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ABSTRACT 

This paper compares four models used for correcting visibility bias in sample surveys of 
estimating the size of population. The computer procedure is implemented to simulate their 
performances in terms of bias and standard error. Simulation is done to compare their behaviors 
especially when the probabilities of objects being seen(captured) are not constant in such cases. 
A new model is introduced to reduce bias in estimation. 

From the simulation results none of the five models compared seems to consistently 
provide satisfactory estimate. The correction factor proposed by Caughley and Grice(1982) 
offers a relatively better estimate when the probability of recording observation is very 
low(p=0.1). Petersen estimate is best for high seeing/capturing probability. Chapman's(1951) 
modified Petersen estimate outperforms the other four models in comparison by giving far better 
estimate on various combinations of low to average p values. A new model proposed in this 
paper which is based on Petersen's estimate provides best results when size of the target 
population is small to moderate, from 10 to 50, with combination of average and high 
probabilities. 

1. INTRODUCTION 

In estimating the size of a natural 
population of interest from "total counts," a broad 
range of modern techniques exist which are based 
on work done by Schnabel[8] in 1930's. Problem 
with such estimate has long been known 
inaccurate due to some systematic factors inherent 
to the methods. Classical examples may be found 
in sampling wildlife and other areas(medical 
screening, etc.) where the observations, while 
sampling, are missed because of poor sightability 
or lacking of visibility or low density or sometime 
even unskillful observers; and thus bias is 
introduced in estimation from such incomplete 
"counts." Four models: 

1. Henny et al.[6], 

2. Petersen estimate[8], 

3. Caughley and Grice[2], and 

4. Chapman[3] 
representing endeavors taken from several 
directions are available for correcting the problem 
of bias. 

In the popular "mark and recapture" 
scheme[9]; one count is made determining how 
many individuals are captured(marked and 
released) while a second independent count is 
made. Such procedure also provides important 
information, as out of the second count we can 
determine how many were marked previously. 
Based on their binomial property the estimate of 
the total is then obtained although these counts are 
nontheless quite incomplete. This procedure has 
lent itself to a wide array of applications which 
include as only a small part of wildlife 
management such as estimating fish population in 
a lake by Schnabel. 
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Another approach based on the joint 
probabilities of seeing in separate searches, the 
probability of sighting was assumed to be uniform 
among observers, and a binomial distribution is 
used to estimate the population size. With 
variations many survey techniques derived from 
this procedure have been used; most notably, 
aerial surveys for counting emu groups in Western 
Australia[2]; estimating the coast osprey 
population for the Mid-Atlantic[7], and the census 
of bald eagles[5]. 

The use of binomial distribution is 
appropriate since in a sample survey either the 
observer sees(captures) the object or misses it. 
Consider the binomial distribution Binomial(N, 
p), where the parameter N represents the number 
of objects in the population and the parameter p 
represents the probability of seeing(capturing) an 
object. When N is fixed in advance after 
observing k objects successfully, the usual 
problem is to estimate the probability of success p 
in the experiment. In practice, situations often 
arise when N becomes the unknown parameter of 
interest. If p is assumed to be known and k 
successes have been observed, the experimenter 
would be interested in estimating N instead. 
Examples include the estimation of the total 
number of a certain species of wildlife in an area 
with the number of individuals observed on 
several occasions. 

The bias produced from estimating 
population by incomplete counts exists virtually in 
all the surveys just mentioned. It is to the 
practitioners' interest to know as such. In the 
literature, we notice methods for correcting the 
bias in numerous applications, but the relative 
performance of these survey models was not 
discussed. Gill et al.[4] compared three survey 
models using binomial distribution for simulating 
their behaviors for the situation of constant 
sighting(capturing) probabilities across two 
counts. The intent of this study is to compare 
relative performance in terms of bias and standard 
error of models for estimating counting bias 
including cases when the assumption of constant 
probability of observing among observers is 
relaxed. Result concludes that the behavior of the 
proposed model, Model 5, is bounded between 
Model 2, Petersen estimate, and Model 4 which is 
suggested by Chapman. Model 5 is most accurate 
when the difference in probabilities of 

seeing(capturing) is low and the target population 
is not abundant(less than 100). Finally, 
recommendation is given toward choosing the best 
model in survey under various circumstances. 

