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ABSTRACT :

The Energy Information Administration
(EIA) collects a variety of data from the
energy industry. The use of censuses and
design-based sampling is common in this
agency. This paper, however, presents the
results of some research in model-based
sampling for differing purposes as pertains
to electric power data. Some nonstandard
methodology is explored. The restrictive
assumptions of Richard Rovall's 1970
Biometrika paper are used under circum-
stances where the adequacy of this class of
models is somewhat quantifiable, and/or
other choices are not readily available.
Model failure is a particular concern here.
However, under these models, data col-
lecticn may be more convenient, which may
mean smaller nonsampling error, and less
inconvenience to the utilities that can
least afford to participate in a survey.

One method developed may be of particu-
larly wide application. It comprehensively
examines a class of incompletely specified
auxiliary data. FORTRAN source code to
accomplish this is available on request.

INTRODUCTION:
v
Let Yi= bxi-‘-xieoi ,and
n 1-2Y n 2-27
B(Y = (T x gy J/(Zxg)

g=1 g=1 *
In Knaub (1990), this class of models is
compared, for gamma equal to 0, 0.5, and 1,

to unequal probability sampling when esti-
mating generation expense. Comparison to a
census is also made when estimating kilo-
watthours generated. Most model results for
figures shown below have been compared to
results from censuses, unequal probability
sampling, or stratified random sampling
using the ratio estimate. The graphs depict
a variety of circumstances, yvet this form
of model sampling/estimation, generally
using only the respondents with the largest
regressor data, demonstrated widespread
usefulness. Linear transformations did not
seem to be needed. Even the addition of a
constant appeared to possibly overspecify
the model. Estimates for gamma in the model
shown above were typically between 0.5 and
1. Some attempts were made to split the
data of Figure B into groups as if other,
currently unknown variables could be used
to distinguish between them, but the
simplest application of Rovall (1970)
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seemed to work best. Also, although these
models seem to estimate totals well in a
number of cases, estimates of mean square
error did not appear to be as good. Under-
estimation may be expected when there is
serious model failure. If this is a pro-
blem, help may possibly be obtained, for
example, from Royall and Cumberland (1978},
and/or Herbert and Kott (1988). However, the
method developed below for estimating gamma
also indicates whether the weighted least-
squares variance estimator, which is used
here, is adequate. (Note that it is assumed
that relative error, i.e., coefficient of
variation (cv), is identical to the sqguare
root of mean square error, since model-
unbiasedness is assumed. Nonsampling error
1s ignored here, although it could be a
problem.)

~ There are several specialized investiga-
tions in this paper also. First, the rela-
tionship between unequal probability samp-
ling and model sampling of the type found
in Royall (1970}, which was discussed in
Knaub (1990), was further investigated. The
idea is to start with stratified unequal
probabllity sampling, and apply both esti-
mation methods to the resulting data. Based
on a preliminary sample performed in this
manner, if further sampling is required,
and preliminary results under either method
are nearly identical, sample selection
may proceed under the model. Sample size
reaqulirements are discussed, and sample
selection, considering stratification, is
also addressed.

A second specialized investigation is
for the case where a few utilities have
extremely large responses in relation to
the other utilities and where the estima-
tion of the value to be used for gamma is
obviously distorted. An expediant solution
is provided. A third investigation is for
the case where auxiliary data are available
for each observed element, but only the sum
of the values for the auxiliary variate is
available for the unobserved elements. The
estimate of totals is not affected, but in
all cases except for gamma equal to 1/2,
the cv estimate is affected. ~

Note that cv2(u), dv*(w), and cvl(u,w) may
still be calculated for the ratio u/w case.

SAMPLE SELECTION BY STRATUM FOR UNEQUAL
PROBABILITY SAMPLING AND MODEL SAMPLING
AS IN ROYALL (19708):

Unequal probability sampling -

Consider generation and generation ex-
pense as in Knaub (1990). For a given cost
(fuel, operations and maintenance, capital
costs, or total), let QDn be the total of

such costs estimated for all plants in

stratum h.
Nh

=Z‘ﬁﬁ_

» where Tlhgis calculated from
g=1 g

A

Yon
the Van Beeck and Vermetten Method. (See
Konijn (1973) for a description of this
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method.) If G represents total generation,
then the cost per kilowatthour is estimated

L
A A
by YD/G=ZYDh/GA G is currently obtained
h=1

by a census and will be considered a con-

stant here. Therefore, the estimated cv is
A A
the same for Yp as for Yoﬂa
l—L A A A -lvz
CV(YD =LZW Yoh YDh J /YD
A A S Np-n 1/2
CV(YDh)g Tﬂ_ “JL“E—T , where
Yo np (Np - 1)
Np is the size of the population in
stratum h,
np is the size of the preliminary
sample in stratum h,
Mh 1
2 | Yng v
and s£=Y | —YD‘/ Ph(tp -1 -
n g=1 [ Tlng/n hJ (
A A
acv(Yop) -5hNn
dnh B 1/2 .

