
Regression Inference on the National Health Interview Survey- An Empirical Study 

Van L. Parsons 
National Center For Health Statistics, Hyattsville MD, 20782 

Key Words: complex-survey, SUDAAN 

I. Introduction 

The National Health Interview Survey (NHIS) is an 
annual survey which monitors the health of the 
Nation. In analysing data from this survey, regression 
analyses are often performed to provide insights about 
the population. In the past, the lack of commercially 
available computer software for complex-survey design 
data had either limited the scope for such analyses or 
forced the analyst to use regression software intended 
for a controlled experiment, e.g., SAS PROC GLM or 
PROC REG. 

Recently, Research Triangle Institute (RTI) has 
developed commercially available software for the 
analysis of data from complex surveys: SUDAAN 
(1989). This software uses Taylor-linearization 
methods to estimate variances, and extends the 
previous RTI packages (SESUDAAN, SURREGR, 
RATIOEST) to include a broader class of hierarchical 
nested designs. The old RTI software was restricted to 
designs supporting simple random sample (SRS) 
within each level. In particular, SURREGR, the 
program for regression analysis, required an 
assumption of only one level of sampling; the variance 
estimator was based upon the functional form of the 
usual estimate of SRS variance. The new software 
allows for more efficient use of design information; 
variances for the NHIS can now be computed using a 
linear combination of Yates-Grundy-Sen variance 
formulas (see Cochran 1977, page 261 ) and SRS 
variance formulas. 

While regression software for complex survey 
designs is available, it may be more cumbersome 
and/or costly to run than software based upon 
controlled experiment data. Since the functional form 
of regression parameter estimators are identical for a 
weighted least squares (WLS) regression and the 
complex-survey design regression, many analysts feel 
a WLS can be first run and then a common deflation 
factor applied to all "F-tests" to compensate for the 
survey design. Also, some analysts feel that  the 
weights can be ignored (i.e., set to unity), and an 
ordinary least squares (OLS) regression can be used to 
find relations among response and predictor variables. 
See Korn and Graubard (1991) for related discussion. 

There seems to be no universal consensus as to the 
"correct" method for complex-survey data analysis. 
The concept of design-based versus model based 

regression analysis has been discussed elsewhere (see 
Nathan (1988)), as have the issues involved in 
informative versus non-informative survey designs (see 
Skinner(1988) page 146). 

This paper presents NHIS data analyses using 
some commonly assumed data structures. The work 
presented here is not intended to be comprehensive in 
scope. But the data presented here was in response to 
the many inqueries NCHS receives on how to analyze 
the NHIS over time. The data sets discussed tend to 
have large samples of individuals, but the data tend to 
be highly clustered, much more so than in a 
cross-sectional analysis of an annual survey. 

In the following, regression analyses are performed 
using the NHIS design structures and comparisons are 
made to models with designs applicable to 
non-complex-survey software, in particular, OLS and 
WLS. Typical NHIS realizations are simulated over a 
10 year period, and regression analyses using different 
conceptual models are considered. 

II. Conceptual 1985-1995 NHIS Sample Design 

A detailed description of the NHIS design is given 
in Massey et a1.(1989), but for practical purposes, the 
design can be conceptualized in a classical hierarchical 
framework. A brief outline is now presented. 

The strata/sampling units of the multistage NHIS 
Supplement have the following hierarchy: 

Stratum : 52 se l f - represen t ing(SR)  
non-self-representing(NSR) 
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Primary Sampling Unit(PSU): select 2 per NSR 
stratum using Durbin's method 

Substratum: partition of PSU into at most 3 parts for 
differential sampling rates (for subdomains of interest) 

Survey-segment: cluster of housing units to cover 10 
years of sample; the entire unit is selected 
systematically within substratum 

Annual cluster: a random mechanism defines 10 
subclusters (of about 8 households each) with the 
survey-segment for each annual survey 

Sample household: a sample of households (usually all) 
is designated for interview within each 1 year cluster 
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Sample person: for the Core NHIS, all persons within 
a household are interviewed; for a typical 
Supplement, one sample adult per household is 
selected for interview. 

The systematic sampling mechanisms used to define 
sample at the second and higher sampling levels do 
not admit usual variance estimator formulas. The 
following assumptions are made to allow "classical" 
variance estimation formulas to be used: 

1. It is assumed that  the sample survey-segments 
are the result of a simple random sample with 
replacement (SRS) and 

2. It is assumed that  all stages of sampling within 
a survey-segment will produce an unbiased estimator 
of annual cluster total for any year or aggregate of 
years. 

