order approximation, is obtained. A hierar- 
chical Bayes approach, using Gibbs sampling, is also 
outlined. 

1. I N T R O D U C T I O N  

Small area statistics are needed in formulating 
policies and programs, in allocation of government 
founds, and in regional programs, etc. Demand for 
reliable small area statistics has steadily increased in 
recent years which prompted considerable research 
on efficient small area estimation. 

Direct small area estimators from survey data 
fail to borrow strength from related small areas since 
they are based solely on the sample data associated 
with the corresponding areas. As a result, they are 
likely to yield unacceptably large standard errors un- 
less the sample size for the small area is reasonably 
large. Alternative estimators that borrow strength 
from related small areas are therefore needed to im- 
prove efficiency. Such estimators are based on either 
implicit or explicit models which provide a link to re- 
lated small areas through supplementary data such 
as administrative records and recent census counts. 

Most of the research on small area estimation 
was focused on cross-sectional data at a given point 
in time. Rao (1986) has given an account of this re- 
search. Estimators proposed in the literature include 
(a) synthetic estimators (Gonzalez, 1973; Ericksen, 
1974), structure preserving estimators (Purcell and 
Kish, 1980); (b) sample-size dependent estimators 
(Drew et al., 1982; S/irndal and Hidiroglou, 1989); 
(c) empirical Bayes estimators (Fay and Herriot, 
1979; Ghosh and Lahiri, 1987), empirical best lin- 
ear unbiased predictors (Prasad and Rao, 1986 and 
1990; Battese et al., 1988); (d) hierarchical Bayes 
estimators (Datta and Ghosh, 1991). 

Scott and Smith (1974) and Jones (1980) used 
time series methods to develop efficient, estimators 
of aggregates (e.g., overall means) from repeated 
surveys, by combining the direct survey estimates 
over time. Tiller (1989) used the Kalman tilter to . 
combine a current period state-wide estimate froln 
the Current Population Survey with past estimators 
for the same state and auxiliary data from the un- 
employment insurance system and the Current Eln- 
ployment Statistics payroll survey. However, neither 
Scott and Smith (1974) nor Tiller (1989) considered 
small area estimation by combining time series and 
cross-sectional data. 

The main purpose of this paper is to propose 
cross-sectional and time series models with random 
effects and autocorrelated errors, and to obtain em- 
pirical best linear unbiased predictors and associated 
standard errors for small areas at each time point us- 
ing these models. Section 2 reviews some work on 
regression synthetic estimators and empirical Bayes 
estimators obtained from cross-sectional data at a 
given point in time. Cross-section and time series 
models are considered in Section 3, and an exten- 
sion of the Fay-Herriot (1979) model is proposed. 
Two-stage estimators (empirical best linear unbiased 
predictors) of small area means are given in Section 
4, and an estimator of mean square error (MSE) of 
a two-stage estimator, correct to a second-order ap- 
proximation, is obtained in Section 5. Finally, Sec- 
tion 6 outlines a hierarchical Bayes approach, using 
Gibbs sampling, to obtain the posterior mean and 
the posterior variance of a small area mean at a given 
time point. 



2. C R O S S - S E C T I O N A L  E S T I M A T O R S  

2.1. R e g r e s s i o n  s y n t h e t i c  e s t i m a t o r s  
Let Yit be the direct survey estimator of i-th 

small area mean at time point t, say Oit (i = 
1 , . . . ,  m; t - 1 , . . . , T ) .  We assume that  Yit is 
unbiased for Oi t ,  i.e., Yit - -  Oit 2t-e i t ,  where the 

~S eit are sampling errors with E ( e i t  ) - O, given Oit 
We assume that  a vector of concomitant variables, 
x i t  - ( x i t l , . . . ,  x i tp )  ~ related to Oit is available such 

! 
that  Oit - -  X i t  f i t ,  where fit - ( f l t l , . - . , /~ tp )  ¢ is the 

vector of regression coefficients. A regression syn- 
the t ic  estimator of Oit, based solely on the cross- 
sectional data  { ( Y i t , x i t ) ,  i -  1 , . . . , m }  for time t, is 

then given by 

O,t (r~g) - x~t [~t (2 .1)  

where /3t is the ordinary least squares estimator of 

fit obtained from the combined model 

i - 1  . m.  Yi t  - -  X i t  J~t n u e i t ,  , . .  , 

Alternatively, we can use the generalized least 
squares estimator of/~ if the estimated covariance 
matr ix of Yt - (Yl t , . . . ,  Yrnt) ~ is available. 

Synthetic estimators like (2.1) could lead to sub- 
s tant ialbiases since they do not give a weight to the 
direct estimator Yit. On the other hand, empirical 
Bayes or two-stage estimators give proper weights 
to the survey estimator and the synthetic estima- 
tor, and as a result lead to smaller biases relative to 
synthetic estimators. 