2. M O D E L S  

2.1 Notations 

In order to compare across different 
models, following unified notations are adopted: 

S l: the number of objects seen by the 
first observer but missed by the 
second 

$2: the number of objects seen by the 
second observer but missed by the 
first 

S: the total number seen by only one 
observer or the other 

B: the number of objects seen by both 

M: the number of objects missed by 
both 

2.2 Model 1 

Henny et al.[6] used the following model 
to estimate the population of Mid-Atlantic Ocean 
Coast osprey. Based on the joint probabilities of 
observing individuals in separate searches; the 
ability of observing an individual object is 
assumed the same among observers. The 
estimator for the constant probability p, is 
therefore based on the product of two binomials, 
is defined as: 

2B ^ 

P =  2 B + S  

This gives the estimate of total population size as: 

s 

2.3 Model 2 

This model is best known as Petersen 
estimate[8]; the estimator is given by 

I~I = n l n 2  

B 

where n i is the number of individual objects seen 
by observer i, i = 1 ,  2. Using the existing 
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notations this model can well be translated into 

= (B + S a)(B + S2)  

B 

since we can establish the relationship among 
these variables by 

na = $1 + B" and 
n 2 = S 2 + B. 

This model does not require the assumption of 
constant probability among observers. 

2.4 Model 3 

Caughley and Grice[2] proposed 
correction factor, C, 

P 

as the multiplier for observed density S, estimated 
total is thus given by" 

^ S 
N =  -x- 

P 

in which 

P =  P l + P 2 "  and 
2 

B ^ 

p l  = 
(B + S2) 

being the estimated probability of an object being 
seen by the first observer and 

B 
1~2 = 

( B  4- S 1 )  

being the estimated probability of an object being 
seen by the second. 

As we can see that the probabilities of the 
object been seen(captured) by the observers are 
estimated respectively, i.e., ]~1 and 13 2, there is no 
restriction on the constant probabilities for this 
model. 

2.5 Model 4 

Chapman[4] made a different kind of 
correction to Petersen estimate, Model 2, and gave 

1~ = (nl  + 1)(n2 + 1) _ 1 
( B +  1) 

Applying our notations the estimate becomes 

= (B + Sl + 1)(B + S2 + 1) _ 1 

( B +  1) 

This gives an unbiased estimate when 
S1 + $2 + 2B > N .  

2.6 Model 5 

In an attempt to minimize the over- 
adjustment made by model 4 when either P l or p 2 
is small; we propose to use P as the correction 
instead of 1 as been used in Model 4" 

^ 

N -  
(B + S 1 + P) (B + S2 + P) 

^ 

(B + P) 

The definition of 1 ~ is the same as in Model 3. 

3. SIMULATIONS 

We assume an observer at each 
instance(trial) succeeds with probability p or fails 
with probability 1 - p  to observe an individual of a 
natural population of size N. Further, trials are 
independent and the random'variable Y is defined 
as 

Y = Y l + Y2 + ...... + YN 

in which each Y i is an independent Bernoulli trial 
with probability p, and it is known that 

Y - B i n o m i a l ( N , p ) ,  

where - denotes "is distributed as." 

Monte Carlo method is used to generate 
independent random samples from Binomial 
populations. We simulate two observers' 
behaviors by giving probabilities P l and P2 with 
trial size N which generates 2 random variables, 
Y1 and Y 2 separately from binomial distribution 
representing the number of individuals 
seen(captured) by these two observers. The third 
random variable, Y3 is also obtained with 
probability P a P 2(the multiplication of 
P l and p 2) being the number of individuals seen 

781 



- 4 -  

by both observers. 

Simulation is executed with the 
combination of P l and P2 with 8 different trial 
sizes(N): 10, 20, 30, 40, 50, 100, 150 and 200. 
For each combination 1000 samples are generated 
to calculate the bias and standard error due to each 
of the five models. Bias is defined as the 
estimated number minus the actual population 
size, N. Standard error is defined as: 

1 
Standard Error = (T - 1) i= ( N i -  N) 2 

where T is the total number of estimated l~i of the 
population size N. 