Given the above framework, a simplified design 
structure is to consider the NHIS as having 2 
sampling levels: first, select PSUs, and then select 
survey-segments. Each sample survey-segment has an 
unbiased estimator of total for individual years or 
aggregate years, and from these components the usual 
Horvitz-Thompson estimator of population total can be 
computed. This simplified design will probably lead to 
slightly conservative estimators of variance. Also, as 
mentioned in the introduction, the concern is with 
combined years of NHIS data. To work within the 
constraints of the NCHS computer system (CPU time, 
memory) the study was restricted to NHIS Supplement 
designs. 

III. Regression Analyses 

To justify the modeling of a regression in a finite 
population, it is often postulated that the vector of 
population values, Y~ can be expressed as the 
expectation of a super-population: EY = X~ where ~ is 
a p-vector of unknown parameters, and X is a 
p-column population design matrix. The population 
least squares estimator of ~ is 

b = (X~X)X~ and the sample survey estimator is 

b = (X'WX)X~ry~ with W a diagonal matrix of 
weights, where the X and Y are the sample 
realizations. (If rank X < p, then we have a non-full 
rank model. In this case, generalized inverses are 
used, and b is referred to as a solution.) 

The estimator b under the finite population 
sampling approach is identical to the WLS estimator, 
but distributional properties of b depend upon the 
probabilistic structure imposed by the sample design. 
Two recent references on complex sample survey 
regression are Skinner, Holt and Smith (1989) and 

Kott (1991). 

Typically, survey data is analyzed using one of the 
analysis structures of Table 1. Analyses may be 
performed weighted or unweighted; in the latter case, 
the matrix W is replaced by the identity matrix I. The 
variance-covariance matrix for b, V(b), depends upon 
the imposed sampling structure. For model-based 
analysis, homogeneous pure error assumptions result 
in WLS or OLS estimates of variance typically 
produced in standard computer software like SAS 
PROC GLM or PROC REG. For the complex-survey 
and with replacement designs, the estimator b is 
linearized 

bL = (X'WX) ~ wi ~ ( Yi  " x~'b ), 

where x~ = column of predictors, and then this new 
variable is substituted into the variance formula for an 
estimator of total. Complex-survey designs treating 
the weights as unity are discussed in Korn and 
Graubard (1991), but are not discussed here. 

A with-replacement (WR) design assumes a 
heteroscedatic error structure of the yi's under 
sampling with replacement. If W = I, then the 
variance estimator of b corresponds to the SRS 
linearization estimator described in equation (3.21) of 
Skinner et. al. (1989). The SAS procedure REG (see 
page 660 of SAS (1985)) can compute such a WR- 
design variance, though it seems PROC GLM does not 
have this option. The SUDAAN version 5.50 software 
procedure REGRESS computes an estimate of V(b) for 
a broad class of hierarchical nested designs. For the 
NHIS complex design, the variance formula for total is 
described in Massey et al. (1989), equation(7), page 32; 
this is generated by the S U D A A  software. 

Proc REGRESS in SUDAAN provides the estimated 
V(b) matrix for both full and non-full rank design 
matrices and also performs some basic hypothesis 
tests, but its output is quite limited in scope. It does 
not have all the special options of SAS procedures 
GLM and REG. As such, the analyst must often do 
additional processing outside the SUDAAN 
environment. Furthermore, the SUDAAN procedures 
take considerable mainframe computer CPU time (see 
Carlson and Cohen (1991)). Mainframe usage 
constraints of cost and time will restrict many analysts 
from intensive SUDAAN runs on large data sets. 
Because SUDAAN is still in the development stage, 
many future improvements may be anticipated. 

Most statisticians would agree that  a regression 
analysis which incorporates the complex-survey design 
into the sampling structure is preferable to one that 
does not, though there may be disaggreement on the 
methodology to handle weighting and clustering. In 
this paper the impact of imposing the simplified 
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sampling structures of Table 1 on data from an NHIS 
survey is considered. Our general objective is to 
consider tests of hypotheses of the form 

Ho: E(Kb) = 0 were Kb is estimable, and K is of full 
row rank. 