2.2. E m p i r i c a l  B a y e s  or  t w o - s t a g e  e s t i m a t o r s  
Following Fay and Herriot (1979), we introduce 

t ~t as follows: uncertainty into the model Oit - x i t  

' / 3 t +  Oit - -  X i t  Vi t  , 

where the v i t ' s  are independent random variables, 
for each t, with mean 0 and unknown variance q~t. 
For sampling errors, we assume that  the ei t ' s  are 
independent normal variables with E ( e i t )  = 0 and 
V ( e i t  ) - cr~t , where (r~t is known. The combined 
model is then given by 

' ( 2 2 )  Yi t  - -  X i t J  ~t -Jr-Vit -]" e i t  

Under this model, the empirical Bayes estimator (or 
the two-stage estimator) of Oit is given as a weighted 

sum of the direct estimator Yit and the regression 

synthetic e s t i m a t o r  Oit ( r e g ) -  x ~ t ~ t "  
e , o  

gi t  ^2 (2.3) (~r~t, f i t)  - wi tY i t  + (1 - wit)Oit  (r~g) 

^2 where wit  - (rvt/(52vt + cr2t), ~ is the weighted least 

squares estimator of fl under the combined model 

2 A simple mo- (2.3), and 5~t is an estimator of (rvt. 
2 (Prasad and Rao 1990) or a ment  estimator of crvt 

more complicated estimator, such as the maximum 
likelihood estimtor, may be used. Using a moment  

2 Prasad and Rao (1990) obtained an estimator of cr~t , 

estimator of mean squre error of Oit ^2 

rate to a second order of approximation as the num- 
ber of small areas, m, increases, by taking account 

2 of the uncertainty in the estimator of (r~t. 
Fay and Herriot (1979) used estimators of the 

form (2.4) to estimate per capital income for small 
areas (with population less than 500 or 1000) from 
the 1970 U.S. Census of Population and Housing. 
They presented empirical evidence that  (2.4) leads 
to smaller average error than either the direct sur- 
vey estimator or the synthetic estimator using the 
county average. Datta,  Fay and Ghosh (1991) ex- 
tended the Fay-Herriot model to multiple character- 
istics of interest, and derived empirical Bayes and 
hierarchical Bayes estimators of small area means. 

3. C R O S S - S E C T I O N A L  A N D  T I M E  
S E R I E S  M O D E L S  

The methods in Section 2 use only cross- 
sectional data at each point in time. As a result 
they do not exploit the information in the data at 
other time points. In the following section, we ex- 
tend the Fay-Herriot approach for small area esti- 
mation to time series of cross-sectional survey es- 
t imators of small areas in conjunction with census 
data and time varying supplementary data  such as 
administrative records. 

Extensive econometric literature exists on mod- 
elling and estimating relationships that  combine 
time series and cross-sectional data (e.g., see Judge 
et al., 1985, Chapter 13), but sampling errors are 
seldom taken into account. We now consider some 
of these models on Oit: 

! 
(I) Oit - x i t /3  + v i + git,  

w h e r e / 3 -  (/31,. . . ,  ~p)' is a vector of regression pa- 
¢,o 

rameters, the vi ' s  are fixed small area effects and the 
Qt's are independent normal variables with mean 0 



l id (0 ,  0"2 and variance 0"2, abbreviated git "~ ). 

! 
(II) Oit --  X i t / 3  -Jr- V i -Jr- g i t ,  

e~a 

l id lid 
where v i ,~ N(O,  0"~), sit .-~ N(O,  0"2) and {v i }  and 
{eit } are independent. Here the vi 's  are random 
small area effects. 

! 
(Ill) Oit - -  Xi t  /~-~- V i "~- U t Jr- e i t ,  

e ~  

iia 2 i ~  N(O,  0"~), eit ,,~ , wher  ~ N(O 
and { v i }  , { a t }  , {g i t}  are mutually independent. 
Here the vi 's  and the ut ' s  are random small area 
effects and random time effects respectively. 

! 

( I V )  Oit --  X it ~ qt_ Vi -Jr- Ui t 
e~a 

a n d  t t i t  - P a l , t - 1  -~- e i t ,  IP] < 1, 
(3.1) 

l id 2 l id 
wh r¢ ~ N ( 0 ,  < ,  N(0,  
are independent (Anderson and Hsiao, 1981). Here 
the vi 's  are random small area effects and the wit's 
follow an AR(1) process. Model (3.1) may be rewrit- 
ten as a distributed lag model: 

- -  ) '  . Oit p O i , t - 1  + (x i t  - p x i , t _ l  /3-+-(1 - p)v  i + eit 

(3.1a) 
Model IV appears to be the most realistic among the 
four models since the alternative form (3.1a) relates 
the current mean, Oit, to the previous period mean, 
Oi,t_l, and the values of the auxiliary variables for 
the current and previous periods, xi t  and xi t-1 re- 

spectively. More complex models may be formulated 
by assuming an ARMA process for the wit's instead 
of the simple AR(1) process, but the resulting divi- 
dends are unlikely to be significant. Similarly, ran- 
dom slopes {~i t  } obeying an autoregressive process 

may be used in place of constant slopes/3 (Pfeffer- 
~a 

mann and Burck, 1990; Singh et al., 1991). 
The Oit's are related to the direct survey estima- 

tors through 

Yit - -  Oit -~- Cit,  i -- 1 , . . . ,  rn; t -- 1 , . . . ,  T.  (3.2) 

Following Fay and Herriot (1979), we assume the co- 
variance matrix of sampling errors, eit , t o  be block 
diagonal with known blocks Ei, where Ei is a T × T 

matrix, and E ( e i t  ) - -  O. Recent research has focused 
on modelling sampling errors of aggregates. For ex- 
ample, Binder and Dick (1989) and Tiller (1989) pro- 
posed ARMA models. 