—
2Y 5 {03 Ny - 1y (N - 1]

Now, using unequal probability sampling,
the appropriate estimates from the prelim-
inary sample are

A A A A A
YD/G, and CV(YD)=CV(YD/G).
A A
. acv(Y;
Comparing On for each h, we may
dany

add to the sample size for the stratum with
the largest such value, recalculate a re-

A A A A
vised cv(Yp) , and repeat until cv(Yg) is
below a preselected value.
Note that if Np>>n, for all h, compari-

3f2
sons may be based on sp/ny.

Model sampling -
One could find the value of gamma that

most nearly makes QM) equal to QD , but
in this paper, gamma is always set to the
value that the data most nearly indicate
based on the class of models found in
Royall (1970). The iterated reweighted
least squares method could have been used,
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but the computer programming done for this
study found the gamma value such that the

slope of the ordinary least squares regres-
sion line through the absolute value of the
Note

residuals divided by x.!, approached 0.

i

as opposed to
or always a pos-—

that when 0 is achieved,
always having a negative,
itive result, the model appears most reason-
able. This may be the only time that the
variance estimate shown here should be used.
A number of sets of results were displaved
for iteratively increasing gamma values. The
sensitivity of the model to differences in
gamma was thus, easily apparent. (Relevant
FORTRAN code is available from the author.)

Now

\A(Yh =[b(7h)}xun +Ysh.

mp 1-2Y, mp 2-2Y,

=(Z Xng Yng)/ (Zxng ),
g=1 g=1

the my values are sample sizes,

X, = total of the auxiliary variate

values for the unobserved portion

of the population, and

total of the observed y values

(YS=ZSYi)'

Y =

A A a
Yy= Zh Yyp =Yy -

Nh ooy, Mr2vy 2 My 2-2¢n

Let = T Xng=ZXng+ X,/ (ZXng )
Mp 2Yh 2
= Z (1/%ng) (Yng = b(¥n )xng ) fmp = 1)
A rA 12 ,
cv Yyh = M( ] /Yyh
2a4  A27Y2 A
Therefore, ov(Y {Z ov Yy Yyl /Yy
A A A A
Thus, cv(Yy) may be compared to cv(Yp).

If this model sampling methodology is to be
used following a preliminary sample, as
discussed earlier, select only the units

in each stratum with the largest x values
which have not already been selected. As an
estimate of the required sample size under
model-based sampling, one could use the
following approximation (exact when Y=0.5):



-

_ 2¥n

— h < 2
mh:[Nh <Xh/ah) w‘/h‘}/[‘:yn“’Nh Xh

2
“vh ’
where a, should be chosen so that
;h = ap )?h
A A
@yn=00m )/ Yoy
A

A
and ¢y, is a value for CVCﬁh) such that

if ¢ is the desired overall cv,
2,2,
C=L‘;,°Yn‘{‘{n /Yy.

Now, redefine m, as a preliminary sample
A A
size, solve for deym » and take the

absolute value of the derivative wigﬁ

respect to sample size. Multiply by YYH
A A

Recalculating Cy, as the value of ev(Yy,)

for each new m,, the
increased, according

my, value will be
to which h yields the

1 2

f

hti

largest value for ?Yh

cvhwill then be recalculated for each h as
! N4 r/z
M (‘Yn) ‘U-/h

calculated for the enlarged sampie.

where l(:/l () is hA/l (‘{h)Ar/e-
MYy

Cvh=

would then change each time we add to my,

Note that there may sometimes be other
considerations, such as tolerance limits,
when determining sample size requirements,

but that here we are ¢gpgentrating on the

finite nature of the population.
Note that instead of determining the

A A
dCV(YDh)

dﬂh

largest

QD under the design, or

similarly for the model, to identify the
stratum which should contain the next
observation, we could simply calculate an
estimate of the cv for each situation to
see how to develope the goal low cv esti-
mate with the fewest total number of obser-—
vations. This would, however, require more
programming and computer time.