The generic "F-test" statistic to be considered is 

F = c * b'K'(K~K')Kb / df(hypothesis) 

where ~: is a Covariance mat r ix ,  c is a constant, 
and df(hypothesis) = rank(K) 

In our tables we will refer to "F" statistics, defined 
according to the imposed survey structure: 

Design Based: 

WALD-F: ~: = V(blfull complex design), c = 1 

WR-F: ~: = V(bl simplifed WR design), c = 1 

SAT-ADJ-F: ~ = V(blsimplifed WR design), 
c =second-order Satterwaith correction, a function of 
the eigenvalues of inv( V(b I WR design) ) * 
V(blcomplex) (see Skinner (1989) page 43 ) 

Model-Based: 

IID-F • 2: = V(b I WLS homogeneous error model), c =1 

The Covariance matrix, 2:, will be estimated from the 
data. 

SUDAAN produces WALD-F and SAT-ADJ-F for 
some select K. More importantly, SUDAAN can create 
an output file consisting of b, estimates for Var(b I full 
complex), Var(b I simplified WR design), (XWX), and its 
generalized inverse, Ginv(XWX). In this paper these 
output matrices were used to compute (outside the 
SUDAAN environment) all the "F" statistics in our 
tables. Note, the homogeneous pure error variance 
can be obtained from the V(bl simpified WR design) 
output matrix, thus, SAS PROCs GLM or REG were 
not used for any of the runs. The model-based results 
were confirmed by cross-checking with these SAS 
procedures on some smaller data sets. 

IV Examples. 

The data for the examples came from 3 combined 
years, 1987-1989, of an NHIS supplement ( one adult 
per household ) sample for persons aged 65 and older. 
This data set had 21,369 observations. We considered 
the regression: 

Response: Y = Square Root( number of doctor 
visits in year) 

Predictors: 

Intercept 

Class variables and levels - year(3), region(4), 
poverty status(2), sex(2), race(2), (sex*race)(4) 

Continuous variables- age, (ratio of body weight 
to height), size of psu, and 
combined linear + quadratic variables for family 
income, education and family size 

This is a non-full rank model; there are 27 
parameters,  but the rank of the X matrix is 19. The 
results of the different regressions are in Table 2. 

Comments on Table 2: 

1. Except for levels Sex and Race, the F-tests are 
testing the hypothesis H 0 ' specified level parameters 
- '0.  

For Race or Sex, a test of hypothesis is made on a 
reduced-model where the interaction (Race*Sex) = 0 by 
constraint. The reduced population parameter  of 
equation (103) of Searle (1971) was considered and 
then estimated using the sample data. Of course, in 
the presence of significant interaction, the analyst 
would disregard the reduced test as meaningless. 
These F tests correspond to the SAS Type-II F tests. 

2. If the hypothesis degree of freedom = 1, then the 
Wald-F = SAT-ADJ-F. 

3. IF the null hypothesis is true, the F statistic 
should be close to one. In a controlled experiment 
with homogeneous normal errors, we have the IID-F 
has an F distribution with (hypothesis, sample size - 
rank(X) ) degrees of freedom. For this complex design 
it is not clear what denominator degrees of freedom 
(df) should be associated with the estimator of 
V(b I complex design). Often, the rule of thumb is df = 
( number PSUs - number of strata). In our survey each 
NSR s t ra tum would have 1 associated degree of 
freedom, but it would be wrong to define one PSU per 
SR s t ra tum giving 0 df's. It would also be misleading 
to use the number of sample survey-segments within 
the SR strata, about 3000. Unfortunately, SUDAAN 
computes denominator degrees of freedom solely on the 
listing in the NEST statement;  our specification would 
result in the 52 SR strata  each having 0 df, and 
consequently, the p-values computed in SUDAAN 
might be invalid. 

4. In this example, all the V(b) matrices had about 
the same level of stability whether we used the 
complex, WR or IID designs. The stability ratio: 
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SQRT( min( di ) / mean(d) * (r+1)/2) where d,d2,...,dr 
are the eigenvalues of Vr(b), the full rank submatrix of 
rank r of V(b), was about .08 for each of the designs we 
ran. We experienced no numerical difficulty with 
matrix inversion needed for the tests. 

Impact of Analysis Structure on Inference: 

Analysis using .05 level tests were considered. 
Since the sample size is so large, the "F" values for the 
WR designs and the IID model designs were compared 
to a chi-squared distribution. For the SAT-ADJ-F and 
Wald-F it is really not clear what value to use for 
denominator df (den-df), so that  the minimum df for 
the denominator required to reject the hypothesis, i.e., 
minimum {den-df : P( F(num-df, den-df) > observed ) 

< .05.} was computed. 