Choudhry and Rao (1989) treated the compos- 
ite error wit - eit + wit as an AR(1) process: wit = 

iia N(0, 0"2 f l W i , t - 1  -Jr-git with git ~ ), and then consid- 
! 

ered Oit as Oit - x i t  t~ -I-v i .  The combined model 
¢,o 

under the above assumption, may be written as 

! 

Yit - -  X it /3-Jr- Vi .qt_ Wi t 
e ~  

a n d  w i t -  f l w i , t - 1  -~- git  , ]fl[ < 1 

(3.3) 

l id l id 
w h e r e  v i ~,~ N ( O ,  0"2), a n d  git  ~ N ( 0 ,  02 ) .  Tiller 
(1989) used a similar approach in the context of 
labour force estimation from aggregate time series 
data generated from repeated surveys. Model (3.3) 
does not depend on the sampling error covariance 
matrix, but it is less realistic than the combined 
model using (3 .1)and (3.2): 

! 

Yit --  x it ~-~- vi  -~- wit  -~- ei t  
~ ~ (3 .4)  

a n d  w i t -  f l u i , t - 1  -~- git  , ]ill < 1 

l id l id 
wh r¢ N ( 0 ,  ~ N ( 0 ,  the  

~S eit are normally distributed with zero mean and 
known block diagonal covariance m a t r i x  E = 

block d iag(E1, . . . ,  Era). Model (3.4) provides an ex- 

tension of the Fay-Herriot model to time series and 
cross-sectional data. 

Choudhry and Rao (1989) obtained a. two-stage 
estimator of small area mean 0it under (3.3), and 
evaluated its efficiency relative to two synthetic esti- 
mators and the direct estimator, Yit, using monthly 
survey estimates of unemployment for census di- 
visions (small areas) from the Canadian Labour 
Force Survey in conjunction with monthly admin- 
istrative counts from the Unemployment Insurance 
System and monthly survey estimates of population 
in labour force as auxiliary variables. 

We focus on the extended Fay-Herriot model 
(3.4) and obtain a two-stage estimator of Oit in Sec- 
tion 4. 

4. T W O - S T A G E  E S T I M A T O R  

Arranging the data {Yi t}  as y - (Yl l , ' ' ' ,Y1T;  

• "" ; Y m l , ' ' ' ,  YrnT) t  --  ( Y l , ' ' ' ,  Y ~ ) t  the proposed 

model (3.4) may be written, in matrix form, as 

y - X / 3 + Z v + u + e  (4.1) 

with 

x -  (xl , . . . ,  x ' ) '  , X i  --  ( X i l , . . . , X i T ) ,  

Z -  I r a ® l ,  

, ), 
1) -- ( V l , . . .  , v rn ) t ,  U -- ( U l , . . .  , u r n  , 

' ) '  
e - -  g , ' ' ' , e r a  



! ! 

where u i - ( u i l , . . . ,  WIT),  e i - ( e i l , . . . , e i T ) ,  I t  is 

a t-vector of l 's,  I m  is the identity matr ix  of order 

m, and ® denotes the direct product.  
Further,  

2 E ( v )  --  O, C o y ( v ) -  (7 v I ra ,  

2 I r a ® r -  2 E(~) - o, Cov(u) - ~ ~. n, 
. . . . .  ( 4 . 2 )  

E ( ~ ) -  O, 
e ~  

C o y ( e ) -  E -  block d i a g ( E 1 , . . . ,  Era), 

and v, u and e are mutual ly  independent,  where F 

is a T x T matr ix  with elements p l i - J l / ( 1  _ p2) .  It 
follows from (4.1) and ( 4 . 2 ) t h a t  

Cow(y) - v - r~ + ~  a +~v z z '  

+ ~  ) = block diagi(Ei + o" u r J T  , 

with JT  -- IT  l(r .  

4 . 1 .  B e s t  L i n e a r  U n b i a s e d  P r e d i c t o r  
! 

The small area mean Oit - x it /3 + v i + wit 

is a special case of the linear combination r = 
l ' ~ +  1] v + l~ u with l - x i t ,  l l is the m-vector 

with 1 in the i-th position and 0 elsewhere, and 12 is 

the (mr)-v~¢tor with 1 in the (i t)-th position and 0 
elsewhere. Noting that  (4.1) is a special case of the 
general mixed linear model, the best linear unbiased 
predictor (BLUP) of 7 - Oit can be obtained from 
Henderson's (1975) general results. 