During the course of generating binomial 
random variables observations with any of the 
following conditions were discarded and replaced 
by a new set of Y i's: 

1. when any of the Y i is zero" or 

2. when the number of distinct individuals 
observed, Y 1 + Y 2 - -  Y3, exceeds N. 

4. COMPARISON AND DISCUSSION 

4.1 p: ~ P2 

When both P l and p2 are small and N is 
small the total population sizes were under- 
estimated and the order in which the models 
performed in the increasing magnitude of bias is 
as 3, 1, 2, 5 and 4. For example, Table 1 shows 
the estimated bias (upper entry in each cell) and 
standard error (lower entry) when 
Pl =0.1 and p2=0 .2 :  

TABLE 1. Estimated bias and standard error when 
Px=0-1 and p2=0.2 

N 

Model 10 20 30 40 50 100 150 200 

1 ~4.99 -5.50 2.55 13.52 29.75134.12247.34308.43 
6.67 17.76 24.05 39.82 60.15214.05396.09490.02 

2 -6.08-11.29-12.46-12.83-10.16 15.14 44.38 50.67 
6.57 11.31 17.05 21.79 26.87 77.20146.23180.34 

3 -3.95 -5.27 1.08 9.25 23.26117.26219.06274.87 
5.96 18.313 22.14 35.19 53.71i190.47353.51~1.02 

4 -6.46,12.97-17.02-20.68-22.501-21.82-12.17 -6.78 
6.71 11.21 18.42 23.4C 26.37 44.09 71.08 93.68 

5 -6.24:11.89-13.80-14.83-12.93 -9.78 37.92 44.44 
6.63 11.2(3 17.36 21.91 26.38 72.31138.92173.45 

Model 3 has smaller standard error when N is 
small, 10, and grows rapidly as N increases. In 
Table 2, as one of the p i, i = 1,2 increased or N 
increased, models 3 and 1 over-estimated but 
difference in bias as well as standard error as 
compared to other models became less and models 
2, 4 and 5 began performing slightly better. 

TABLE 2. Estimated bias and standard error when 
Pl =0.2 and p2=0.3 

N 

Model 10 20 30 40 50 100 150 200 

1 0.0310.05 26.94 J,7.44 62.41114.97 89.62158.04 
8.45 25.82 53.54 )5.08118.07 234.62261.69150.81 

/ 

2 -3.12-1.94 3.0310.00 14.03 25.53 13.62 18.12 
5.6412.33 23.23 43.95 50.23102.48109.80 59.35 

3 1.2811.5229.21350.72 66.47~ 127.42132.51188.64 
8.3725.92 53.67 99.62116.26235.00268.42194.53 

4 -4.32 -6.39 -5.83 -3.47 -1.94 5.67 6 .51 5.49 
5.34 9.64114.1723.74 26.49 58.34 74.47 54.41 

5 -3.57-3.2t3 1.02 7.42 11.28 22.77 12.12 15.59 
5.5111.41321.2640.98 46.75 98.53106.79 58.51 

The gains for models 2, 4 and 5 noticed here 
began increasingly considerable as the p i, i = 1,2 
increased to medium values and also as N 
increased. 

Models 3 and 1 performed very poorly in 
comparison to others for medium p i's for all 
values of N considered in this study. Tables 3 and 
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4 record such behaviors. 

TABLE3. Estimated bias and standard error when 
Pl =0.3 and p2=0.7 

N 
i 

Model 10 20 30 40 50 100 150 200 

1 9.7622.1227.9531.1937.8465.95 69.44 85.40 
16.5639.2548.6449.7056.8078.38 98.51 115.05 

2 2.10 5.86 6.75 6.94 8.03 7.80 5 .10  4.21 
6.1714.4018.47 18.5720.7026.43 33.57 37.84 

3 10.0323.1530.8436.8444.8673.28 97.26124.33 
15.0934.88 45.88149.8858.19 87.95 116.21 143.37 

4 0.27 2.90 4.00 4.77 5.98 6.33 3 .84  3.05 
3.54 8.7212.73 15.1717.8024.80 32.34 36.91 