Also note the following for the model-
based sampling approach:

= "h 2
Nh (Xy/ap) Wy /M
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- Th .
Let Ny ( Xn/an) Wy, =H, . then the quantity

of in}e[est for each stratum (h=1,L), is

A d CV(YYh) A 2 2
YYn —_— = YYh Hh/(chhnm)' Then also,
d My
2 112
A A Hh ~ 2¥n 2 f
ov(Y¥y) =f—— = Ny Xp  wy, | | so
My
d ov(Yy.) 2 H 2 4p
A cv Yh A 2 h ~ 2¥h 1
Yyn =YYth/[2mn(‘—‘Nn Xn  wy ) }
d my Mh h
R th
Therefore, if Np>> ap mh'then

A A
5 deviYy)
Yn

2 3/,
zYYh Hh /2mh ,2
d My

2.
Note that Ny>>an | mn does not need to hold

true for this process to be viable, as long

2yy,

as a, m, is proportional to Nn.

MODEL SAMPLING WHEN A FEW, VERY LARGE
OBSERVATIONS DOMINATE, AND DISTORT GAMMA:

Sometimes, as in Figures C and D, a few
observations contain a very large portion
of the total to be estimated. When we try
to estimate gamma, instead of obtaining
something in the usual range of values (for
these data, 0.5 to 1.0, perhaps 0.8 to 0.9),
an unusual estimate may be obtained due to
the special nature of these few observa-
tions. (This was the case with Figure D, but
not C.) A case such as that found in Figure
E may vield an estimate of gamma, perhaps
partly due to nonsampling error, that is
negative, which may best be treated as zero,
or perhaps a different methodology should be
used. This is not something one wants to
discover near a data publication deadline if
gamma values have not vet been estimated,
unless it is being used to help identify
nonsampling error. If we treat data with
the largest regressor values as belonging to
a certainty stratum, then the remaining
portion of the population may be estimated
in almost any way, and although errors may
be relatively large for this remainder
portion, cvs which include the certainty
portion may be very small. One possibility
is to observe as many of the largest esta-
blishments as practical, and from among that



set of observations, consider all but the
two of them with the smallest regressor
values as certainties. The remaining two
observations may be applied to the modeling
methodology used in this paper, as presented
in (Royall (1970)). This may provide nominal
estimates without the need for a last minute
review that could delay publication. Test
data could be used to demonstrate this for
any given situation.

If two observations are used for the
sampled portion, gamma will likely be
approximately 1, which may be nearly correct
in the cases of Figures C and D. The
derivation below shows why the estimate of
gamma is likely to be near unity. Also, note
that if data for more than one variate are
being collected, we may be flexible when
noting which observations are to be treated
as certainties, and which two are to be
used to estimate the remainder. That is,
data from a given establishment may be
treated as part of the certainty stratum
for one variate, and part of the sampled
stratum for another variate.

Derivation -
The model sampling in this paper is based
on the following:

Y
Yi= bXj+X;eq; .
As indicated earlier, gamma may be obtained
by fitting a homoscedastic linear regres-
sion to the result of dividing the absolute

Y

values of the residuals by xi to see when

the slope approaches zero. The reasoning
is that i1if each error is a multiple of
a random error, then the absolute values
of the errors, divided by the corresponding
multipliers, should not be increasing or
decreasing with increasing x.

Now, when we only have two observations,

we estimate gamma from Ie°1l=le°2], Thus,

one possibility is eO1=’e02 , and the other

is e01_—_--eo2 In the first case, after
using some algebra to 1) solve for b,

2) set the result equal to the formula for
b which provides minimum error under the
model, and 3) collect some terms, it can

be seen that if Y1/X1=Y2/Xp, then Y=1

is a practical solution. In the second case,
which is the situation to be expected in
practice, Y=1 is, without restriction on v
seen to be an obvious solution. It
however, that the author

or X,
is worth noting,
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did not first notice this as a result of
considering the algebra, but instead found
that in a practical example, gamma was ap-
proximately unity.

(Also, note that the problem of nonline-
arity in these data may best be solved by
treating several elements as certainties.
This would have lead to slightly different
results than those shown below, associated
with Figure G. For that case, note also
that, as can be seen below, a transforma-
tion is not an option.)

INCOMPLETELY SPECIFIED AUXILIARY DATA:
Suppose that we have auxiliary data for
each observed element, with a suitably high
correlation between these data and the
data of interest, but suppose that for the
unobserved elements we only know the total
for the auxiliary data, and the number, or
approximate number of elements in the uni-
verse. As a practical matter, this is the
case in an instance encountered by the
author inwhich data of interest and auxil-
iary data were becoming available for a
number of facilities on one survey, and the
universe total for the auxiliary data is
available from another survey. This does
not affect the estimate of the total for
the data of interest, but does affect cv
estimates, unless Y = 0.5, i.e., unless
the ratio estimate is apropos. In all cases
other than ¥ = 0.5, only upper and lower
bounds on cv estimates are obtainable.
Derivations -

Let CAV1 EC};IZ for the usual case where

we have knowledge of the x; values for all

A2

A2
N elements, and let Cvo =CV for the case

where Xu (the sum of the X; for the ele-
ments not observed for Yi values) is known,
but not the individual X; that constitute

. . A2
Xu yi.e., when i=n+1,N. Further, let Cvy be

calculated using one artificial data point
for all unobserved elements. (Note the poor
notation on page 7649 in Knaub (1990), where
both XN and X-nX were used to designate
what is referred to as Xu here.)