Assuming first tha t  ~u 2, ~rv 2 and p are known, the 
BLUP of r is given by 

~ t 2 - 1  ~ -  l ' ~ + ( ~  l l z  + ~ .  l ' ~ n ) v  ( v - x ~ ) ,  

(4.3) 
~ 

where /3 - ( X '  V - 1 X )  - 1 X '  V - l  Y is the general- 

ized least squares est imator  of/3. Using the special 

s tructures of 11, 12, Z, R and V, it is easily seen 

that  (4.3) reduces to 

~ 2 2 , y )  
Oit - -  t ( ( Y u '  (Yv '  P 

e ~  

= , / ) + (  21~  + 2 , 
X i t (7" v (3" u "f t ) ( 2 i 

2 2 - i  +a.r+~.JT)  (y~-x~) ,  (4.4) 

where 7t is the t- th row of F. An alternative form 

of (4.4) is given by 

Oit - -  Y i t  1 t [E-i- 1 2 - 1 - 1  - ~ + ( ~ r + ~ j ~ )  ] × 

( (7~ F -t-(72v J T ) - I ( y i -- N i l e ) .  

4.2 T w o - s t a g e  e s t i m a t o r  
2 and p are In practice, the parameters ,  cru22 , (r v 

usually unknown. A two-stage es t imator  (empirical 
BLUP or EBLUP)  is therefore obtained by replacing 
them with their consistent est imators  in the expres- 
sion for BLUP: 

~ , , ~ ,  ~), 

2 where (r u^ 2, ~r v^ 2 and/5 are consistent est imators  of au, 
2 and p respectively. O" v 

2 2 Pantu la  and Pollock (1985) es t imated (ru, (r v and 
p in the nested error regression model (3.3) with au- 
tocorrelated errors wi t  by extending the method  of 
fitting constants for the special case of independent  
errors wit  (Fuller and Battese, 1973). We now ex- 
tend the method of Pantu la  and Pollock (1985) to 
the more general model (3.4) with autocorrelated 
errors wi t  and sampling errors eit  with known block 
diagonal covariance matr ix  E. 

E s t i m a t o r  of  p 

L e t  a i t  - v  i - t - w i t  - t - e i t .  Then we have 

rn T - 2  )] - -  a i t ( a i t  - -  a i , t +  1 
i=1 t - 1  

r o T - 2  

-- ~ ( 1  - p) + m ( T -  2) E E (  - "t,t+x) 
i--1 t--1 

and 

(4.5) 

rn T - 2  

2) )1 - -  a i t ( a i , t +  1 - -  a i , t +  2 
i--1 t - 1  

2 - ~ p ( 1  - p) 
rn T - 2  

_~_ m _ l ( T  2 ) - l E  E z  (i) rr(i) - -  [O ' t , t 4_ l  - -  v t , t + 2 )  , 
i--1 t--1 

(4.6) 

where "t,t+s'~(i) _ c o y ( e l  t '  e i , t+s )  and ~r~ ) - v a r ( e i t  ). It 
follows from (4.5) and (4.6) tha t  a moment  est imator  
of p, assuming known errors air , is given by 

(4.7) 

a i , t + 2  ) r ( i )  _ (7( i )  ~1 - -  [ ° ' t , t + l  t , t T 2 ] J  

p * z 

Er~=l  E T = 1 2 [ a i t ( a i , t + 1  

~r~=l  ~--~T--12[ait(ai, t 
( a ( i )  , , ( i )  

- a i , t + l )  - ~, t,t - v t , t + l ) ]  

Now replace the a i j ' s  in (4.7) by the ordinary least 

- ' ( x '  x )  - ~  ' squares residuals aij Yit -- x it X Y to get 



an estimator /5. Since [Pl may be greater than or 
equal to 1, we need to truncate fi: 

- s ign(f i )  max(1 - 5, Ifi[). (4.8) 

where s i g n ( x )  - ~/1~1 when x # 0, or - 0 otherwise, 
and 5 > 0 is arbitrarily small. It can be shown that  
t) is asymptotically equal to p*. 

2 E s t i m a t o r s  o f  ~2 a n d  ov 
2 and We first obtain unbiased estimators of cr~ 

2 assuming that  p is known. For this purpose, we 0" v 
t ransform the model (4.1) such that  the covariance 
matrix of the transformed errors is independent of 
~r 2. Let 

/ 
_ ~ (1 - / 9 2 )  1/2 

A [ I-p, 
t - 1  

2 < _ t < _ T ,  

and 

D - c - l f f  ', 

where f - ( f l , - . . ,  fT ) '  and 

c -- f ' f  - (1 - p ) [ T -  (T  - 2)p]. 
e ~ o  e ~  

Also, we note that  F - p - l ( p - 1 ) , ,  where P is a 

T x T matr ix  with first diagonal element (1 - p2)1/2 
and remaining diagonal elements 1, and - p  for the 
elements (t + 1, t) and 0 for the remaining elements, 
t -  1 , . . . , T -  1. 