5 1.49 5.08 6.06 6.36 7.47 7.37 4 .73  3.86 
5.3213.11 17.33 17.7920.0126.01: 33.25 37.59 

TABLE 4. Estimated bias and standard error when 

P l - 0 . 4  and p2-0.6 
N 

Model 10 20 30 40 50 100 150 200 

1 5.4811.6412.9611.1414.6414.51 19.02 27.48 
13.4929.9735.9732.3238.5749.14 59.43 73.79 

2 1.71 4.20 4.55 3.25 4.62 2.57 2 .69  4.98 
6.1413.69117.2215.6518.8025.04 29.63 36.23 

3 8.7818.9924.8927.4735.3757.42 83.61113.95 
14.50 31.97 41.03 40.38 50.02 74.62100.97133.12 

4 -0.01 1.72 2.38 1.70 3.01 1.35 1.541 3.82 
3.68 8.8012.6013.5716.6123.91 28.791 35.40 

5 1.14 3.55 3.99 2.80 4.16 2.20 2 .33  4.61 
5.3512.61 16.32i15.1418.2824.75 29.40 36.01 

but are positive indicating a slight over-estimation 
of the population size. In general the model 4 
seems to be the best but closely followed by 
models 5 and 2. Performance of models 3 and 1 
does improve as N increases but they still lag 
behind considerably. Very rarely they come to a 
little close to models 4 , 5  and 2. 

When the difference between P l and P E 
becomes large as shown in Table 5. 

TABLE 5. Estimated bias and standard error when 

Px=0.1 and pz=0.9 

N 

Model 10 20 30 40 50 100 150 200 

1 28.00105.88182.97 259.64305.39 500.70 701.60879.92 
30.34118.62 217.23 316.18 378.10 567.35 754.72 )25.45 

2 1.15 8.14 14.07 21.82 26.15 32.57 40.14 43.17 
4.07 15.16 25.4t3 39.51 49.84 59.05 68.26 72.58 

3 9.82 32.16 52.2C 75.85 92.41145.63201.23247.74 
12.24 40.73 66.92100.15125.14175.32 228.79 273.04 

4 0.17 3 .61 7.3(3 12.65 16.52 26.45 35.27 39.23 
2.23 7.69 13.59 22.25 29.50 46.651 59.62 66.56 

5 0.80 6.84 12.32 19.72 24.11 31.25 39.04 42.24 
3.41 13.13 22.59 36.00 46.20 58.84 66.63 71.3C 

Model 4 gives the best result; followed closely by 
models 5 and 2 in this order, models 3 and 1 again 
are far from satisfactory. 

In the situation when both P l and P z are 
as high as one of 0.7, 0.8 or 0.9, model 2(Petersen 
estimate) performs the best. The order for these 
models' performance is clear judging from both 
bias and standard error, which is 2, 5, 4, 3 and 1. 
Tables 6 and 7 reveal such truth. 

However, performance of models 3 and 1 
improves considerably as N increases in size. 
Among models 2, 4 and 5, in general, for medium 
values of P i the standard error was smaller 
(although difference was not much sometimes) for 
model 4 but for bias each performed better than 
the others for some combination of p i's. As N 
increases biases for models 2, 4 and 5 become 
positive but very small in magnitude. 

As both or one of the p i's increase(s) 
model 4 seems to have the smallest standard error. 
The bias for models 2, 4 and 5 become very small 
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TABLE 6. Estimated bias and standard error when 
Pl =0.7 and p2=0.9 

N 
Model 10 20 30 40 50 100 150 200 

1 ~5.88-12.22 -18.34-24.83 -30.96-61.22 -90.18 -119.02 
6.30 12.69 18.87 25.34 31.56 61.96 91.14 120.05 

2 -0.33 -0.72 -1.10 -1.41 -1.67 -2.98 -3.42 -3.73 
1.01 1.71 2.36 2.9(3 3.44 5.84 7.80 9.25 