A A
Now, let A(Y):CV1 (Y)/CVZ(‘Y) , so that

we may think of A(7) as the factor which



A A
adjusts cvp (Y) to obtain cvy (7).

[N 2y N 2 n 2-2y |
T x  +HZIx)/[(Xx )
A(T) = i=n+11i i=n+1 i i=1 i ,
N 2Y N 2 n 2-2Y
(X x) +(Z x)/(Zx )
j=n+1i i=n+1 i =1
2y 2Y
where Z X ) =X , summation over
i=n+1 i u

i=n+l to N is for unobserved elements, and
summation over i=1 to n is for the sample.
A(7)is, therefore, the adjustment needed
to convert 6;2 to éb1. Note that A(Yy=0.5)
= 1. For Y<0.5, we have A(Y)>1 , and, sim-
ilarly, A(Y>05)<1

If the ratio estimate (i.e., Y=0.5) can
be used with some degree of comfort, then
estimating the cv is not a particular pro-
blem. Also, when Xu is dominated by one x

N 2y 2Y
value, say x , such that (X x ) =x |,
k i=n+1 i Kk

then A(Y)= 1. But, what if the opposite
extreme is the case? That is, consider X,=

(N-n)x,» where xg=x, for i=n+l,N. In that

case, |f 27-2 n 2-2v 172
| x,  HIN-AZx )

|

A(Y) is | =1
|
|

L 2v-1 2v=2 n 2-2Y
i(N—ﬂ) Xy +(N—n)/(Zx‘ )

Let this be A (Y>0.5 er A (7<0.5) since,
L UpP

for Y>0.5, it is a lower bound on A, and

for Y<0.5, it is an upper bound on A. For

most cases of interest to electric power,

it appears that 7>0.5, so A < A < 1. This

L

can be a very wide interval. Note, however,

that it is not likely that one element will

dominate the unobserved portion of the pop-

ulation. The true value of A is likely to

be much closer to the lower bound in most

cases. As an attempt at a 'reasonable' est-

imate of A, consider A¥, where we assume

X is distributed over the N-n unobserved

u
elements incrementally from (near) zero to
2X /({N-n+1). (FORTRAN code is available
u

A
from the author for calculating cvaX.)

i N 2 n 2-2Y 11/2
SX +(X x )/(Xx )
A(Y) = i=n+1 i i=1 i ,
2Y N 2 n 2-2Y
X }E x V(X x )
u =nN+1i i=1 i
N=n 2jX 2Y
where SX = Z u .

j=1 {(N-n+1) (N-n)

EXAMPLES OF FORTRAN/MODEL OUTPUT:

A) From Figure C (nominal case - small n) -
N = 93; census result: Y = 751123;
n=5¢%¢i.e., 5 'largest'):

gamma 0.80 0.85 0.90

b 1.0632 1.0628 1.0623

est. of Y 751119 751119 751119

est. of cv 0.55% 0.65% 0.79%

b for le | 0.168 -0.030 ~-0.238
0i

B) From Figure G (incompletely specified
auxiliary data) -

(Note: This comes from a set of prelimi-
nary data which needs to be edited.
Also, N is approximate.)

N = 925; n = 325:

gamma 0.85 0.90 0.95
b 0.000256 |0.000267}0.000278
est. of Y 19243 19591 19956
est. of CVo 20% 28% 38%
est. of AL 0.16913§ 0.12610] 0.09340
est. of CVoAL 3.6% 3.5% 3.5%
est. of AX 0.17569 0.13168| 0.09810
est. of CvoAX 3.5% 3.6% 3.7%
b for e | 1.78 -0.175 |-1.99
__________ 0i x10°10  |x10710 |x10710
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GRAPHS: e
A relationship between data of interest (on the .yt
y-axis), and auxiliary data (x-axis) is shown in “,é
each graph. Figures A and B show plant capacities "
used to estimate the total cost of operating. !
Figure C shows current and previous period sales et
volumes, and similarly for revenue in Figure D. N
In Figure E we see current and previous period “_f
fuel volume receipts. Figure F shows plant capa- s
cities used to estimate fuel volume receipts. In ny
this case, as with surveying generation volumes, s
model sampling may be used to impute for the §
smallest plants, rather than insist on a complete e
census. In Figure G, sales to utilities by non- T e e
utilities are shown to be a help in estimating [
total capacity dedicated to the power grid. nort —
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