Now transform Yi to z i - PYi  so that  

zi - P X i / 3  + f  vi + P(ui  + el) ( 4 . 9 )  

and 

Z l  1) --  ( / T  -- D )  z i --  H~  1) ~ + ~* (4.10) 

noting that  ( I T -  D ) f  - O, where HI 1) - ( I T -  

D) P X i  and e~ - ( I T  -- D ) P ( u i  + ei).  

Since C o v ( e  r) - ( I T  - D) P(crX r + E i) P ' ( I T  

2 ' - D ) '  is - D )  - ( I t  - + P P 

2 2 through independent of c%, we can estimate cr~ 

model (4.10). Let Z (1) --  ( (Z  (1))  t l  , - ' ' , ( Z  (ml))t) ' ,  

and H (1) - ( ( H ~ I ) ) ' , . . . , ( H ~ ) ) ' )  '. Denote 
e ~ a  e ~  e ~  

P H = H(1)(H (1)'H(1)) +H(1) ' )  and E(~) = 

block diagi(P E i p ' ) .  An unbiased estimator cry~2 is 

then given by 

~2  _ [ ~ t  ,.., ,.., ~ ~.(p)  ~ e~- t r{(b lock  diag/( I  T - D ) -  P . )  

E (,)}] [m(T  - 1) - rank(H(1) )] - ,1  (4.11) 
e ~  

where ~' ~ is the residual sum of squares obtained by 

regressing z(1) on H (1) using ordinary least squares. 

The unbiasedness of ~r~2(p) follows from the fact 

E ( e '  e ) - E --  P . )  *'] 
e ~ a  e ~  ~ e ~ a  

= t r [ ( I rnT  -- P . )b lock  diagi(cov(e  ~))] 

2[rnT m rank(H(1) )]  --  6r u -- 

+ tr  [{ block diagi(IT -- D) - P .  } E (,)]. 

to 
2 t ransform (4.9) Turning to the estimation of cry, 

c - 1 / 2 f  t z i - c - 1 / 2  f t P X i f l  

-Jr- C - 1 / 2  f ' f vi + C - 1 / 2  f ' P ( u  i + e i) 

with error variance c¢ 2 + ~2 + C--1 f , p  E i P ' f  . Let 

fi ' f i  be the residual sum of squares by regressing 

c -~/2 f '  z i on c -1/2 f ' P X i  using ordinary least 

squares. Denote P F -- F ( F  ~F) + F '  and E(~) = 

diagi( c-1 f '  P E i P '  f ) .  An unbiased estimator ~ 

is then obtained as 

~-v2(p) --  C--I[TTt -- rank(£)] -1 [~' 

t r { ( I r n  P F )Z (v ) } ]  c--l-2(p),  (4.12) 

where F - (X~l P '  f , • • •, X 'm P '  f ) "  The unbiased- 

ness of a~-2 follows from the fact 

2 (ccr 2 4- (ru)(rn -- r a n k ( F ) )  + t r[ ( I rn  -- P ~) E (v)]. 

Note that  P ~ and P N are invariant to the choice 

of generalized inverses ( F ' F ) -  and (H  ( t ) 'H  (1)) - 

respectively, we have therefore chosen the Moore- 
Penrose inverses ( F ' F )  + and ( H ( I ) ' H ( 1 ) )  + in P F  

and P ~ respectively. 

2 and 2 Two-step estimators of (% (r~ are now ob- 
tained as 

^2 _ m a x { 0 , - 2  ^2 __ m a x { 0 , - 2  



where p is given by (4.8). Note that  0., (p)-2 and 0.,,-2 (iS) 
are no longer unbiased estimators, but the asymp- 
totic consistency of 0.,̂  2, and 0.'̀  ̂2 and p can be estab- 
lished, as m + oo. 

A two-stage estimator of the small area mean 
Oit is now obtained from (4.4) by substi tuting ^2 0.'`, 

^2 and t5 for 2 ^2 0.v 0.~,, 0., and p respectively 

- 0.,, tS, y). (4.13) 
~ 

The two-stage estimator,  Oit, r e m a i n s  unbiased, not- 
ing that  ^2 ^2 0.~,, 0.,, and t~ are even functions of y 

~ 

and translation invariant (i.e ^2 ., - 

~ ~ 

^2 ^2 0 . ' ` (Y -X  a) - 0.'`(y), for all y and a, and similarly 
~ ~ ~ ~ ~ ~ 

for ^2 0., and t~; see Kackar and Harville (1984)) .  It 
is not necessary to assume normality of the errors 
in the model (3.4); only symmetric distributions are 
needed. However, we need normality to derive an 
estimator of MSE of Oit, corrected to a second-order 
approximation (see Section 5). 