3 1 .66  3.07 4.6(1 6.03 7.68 16.07 25.97 36.07 

2.50 4.312 6.11 7.68 9.56 18.56 29.05 39.32 

4 -0.38 -0.76 -1.14 -1.45 -1.71 -3.02 -3.46 -3.77 
0.97 1.69 2.36 2.9C 3.44 5.84 7.80 9.25 

5 -0.35 -0.74 -1.12 -1.43 -1.69 -3.013 -3.44 -3.74 
0.99 1.7(3 2.36 2.90 2.44 5.84 7.80 9.25 

TABLE 7. Estimated bias and standard error when 

Pl =0.8 and p2=0.9 

N 
Mode] 10 20 30 40 50 1130 150 200 

1 -7.01-14.80-22.47-30.11-37.58-74.42-111.18-147.25 
7.22 15.04 22.72 30.42 37.91 74.88 111.72 147.8~ 

2 -0.33 -0.86 -1.28 -1.67 -2.06 -3.45 -4.89 -5.52 
0.84 1.58 2.16 2.77 3.27 5.56 7.69 9.26 

3 1.13 1.17 2.45 3.24 4.11 9.26 14.42 20.72 
1.84 2.99 4.01 5.22 6.25 12.25 18.03 24.75 

4 -0.35 -0.88 -1.29 -1.68 -2.07 -3.47 -4.91 -5.54 
0.83 1.58 2.16 2.77 3.27 5.56 7.70 9.25 

5 -0.34 -0.87 -1.28 -1.67 -2.06 -3.46 -4.90 -5.52 
0.84 0.58 2.16 2.77 3.27 5 .56  7.70 9.26 

Although constantly and slightly under-estimated, 
models 2, 4 and 5 all provide good and close 
estimate, the difference among these three models 
is very small(off by 1 to 3 percent). Model 3 
displays a unique behavior of over-estimating the 
total by less than 10 percent for all N's  while all 
other four models under-estimate. For high 
probabilities, model 1 is the worst performer 
which consistently under-estimates the total by 
approximately over 50 percent. 

4.2 Pl  = P2 

For very low probability, 0.1 for 

example(Table 8), model 3 gives best results in 

comparing with the other four on small to medium 
sizes(10 to 50). Model 2 does well for large sizes, 
100 and 150, and model 5 displays far superiority 
for very large size, 200. 

TABLE 8. Estimated bias and standard error when 

Pl =P2 =0.1 

N 

Vlodel 10 20 30 40 50 100 150 200 

1 -6.49-12.42-14.43-14.05-12.78 41.85 132.66 219.86 
7.12 14.08 19.22 25.84 29.5(3 98.06 222.61 358.19 

2 -6.84-14.52-20.11-24.39-28.24-22.56 2 .02  24.91 
7.07 15.02 21.313 27.0t3 31.56 50.26 89.34 142.88 

3 -5.31-11.17-13.13-12.55-11.06 45.31 139.49 230.39 
6.14 13.16 18.48 25.26 29.05 99.22 225.41362.60 

4 ;7.07-15.35-22.32-28.56-34.561-50.08 -52.78 -52.37 
7.2E 15.58 22.78 29.42 35.58 55.38 68.99 85.96 

5 -6.95-14.85~20.87-25.63-29.96-27.28 -5.00 16.65 
7.12 15.24 21.8(3 27.73 32.61 50.27 85.23 136.13 

When both the probabilities improve from 
low to middle as shown in Tables 9 and 10, model 
4 becomes the best performer, and the order of 
their performance is 4, 5, 2, 1, and 3. Model 3 

consistently over-estimated the total by more than 
50 percent and its large standard errors 
demonstrates the instability of such estimate under 
the circumstances. 