For example, the SEX*RACE interaction measure 
of 4.2 would be significant for the SAT-ADJ-F if the 
den-df > 28. The significance or non-significance of 
the following predictors would most likely be judged 
the same regardless of imposed design structure: 

Not significant: Year, Income, Poverty 
Significant: Age, (Race, Sex, Interaction), Size of PSU 

Inference on the other predictors is mixed. The 
inferred models will be (denoting C as the common 
values, significant for all design structures) 

SAT-ADJ-F Y = C 
WR-F (weighted) Y = C + (Family Size) 
IID-F (weighted) same as weighted 
WR-F (unweighted) Y = C + (Wt/HT) + (Region) 

+ (Education) 
IID-F (unweighted) same as weighted 

Caveats: 
(1) These results were produced without checking 

outliers, and the usual diagnostics which one performs 
in a data analysis. 

(2) Under a complex design, the exact distribution 
of the "F" statistics are unknown. 

The aged 65+ regression analysis demonstrates that 
the different analyses result in different inferences 
about the population, but questions of the actual 
significant level and power of the tests cannot be 
answered. A simulation would require a generation of 
samples at all levels of sampling from an appropriate 
universe file. Such a project would be quite involved. 

V. Simulation of data for a 10 year Supplement 

To better understand the impact of the clustering 
effect on regression analyses over time, 10 years of 
NHIS Supplement data were generated. To keep the 

problem manageable, the simulation was restricted to 
one of the four regions of the U.S. (West) rather than 
the entire U.S. A total of 8 data sets were generated 
using the following model: From the 1987 NHIS 
sample PSUs, survey-segments, and households were 
fixed. The households were indexed by race and sex of 
a randomly chosen adult. For each of 10 years, a 
household response of random household size (using a 
race distribution) and a response with distribution a 
function of sex and year: 

E( response ) = tt(sex) + .01*t~(sex) * (year-l), 
Var(response) = o2(sex) was generated. 

A parallel profile model by year and sex as 
generated. No race or (race*sex) factor was present. 
Responses consisted of 4 normal and 4 gamma 
variables, N1-N4 and G1-G4 respectively, where the 
index represents increasing correlation within the 
survey-segments. Note: these realizations will have 
less variability over time than would be observed in 
practice. 

Simulation results: The design structure is identical 
to that  of aged 65+ example discussed previously, but 
now we have about 100,000 observations, 22 SR 
Strata, 11 NSR Strata with 2 PSUs each, and 1600 
sample survey-segments. The regression model run 
has predictor variables: year, race, sex, and (sex*race). 
The types of tests run are comparable to those 
discussed in the aged 65+ example. The tests for 
(sex*race) interaction, race( reduced model with no 
interaction), and year are presented for the 8 different 
simulated variables in Tables 3-5. The test for sex was 
highly significant for all analysis structures and is 
omitted from the tables. 

Comments: 

1. For all 8 runs, the sex*race interaction would be 
judged insignificant (at level .05) when making 
inference using the complex survey SAT-ADJ-F. For 
simulations N3 and N4, the IID-F and WR design 
gives significant results, both weighted and 
unweighted for N3, and unweighted for N4. The 
variables N3, N4, G3, G4 were generated to be 
correlated within survey-segment. The hypothesis of 
an independent error structure in the analysis is 
violated in the WR and IID models. 

2. In the presence of no sex*race interaction, one 
often tests no race effect subject to sex*race interaction 
= 0. The SAT ADJ F tests were all insignificant, but 
N4 which had insignificant weighted IID-F and WR-F 
statistics had a significant race effect. 

3. The test for year effect will be significant in all 
cases so long as we could assume 10 or more degrees 
of freedom associated with the est imated 
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Variance/covariance matrix. 

VI. Conlusions: From the examples, it is apparent 
that the design and weighting structure imposed upon 
a complex survey for data analysis may affect the 
resulting inference. It appears that imposing the full 
complex design structure on the data makes rejection 
of a null hypothesis more difficult than the other 
design structures. When the data exhibits a large 
amount of clustering, the IID and WR methods tend to 
under-estimate variance, and the "F" tests may be 
misleading. Data analysts should apply simplified 
design structures to complex survey data with caution. 
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LEVEL 

TABLE 2 

F STATISTICS 

COMPLEX ~ COMPLEX MODEL 

DESIGN DESIGN DESIGN 

DF DF ~/ALD WALD SAT | .  | .D. 