5. E S T I M A T O R  O F  M S E  

5.1. S e c o n d  o r d e r  a p p r o x i m a t i o n  to  M S E  
We first derive a second order approximation 

to MSE of the general EBLUP, ~ - t(&~, ^2 0..~ P, 
2 y), where ~ - t(0.2, 0.,, p, y) is the BLUP of the 

~ ~ 

linear combination r - 1~/3+ 1] v + l~ u and it is 
~ ~ ~ ~ ~ ~ 

given by (4.3). 
Following Kackar and Harville (1984), we have 

M S E [ ~ - ] -  MSE[÷]  + e [ ~ - -  ÷]2, (5.1) 

under normali ty of errors, where MSE(i-)- E(~-- 
r)  2 and M S E ( ~ ' )  - E ( ~ - -  r) 2. Further, Henderson 
(1975) has given an exact expression for MSE[÷]  as 

M S E ( ~ ' ) -  l ' ( X '  v - l x ) - l  l - ( 0 . 2 v l t l Z  ' 
~ ~ ~ ~ ~ ~ ~ 

2 -1 2 2 + 0.u l ~2 R ) V A (0.v Z l l + 0.u I~12) 
~ ~ ~ ~ ~ ~  ~ ~  

- 2 - -2  1 t ( X t V - 1 X ) 1 X t V - l ( 0 . 2  Z l l  -~-0.ut~ 12) 
~ ~ ~ ~ ~ ~ ~ ~  ~ ~  

+ 0.v l ] l l + 0.u ll2 R l 2 , 
~ ~ ~ ~ ~ 

where A - I m T  - X ( X t V - 1 X ) - I x t v  -1.  If r -- 
~ ~ ~ ~ ~ ~ ~ ~ 

Oit, then M S E ( O i t )  is obtained from (5.2) by letting 
1 -- X. it, 11 --  m-vector with 1 in the i-th position 

~ ~ ~ 

and 0 elsewhere, and 12 - (mT)-vector with 1 in 
~ 

the (it)-th position and 0 elsewhere. 
Following Kackar and Harville (1984) and 

Prasad and Rao (1990), we propose a Taylor series 

approximation to E ( ~ -  5)2, by writing 

E'(~" - ~)2 -- E'[F - t(&2(P),-2(p),P0.v , Y)] 
~ 

+ {t(~2(p), -2 2 2 ( p ) ,  p,  v )  - o-v, p,  , 
~ ~ 

We have 

e ( ,  e [ (d t (  - 0.u(P), 0.v (p), p ) / d p ) ( ~  - p) 

+ (p) - 
2 2 + (Ot(0.u, 0.v, p)/O0.2v)(5.2v(p) _ 0.2)]2 (5.3) 

where the dependence on y is suppressed for simplic- 
~ 

ity. Note that  the t runcated estimators 0.,̂  2, 0.,̂  2 and t5 
are replaced by their untruncated counterparts  0.,-2, 
-2 and t5 in (5.3). This amounts  to ignoring terms 0.v 
of lower order, o ( m - l ) ,  for large m. 

The derivatives involved in (5.3) have been eval- 
uated in an unpublished report. Using these expres- 
sion, we obtain 

E(~- - ~)2 ..~ t r ( A '  V A E p~v) (5.4) 
~ ~ ~ ~ 

where E p~,, is the 3 x 3 covariance matr ix of f i -  p, 
~ 

2 -2(p) 2 a n d - 2 ( p )  0.. A -  (b  l ,  Ob/00.2,  0.u -- 0.u, 0.v -- , 
~ ~ ~ 

2 l~ . i~ )  V - 1  O b/O0.2) ' with b - (0 .2  l] Z ' +  0.u 
~ ~ ~ ~ ~ ~ ~ 

t t 2 - 1  V - 1  0b/00.2  _ [it2 +(0.2 l l  Z -~- 0.u l ~2 R ) V ] R , 
~ ~ ~ ~ ~ ~ ~ ~ ~ 

Obl00.  2 -- [ l '  , 2 , t~) V - 1 Z ]  Z '  -1 1+(  °.2 I t 1 Z -[- 0.u 12 V 

and 

(d°'2(P) ' d°'2(P) 1~2 R +0.2 1~2 ~ b l -  dp ~ll Zt-F~ d p ~ ~ ~ -~p ~ V - 1  

, 2 1 d ~ ( p ) R + ~ r  x ~ 

d°'2v(p) Z Z ' )  V -1 
t dp ~ ~  ~ " 

Combining (5.1) and (5.4), we get a second order 
approximation to M S E ( i )  as 

2 2 2 M S ~ ' [ 7 - ]  ~ g l  ( °.2 , O'v, P)-'~-g2( 0.2 , 0.v, P)-'~-g3( 0.2 , O'v, P) ,  
( 5 . 5 )  

where 

2 t O ) _ _ [ /  X ! --1 2 g l (  °-2 ,0.v,  -- V (0 "2Z l 1 -~- 0 .u /~  12)] !X 

- 2 ( X t V - 1 X )  1El - X t V - I ( 0 . 2  z 11 -}- 0 . u ] ~ / 2 ) ] ,  

2 p ) _  2 ~ 2 _ 

2 - 1  2 

2 2 p ) _ t , . ( z  x ,  ga(~.,  ~%, v A E p.~). 



The neglected terms in (5.5) are of lower order, 
o(m-1) ,  for large m. 

We now obtain expressions for the elements of 
the covariance mat r ix  E p~,v using the following well- 

known lemma on the covariance of two quadratic 
forms of normally distr ibuted variables. 