TABLE 9. Estimated bias and standard error when 

pl =p2=0.4  

N 
Model 10 20 30 40 50 100 150 200 

1 5.3516.8121.5723.7223.8736.75 43.77! 52.29 
13.1938.7357.3461.9858.2173.81 92.18 97.52 

2 0.90 5.40 6.76 7.00 6.06 7.62 6 .11  5.28 
6.3418.3227.5729.9327.9734.49 43.01 43.94 

3 8.0223.1131.9138.3042.4575.49102.5t3130.91 
14.42 41.48 61.58 68.95 68.3199.92131.74155.89 

4 -1.19 0.58 1.65 2.39 2.30 4.54 3.37 2.71 
4.1210.3516.8620.7721.8931.31 40.44 42.16 

5 0.20 4.24 5.67 6.01 5.18 6.83 5.39 4.58 
5.5816.63 25.8128.45 26.9133.83 42.49 43.54 
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TABLE 10. Estimated bias and standard error when 

p l = p 2 = 0 . 5  

N 
Model 10 20 30 40 50 100 150 200 

1 4.32 7.44 5.89 8.62 7.23 5.67 7.09 11.75 
13.28 25.58 29.43 32.73 33.9144.09 54.29 65.31 

2 1.49 3.18 2.21 3.78 3.08 2.22 2.86 5.44 
6.48 12.66114.75 16.99 17.8724.0929.35 35.49 

3 8.30 16.58 19.8127.80 31.42 54.81 81.14 111.04 

14.86 29.30 34.74 42.5146.28 71.38 )8.58 129.73 

4 -0.26 1.03 0.50 2.12 1.63 1.04 1.72 4.28 
3.92 8.55 11.42 14.51 16.0623.1528.55 34.7(3 

5 0.92 2.60 1.74 3.31 2.66 1.85 2.50 5.07 
5.68 11.74 14.08 16.44 17.4323.8329.14 35.27 

Model 1 improves its performance greatly when N 
grows although not as good as models 2, 4, or 5. 
Models 2, 4 and 5 differ slightly among 

themselves especially when sizes are very large 
which indicates the adjustment made respectively 
by models 4 and 5 to Petersen estimate is most 
helpful for middle seeing(capturing) probabilities. 

As both p i 's increase from middle toward 
high, we notice there is one transition point, that is 

when p 1 = P 2 = 0.6: 

TABLE 11. Estimated bias and standard error when 

p x =p 2=0 .6  

N 
Model 10 20 30 40 50 100 150 200 

1 0.73 -2.31 -5.15 -7.77 -8.7t3-17.79-24.87-35.70 

9.43 12.91 15.29 18.36 21.26 35.42 46.41 55.79 

2 0.86 0.27 -0.19 -0.57 0.11 0.58 2.00 1.72 
4.63 6.52 7.71 9.06 10.57 17.13 22.02 24.12 

3 6.05 8.95 12.07 15.4(3 20.62 41.54 64.41 83.73 

10.88 15.55 19.07 23.11 28.80 52.62 76.56 95.23 

4 -0.03 -0.39 -0.74 -1.08 -0.4t3 0.08 1.49 1.23 
3.04 5.48 7.1"7 8.63 10.15 16.79 21.70 23.87 

/ 

5 0.56 0.05 -0.39 -0.75 -0.07 0.40 1.81 1.54 
4.12 6.23 7.55 8.92 10.44 17.02 21.91 24.03 

As shown in Table 11, model 4 no longer 
dominates the most desirable performance, 
instead; as N grows to medium sizes (20 to 50) 

model 2 or model 5 scores the top performer 

alternately. This phenomenon ceases when N 

becomes very large, such as 100 to 200, model 4 

again gives the best estimates. 

The family of Petersen estimates, models 
2, 4 and 5 provide a superb mean for estimation 
when both p i 's  are equal and high(0.7 to 0.9, 
Tables 12, 13 and 14.) Models 2, 4 and 5 all 
slightly under-estimate the total and the difference 
among these three models is trivial. However,  the 
amount of under-estimation is lower in comparing 
to the cases of unequal but high 

probabilities(Section 4.1). For high p i ' s  the 
ordering of their performance is 2, 5, 4, 3 and 1. 
This observation is in consistency with the 

unequal and high probabilities cases. 