Hyp SAT F F ADJ F F 

W Regression 18 15.5 10.0 12.4 7.6 12.9 

U 18 11.7 12.7 

W Year 2 1.9 2.1 2.9 2.1 3.0 

U 2 1.2 1.2 

U Age 1 1.0 79 108 79 114 

U 1 63 67 

W Sex 1 1.0 18 26 18 28 
U 1 35 37 

W Race 1 1.0 5.5 7.0 5.5 10.9 
U 1 12.7 16.7 

W Sex*Race I 1.0 4.2 4.9 4.2 6.I 

U I 10.4 14.6 

W Wt/Ht I 1.0 1.7' 2.0 1.7' 2.3 

U I 6.8 8.0 

w Income 2 2.0 1.0 1.3 1.0 1.4 

U 2 2.2 2.3 

W Education 2 1.8 1.9 1.3 1.2 1.4 

U 2 3.4 3.7' 

W Famity Size 2 1.8 2.7 4.1 1.8 4.5 

U 2 1.4 1.5 

W Size PSU I 1.0 6.4 11.0 6.4 10.3 

U I 14.5 13.7 

W Region 3 2.9 1.3 2.5 1.5 2.4 

U 3 2.8 2.7 

W Poverty I 1.0 0.1 0.1 0.1 0.2 

U I 0.9 1.0 
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TABLE 3 
TEST : NO SEX*RACE INTERACTION 

TABLE 4 

TEST : NO RACE DIFFERENCE 

F STATISTICS F STATISTICS 

COMPLEX WR COMPLEX MOOEL 

DESIGN DESIGN DESIGN 

COMPLEX t~R COMPLEX MOOEL 
DESIGN DESIGN DESIGN 

DF DF WALD WALD SAT I . I . D .  DF DF WALD WALD SAT I , I . D .  

VARIABLE HYP SAT F F ADJ F F VARIABLE HYP SAT F F ADJ F F 

GI W I I 0.0 0.0 0.0 0.0 

U I 0.1 0.1 

G1 ~/ 1 1 0.7 0.7 0.7 0.6 

U 1 0.0 0.0 

G2 W 1 1 0.3 0.5 0.3 0.5 
U 1 0.8 0.7 

G3 W 1 1 1.1 1.8 1.1 1 .7  
U 1 1.6 1.4 

G2 W 1 1 1.6 2.8 1.6 3.0 

U 1 0.3 0.3 

G3 W 1 1 0.3 0.7 0.3 0.7 

U 1 0.5 0.5 

G4 W I I 1.2 3.2 1.2 3.0 

U I 0.8 0,7 

G4 W I I 0.4 1.2 0.4 1.2 

U I 2.7 2.7 

NI W I I 0.2 0.2 0.2 0.1 

U I 0.1 0.1 

NI W I I 2.0 2.1 2.0 2,1 

U I 0.7 0.8 

N2 W I I 0.0 0.0 0.0 0.0 

U I 0.5 0.5 

N2 W I I 0.8 1.1 0.8 1.1 

U I 2.9 2.9 

N3 W I I 3.2 5.4 3.2 5.0 

U I 5.1 4.7 

N3 W I I 1.4 2.4 1.4 2.5 

U I 1.5 1.5 

N4 W 1 1 1.0 2.5 1.0 2 .3  
U 1 8 .0  7 .3  

N4 W I I 1.8 4.1 1.8 4.2 

U I 5.3 5.5 

TABLE 5 

TEST : NO CHANGE BY YEAR 

F STATISTICS 

COMPLEX t~R COMPLEX MODEL 
DESIGN DESIGN DESIGN 

DF DF I~ALD WALD SAT I . I .D, 

VARIABLE HYP SAT F F ADJ F F 

GI W 9 7.8 5.0 5.5 3.5 5.4 

U 9 5.7 5.8 

G2 t,/ 9 8.5 3.0 4.2 3.2 4.2 

U 9 5.8 5.9 

G3 W 9 7.4 3.5 4,8 3.2 4.9 

U 9 4.3 4.4 

G4 W 9 7.1 3.6 5.1 3.3 5.1 

U 9 3.6 3,6 

NI W 9 8.5 4.2 5.2 4.0 5.2 

U 9 4.4 4,5 

N2 W 9 8.4 5.3 7.9 6.1 7.9 

U 9 6.3 6.2 

N3 W 9 8.0 4.1 5.2 3.5 5.1 

U 9 5.4 5.4 

N4 W 9 8.3 5.1 4.6 3.9 4.6 

U 9 4.2 4.2 
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