L e m m a .  I f  y is distributed as a multivariate nor- 

mal vector with mean 0 and covariance matrix f~, 

then Cov(y  ' G1 Y, Y ' G: Y) - 2tr(G1 f~ G~ f~), where 

G1 and G2 are two symmetric  matrices. 

It follows from (4.11) and (4.12) tha t  

-2(p) _ [(m 1 )T  rank(H(1))] -1 a ' C 1  a +Ca ,  O "  u ~ _ _  

(5.6) 

-2(p) _ c- l i ra  r a n k ( F ) ] - l  a ,  C2 a 0" v 

- -  c - l [ ( m  --  1 ) T  

- r a n k ( H  (1))] a 'C1 a +Cv, (5.7) 

where a - Z v + u + e is normal with mean 0 and 

covariance mat r ix  V, 

C1 - C ' [ I - C X ( X '  C' C X )  - 1 X '  C'] C 

with C - d i ag i [ ( /T  -- D) P], 

C2 - C * ' [ I -  C*' X ( X '  C*' C* X )  - 1 X '  C*'] C* 

with C* - diag,(el ~/2 f'P), 

and C~ and C,  are two constants.  We can now eval- 
uate Va~[~](Z)], Varied(e)] and cov[~X(p), ~,(p)]-2 
using (5.6) and (5 .7) in  the lemma. 

Turning to the evaluation of remaining elements 
of E pu,, we first used the usual ratio approximation 

f o r / 5 -  p ~ p* - p to get 

- p ..~ [m(T - 2)(1 - p ) ] - i  

x a '[(G~ - G3) - P(G~ - G~)] a +constant ,  

(s.8) 

where ~; i - G i ® I m, G 1 is a T x T matr ix  with 

1 for elements ( t , t )  , t - 1 , . . . , T -  2, 0 elsewhere, 
G 2 is a T x T matr ix  with 1/2 for elements (t, t - 1) 

and ( t -  1,t) ,  t - 2 , . . . , T -  1, 0 elsewhere, and G3 

is a T x T mat r ix  with 1/2 for elements (t, t -  2) and 
( t - 2 ,  t), t - 3 , . . . ,  T, 0 elsewhere. Using (5.6), (5.7) 
and (5.8) in the Lemma,  we can readily evaluated 
var(fi), cov(fi, gr2(p)), and cov(fi, ~r~(p)). 

5.2. S e c o n d  o r d e r  a p p r o x i m a t i o n  to  e s t i m a t o r  
o f  M S E  

Following Prasad and Rao (1990), it can be 
shown that  

Z [ g  I ( ~ . 2 ,  ^ 2(7 v , /~ ) ]  ~ g l  ( 5r2 , 5rv ,  , (rv , f l ) ,  

(5.9) 

2 /5) (5 10) ( 7 "  v , , , • 

E [ g 3 ( ~ ,  ^ 2 2 t?). (5.11) ~, ~)] ~ g ~ ( ~ ,  ~, 

Hence, it follows from (5.5), (5.9), (5.10) and (5.11) 
that  a second order approximation to the est imator  
of MSE(:r )  is given by 

~,~)+g~(~, ^~ ~)+2g~(e~,  ~ ~). , (7 v , (7 v , 

The evaluation of g3(#u2, cr v̂ 2, t? ) involves the calcu- 
lation of the derivatives dgr~(p)/dp and d~(p)/dp 
at the point p - t~. Analytical  evaluation of these 
derivatives is difficult, but they can be easily eval- 
uated numerically using the formulae for cr~-2(p) and 
~X(p). 

The jackknife method can also be used to esti- 
mate  E pay noting that  the data  sets across areas are 

assumed to be independent.  Denote the est imators 
2 2 a n d p a s  ^2 ^2 of a~, av au(-k),  CTv(-k) and/~(-k) when the 

data  set from the k-th area is deleted (k - 1 , . . . ,  m). 
Then, a jackknife est imator  of E pu~ is given by 

k - - 1  rn 

~ ~ : -  k ~ [  
k - 1  

(,~(_~) - ~), ( ~  ~ ~~ - o - ~ ) ] '  x ~ ( - k )  - cry), (cr~(_k) 
2 "-2 2 [(~(-k) - ~), (~(-~)- ~), (~(-~)- ~)]. 

6. H I E R A R C H I C A L  B A Y E S  A N A L Y S I S  

The hierarchical Bayes approach accounts for 
the uncertainty of prior parameters  by assigning dif- 
fuse priors to such parameters .  As a result, the pos- 
terior joint distribution of the Oit given the data  y 

~ o  

can be obtained, and the posterior mean of Oit is em- 
ployed as an est imator  of Oit with associated measure 
of uncertainty given by the posterior variance of Oit. 

We use the following four-stage hierarchical 
model: 
Stage 1. Conditional on Oit's, vi's, /3 , r I ( -  1/cry), 

~ o  

i,~d N(0 E ) where ~ 2 ( =  1 / ~ )  and p, y~ ~ g, 

O i - -  ( O i l ,  " " ", O i T ) ' "  

i n d  
Stage 2. Conditional on vi's, /3, rl, r2 and p, O i 

N ( X i  ~ +vi 1, r71 r ) .  