TABLE 12. Estimated bias and standard error when 

p l = p 2 = 0 . 7  

N 
Model 10 20 30 40 50 100 150 200 

1 -3.95 -9.28-13.94-18.32-22.81-43.34-62.37-81.63 
6.14 11.1~ 16.18 21.04 25.77 47.53 67.21 86.79 

2 -0.42 - 1.18 - 1.59 - 1.86 -2.17 -2.47 -1.95 -1.25 
2.30 3.53 4.75 6.02 7.02 11.39 14.54 16.8t3 

3 2.53 4.11 6.37 8.91 11.35 25.79 41.79 57.87 
5.12 7.53 10.56 13.96 16.88 33.07 49.61 65.77 

4 -0.64 - 1.35 - 1.75 -2.03 -2.34 -2.64 -2.13 -1.43 
1.95 3.42 4.68 5.95 6.95 11.33 14.48 16.73 

5 -0.51 -1.25 -1.65 - 1.93 -2.24 -2.54 -2.02 -1.32 
2.17 3.49 4.72 6.00 6.99 11.37 14.52 16.78 

TABLE 13. Estimated bias and standard error when 
p l = p z = 0 . 8  

N 
Model 10 20 30 40 50 100 150 200 

1 -6.31-13.35-20.21-27.6(3 -34.03 -65.55 -96.83,127.65 
6.7(3 13.80 20.74 28.22 34.78 66.62 98.07 129.03 

2 -0.43 -1.10 -1.67 -2.58 -2.78 -3.72 -4.39 -5.09 
1.16 2.13 3.08 4.19 4.9t3 7.68 10.0t3 12.04 

3 1 .38  2.19 3.18 3.58 5.17 13.4722.16 31.05 
2.47 4.03 5.7(3 7.01 9.03 18.3027.57 36.88 

4 -0.48 -1.14 -1.72 -2.62 -2.82 -3.77 -4.45 -5.15 
1.12 2.13 3.08 4.19 4.90 7.68 10.0(3 12.04 

5 -0.45 -1.12 -1.69 -2.6t3 -2.80 -3.74 -4.42 -5.12 
1.14 2.13 3.08 4.19 4.90 7.68 10.00 12.04 
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TABLE 14. Estimated bias and standard error when 
p l=p2=0 .9  

N 
Mode] 10 20 30 40 50 100 150 200 

1 -8.02-16.71-25.38 -33.93 42.77 -84.91-126.691-168.38 
8.113 16.80 25.5(3 34.08 42.93 85.14 127.02 168.7~ 

2 -0.2(3 -0.65 -1.1£ -1.44 -2.02 -3.34 -4.53 -5.43 
0.57 1.14 1.7~ 2.19 2.84 4.75 6 . 5 3  7.95 

3 0.77 0.98 1.20 1.58 1.58 4.19 7 .10  10.3~ 
1.21 1.89 2.60 3.36 3.84 7.31 11.11 14.71 

4 -0.21 -0.66 -1.11 -1.44 -2.03 -3.35 -4.54 -5.4~ 
0.57 1.14 1.72 2.19 2.84 4.75 6 . 5 3  7.9g 

5 -0.20 -0.66 -1.10 -1.44 -2.03 -3.35 -4.54 -5.4~ 
0.57 1.14 1.72 2.19 2.84 4 .75  6 . 5 3  7.9g 

4.3 Model 5's Behavior 

The consistent performance ordering we 
experienced from our study shows either 4 5 2 or 
2 5 4, which is understandable since that the 
correction proposed by model 5 is robust with 
given probabilities as well as bounded by models 
2 and 4. From Table 15, Model 5 does show 
improvement over model 4 for low to medium 
sizes under the combination of middle and high 
probabilities: 

TABLE 15. Estimated bias and standard error when 
Pt=0.5 and p2=0.9 

N 
Model 10 20 30 40 50 100 150 200 

1 -1.44-4.12 -6.17 -8.2(3-10.74!-21.96-33.99-44.54 
5.58 7.57 9.76 12.14 14.48 26.78 39.713 50.64 

2 0.07-0.04 0.04 0.04-0.08-0.29-0.62-0.43 
1.8t3 2.37 2.93 3.7(3 4.07 7.11 9.74 12.08 

3 3.85 7.16 10.91 14.58 17.88 35.45 52.56 70.88 
5.38 8.65 12.413 16.33 19.58 37.98 55.73 74.42 

4 -0.12-0.19 -0.1(3 -0.09 -0.21 -0.41 ~ -0.74 -0.54 
1.39 2.2(3 2.812 3.57 3.97 7.02 9.66 12.01 