Stage 3. Conditional on fl, r l ,  r 2 and 19, vi "-~ 
e ~  

N(0, ,'21 I) ,  

Stage 4. /3, r l ,  r 2 and 19 are independently 
e ~  

distributed with fl --, uni f orm(RP ), r I ,-~ 

Camma(.l/2. bl/2[, r~ ... Camma(a~/2. b~/2) ~nd 
some suitable diffuse prior distribution on p, say 

f(P). 
They are almost two approaches to obtaining the 

posterior distribution of Oit given y and the poste- 
~ a  

rior expectation and posterior variance of Oit. In the 
first approach, the posterior mean and the poste- 
rior covariance matrix of 0 - (0 ], • •., 0'r~)' given 

Y, rl,  r 2 and p and the posterior distribution of rl,  

r 2 and p given y are first obtained analytically, using 

the diffuse prior distributions assumed at stage 4 of 
the hierarchical model. Denoting these quantities by 

M(Y,  r I , 1" 2,19), V(Y,  r 1, r 2,19) and f ( r l ,  r2, p I Y), we 

can compute the posterior mean and the posterior 
covariance matrix of 0 as 

e ~  

E(0 l y ) -  

fj M(y, I" 1 , r 2, 19)f(r1, r2,19 I y)drldr2dp 

and 

Coy(o I y ) -  

J /  V(Y, rl, r2, P) f ( r l ,  r2, P [ y)drldr2dp 

+ / / / [ M ( y , r l , r ~ , p ) ~  ~ - E(O~ I ~Y)][M(y' rl' ~ 

- E(O I Y ) ] ' f ( r l , r 2 , P l y ) d r l d r 2 d p .  

However, closed-form expression for E(O ] Y) and 

Cov(O I Y) cannot be obtained, and numerical in- 

tegration becomes necessary. In the present case, 
we need to solve three-dimensionM integrals numer- 
ically. 

The second approach uses the currently popu- 
lar Gibbs sampling. The desired posterior mean 
and posterior covariance matrix of 0 given y can 

be obtained through an iterative Monte-Carlo proce- 
dure by sampling from the full conditional distribu- 
tions f(O 113, v,rl,r2,19, Y), f ( v  I O,fl, rl,%,19, y), 

f(fl  O, v, r l ,  r2, 19, y), f ( r  1 O, fl, v, r2,19, y), 

f ( r2  I O,/~, V, r l ,  19, y) and f(19 I 8,/3, v, r l ,  r2, y) 

alone which determine the joint distribution of 

0, v, fl, r l ,  r2, fl condi t ional  on y (for example, see 

Gelfand and Smith, 1989). The desired full condi- 
tional distributions are obtained as follows" 
(1) 0 ] v , t ~ , r l , r 2 , p , y  ~,~ N [ ( E - I + r l / ~ - I )  -1 

X (~ -1 y _.[_rl R - I ( x  Z-Jr- Z V)), (y] -1 _~_ 

rl  / ~ - 1 ) - 1 ]  (independent of r2) , 

(2) v I 0, fl, r 1, r2, p, Y ~ N [ ( r l  Z'/~-1 Z 

-~-r 2 / ) - l r  1 z  t / ~ - 1 ( 0  -- X / 3 ) , ( P l Z t  j ~ - l z  

+ r ~ l  I ) -1]  (independent of y), 

(3) ~ I o, V,rl ,F2,19,  Y "~ N[(X' n -1 X )  -1 

X X t j ~ - l ( 0  - Z v), ( X t l ~  -1 X)  -1] (in- 

dependent of y and r2), 
(4) ~ I o, v,fl ,~2,p,y ~ Gamma[½{a~ + ( 0 -  

- i (roT + x ~ - z v)' ~ l(o - x g- z v)}, 

bl)] (independent of y and r2), 
l (a  4- v '  (5) r2 I 8 , v , ~ , r l , p , Y  ..~ Gamma[-~ 2 v), 

1 ~(m + b 2 ) ]  (independent of y, 8, rx), 

(6) 19 O , v , / ~ , r l , r 2 ,  Y -- [ c ( ~ , O , v , r x ) ]  -1 

× I R I - 1 / ~ x p [ - ~ ( o  - x ~ -  z v)' R - , ( 0  

- X ~ - Z  v)]f(p)  (independent of y, r2) 

where 

rl  
C(~, 0, ?),r l)  -- IRI -~/~exp{--~(0 

-- X / ~ -  Z v) t / ~ - 1 ( 0  - X t ~ -  Z v)} f ( f l )d19.  

Random variates can be readily generated from 
the conditional distributions (1) to (5) since onny 
normal and gamma distributions are involved. The 
conditional distribution (6) does not have a closed 
form, but can be generated using rejection sampling 
without evaluating the integral c(fl, O,v, r 1) (for ex- 

ample,  see Zeger and Karim, 1991). 
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