5 0.0(3-0.10-0.01 0.00-0.13-0.33-0.67-0.47 
i 

1.65 2.31 2.88 3.65 4.03 7.08 9.71 12.05 

5. CONCLUSIONS AND RECOMMENDATIONS 

No model seems to perform consistently 
better than the others. For small values of p(close 
to 0.1 or 0.2), although none of the models give 
very precise estimates, model 3 appears to do 
better, closely followed by model 1, for small N. 
Thus model 3 or model 1 seems to be appropriate 

models for correcting the visibility bias for the 
estimation of the population size N when N is 
small, i.e. the individuals in a particular study are 
rare m find and the visibility conditions are very 
poor, i.e. p i 's are very low. However, as N 
increases in size the models 4, 5 and 2 perform 
better and eventually outperform the models 3 and 
1. In other words, for individuals who are not 
rare, even under poor conditions models 4, 5 and 2 
seems to be suitable ones. In general the model 4 
seems m do better, so far as standard error is 
concerned, but occasionally, model 5 or 2 
performs slightly better than model 4, as far as the 
bias is concerned. The difference in bias becomes 
very small as N increases. 

As both or one of the p i ' s  increase(s) to 
moderate or high values, the models 4, 5 and 2 are 
in general far better than the models 3 and 1. For 
standard error the model 4 seems to be 
consistently better than the others. However, the 
models 5 and 2 follow closely for standard error 
but occasionally do better than the models 3 so far 
bias in estimation is concerned. The difference in 
performance becomes small as N increases. In 
short, under adequate to good visibility conditions 
the model 4 is recommended. When the 
individuals are in abundance, i.e. N is large, out of 
models 4, 5 and 2, it is advisable to pick the one 
that seems to do better as suggested by the graphs 
for standard error and visibility bias depending 
upon a particular combination of P l and P2 
values. 

Model 1 and model 3 occasionally provide 
good estimates only when values of p i ' s  and N 
are all small. Further, model 1 heavily depends on 
compatible P i s, in our study only when p l =  P2 
did model 1 give reasonable results although still 
not as good as the others under same 
circumstances. 

Petersen estimate, model 2, demonstrates 
constant superiority for the combinations of 
various high p values. This behavior clearly 
indicates the adjustment proposed by either model 
4 or model 5 is not necessary when the catching 
probabilities in the survey are excellent. Which 
also suggests that with highly skilled observers as 
well as high density of population the difference 

's among P i does not affect Petersen estimate's 
usefulness. 
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When the difference of probabilities of 
seeing(capturing) among observers becomes large, 
the correction suggested by model 4 is mostly 
needed. This is especially true when the 
participating observers equipped with significant 
different levels of surveying experience. 

In a more likely situation in which the 
sample survey is teamed up by one highly skillful 
observer with the other one little less experienced; 
then model 5 is the choice for small to moderate 
sizes of target population. This can also be 
interpreted as the situation when conducting the 
survey the objects are highly visible for one 
direction and less identifiable from the other due 
to some systematic factors such as the object's 
habitat. If the difference between p i's is not great 
the model 5 provides the most viable solution to 
limit the bias. 

Following table summarizes our 
conclusion: 

TABLE 16. Recommended model for various 
combinations 

Probabilities 

Pl P2 
low 

middle 

low 
middle 

high 

middle 
high 

high high 

N 
medium 

2 2 

large 

In order to do a good job in picking an 
appropriate model for visibility bias correction, it 
is strongly recommended that for a given area 
with known individuals in it, a pilot study should 
be done to estimate the probabilities of seeing an 
individual by each of the observers going to 
participate in the main sample survey. For precise 
and more reliable estimates, it is also 
recommended that these kind of sample studies 
should be undertaken when the visibility 
conditions are good and both the observers are 
experienced ones, i.e. both p i's are close to 1. In 
a particular situation, when the background 
provides a good contrast to observe individuals 
and there are fewer leaves on the trees. When 
there is not much choice available for the time 

when the sampling has to be done, one should try 
to increase p i's by conducting flights at different 
times over the same area in opposite directions. 
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