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SUMMARY

Estimating regression coefficients requires var(y).
One often assumes normal, binomial, or Poisson
distribution for y to estimate its moments. Such a
simple assumption on distribution is not correct for
a complex data y such as the sample deaths obtained
by Vital Statistics Division at National Center for
Health Statistics, and therefore the variance should
be adjusted, including the error arising not only
from random death, but also from other sources such
as sampling, classification, and weighting. This
paper presents the variance of y obtained according
to four sources: death, sampling, classification, and
weighting, and obtain the regression coefficients
using this result. The estimator of regression
coefficients is approximately unbiased and has a
special form of limiting variance.

1. INTRODUCTION

Dichotomous data set, consisted of an outcome
variable, y, and a p x 1 vector of covariate, x,
observed in the ith month, i =1, ..., M, for the jth
age-sex group, j = 1,...,, J, and for the hth cause or
category, h = 1, .., 1 arise often in the death rate
analysis. To simplify the notation, we set J; = J and
r; = r without loss of generality.

Typically, one may be interested in the pattern of
rate changes in the dependence of outcome on the
covariates. For instance, death rates of outcome
variables y’s might depend on such covariates x’s as
age, sex and race for certain causes of deaths.

In a generalized linear model, the independent
observations on each independent subject can be
linked to a variety of continuous or discrete outcome
variables through a typical assumption of
distribution. However, when dependent observation
y’s are correlated, Liang and Zeger (1986) used a
model corrected for time dependence in a
longitudinal data. Thall and Vail (1990) presented
a covariance model for overdispersed and correlated
y’s. This research further extends these results to a
covariance model for complex data that are sampled,
classified, and weighted. We apply resulting
covariance to regression model.

1.1 POISSON DEATHS
The occurrence of death may be distributed as
Poisson or Binomial, and both distributions
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are approximated by normal distribution for a large
number of occurrences. We assume that D, deaths
occur among P, people according to Poisson
distribution.

1.2 SAMPLE DESIGN

A sample of d; deaths is selected from all D,
deaths in the i-th month according to a certain
sample design. Denote design variable by z,. It may
be a simple random sample, or stratified simple
random sample, or cluster sample, with or without
replacement, or any other design used to take a
sample from a well defined population D,

1.3 POSTCLASSIFICATION

After a sample is taken, d; sample deaths are
postclassified into J age-sex groups and r causes,
giving d, deaths for the jth age-sex group, and died
by cause h. Denote poststratification variable by
Zijhke

1.4 WEIGHTING

Sample data are often weighted to estimate
population parameters., Weighting takes place in
various forms, and we denocte the weight by w. The
weighted death rate, y,, is the poststratified yearly
death d;,, multiplied by appropriate weight w, that
is

Yin = (365/a)(Dy/d) (dy, /P) = Wi dijh

where w; = (365 D)/(a; d; P), which is assumed to be
known at this time. & = 28 for February, 30 or 31
for the rest of the months, D/d; is the sampling
weight, and P, is the population in the month i.

1.5 OBJECTS

We assume that occurrences of deaths in each
month are independent. Let y; = (yiyy, .., Yy oo
yus)' be 1 x T vector (T = Jr) of the weighted death
rates. The primary purpose of this paper is to
present a tractable parametric form of the cov(y, or
V,, that accounts for four impacts: occurrence of
deaths, sampling, classification, and weight.

1.6 CORRELATION

We can consider dependence among the ementary
units in the same age-sex group for the persons of
same age-sex group may likely have common cause
of death for some typical diseases.

We assume a model for the correlation between
the members within a age-sex category. For the
k-th and k’-th units in the j-th age-sex group as



Tt (1 )] nﬁjh

(3)  E(Z;3mZi5n0r) =
(1-6) 7y,

where 8 (0 < 8 < 1) is the correlation between
these two members, and this model has been used
in other research (see Choi and McHugh, 1989). The
first part is the probability that both members fall in
the same cell (h=h’), and the second part is the
probability that two members falls into two different
cells (h=h"),

In Section 2, we obtain the covariance V(y) when
multiplicative stages of errors are assumed. In
Section 3, we present the estimation of the
parameter p with covariance derived in Section 2.

2. MULTIPLICATIVE ERROR MODEL

2.1. ASSUMPTIONS

Consider three stages labelled 2, 1, and 0.

The bottom stage 0 is the occurrence of death (8, =
1 if the k-th person died among the P, people in the
month i, and = 0 otherwise (1 s k < P))). We assume
that §,’s are independent with Poisson mean

;= D/ Py

The stage 1 is sampling (z; = 1 if the k-th person
who died is sampled and = 0 otherwise) and has
error s;. A sample of d; is obtained from D,

The top stage 2 is the classification (z, = 1 if the
k-th person who died and sampled, is classified into
the j-th age-sex and cause h, and = 0 otherwise) and
has error ¢y, A sampled d, is classified into d,y’s.

. _ p;
Let the variable y,, = Zk=1
Yijnk = Wy dijhk and dijhk = Sk Zik Zije
dy, = Ziz L di We consider the weights w;s

are fixed numbers, and dy, s are the variables
(1=sk < P).

We adopt the symbols E, V, and C for expectation,
variance, and covariance operator respectively.

Conditioning on the s; and cy,, we assume an
error model at the stage 0 for the data d:

Vi Where

) E(dijhk /Sik Cijhk) = M Sik Cjnx
V(dighi /Six Cgnid = M Sik Cighice

We also assume that dy,’s are conditionally
uncorrelated, and that the s,’s and cy,’s are
mutually independent with

(5) E(cijhk) = “ijzh = Dijh/ D, E(sy) =d/D,
Ve = 0y, Visy) = S

and the marginal E(d;) = d; Dy,/D,.

Thall and Vail (1990) and Morton (1987) used
somewhat similar Poisson model for overdispersed
data. Chiang (1967) obtained the variance based on
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non-multiplicative model.

If the classification errors at the stage 2 behave
according to adjusted multinomial with model (3),
we may write its variance and covariance:

6 V(cijhk)=0h2= T (1-T0y5),
Cleink Conk)=Onn =0y, (1-my,) for h=h’ and k=k’,
Cleypk Ciypid= Onw=- My, My for h=h’ and k=k’,
CCyjnk Cgni)= Ounr= -85, My for heh’and k=,

If the sample is taken by simple random sample
without replacement, then we can write the variance
and covariance of error at stage 1:

(1) V(sy) = 8= (D/D-D)dy/DY(A-dy/D)
Clsi si) = Sy = - 4Dy &)/ (D (D-1)).

However, the form of these variance and covariance
depends on the sampling design actually used and
type of variable.

2.2 A VARIANCE-COVARIANCE MATRIX V,

From the above assumptions, we present a
variance-covariance matrix V; or C(y;). The V,is a
block diagonal matrix with J (r x r) submatrices V;;,
«, Vi «y Vi; on the main diagonal, and zero for all
elements for j # j’. The inverse of V; is obtained by
inverting each submatrix V; Following the
conditional variance and covariance (Appendix 1):
(®) V(yymd= wi'lw(d/Dpry,

+ /J,iz{siz (th + n-u-hz) + (d,/Dl) 20}, 2}] )

) CWii, yiid= Wy (d/ D)’ Gy
=- Wij2 (y df Di)2 Tosh Tijn

(10) C(Yijhk yijh’k’) = Wij2 Miz [C(cuhk cijh'k’)
{C(sy, 53 +(d/DY%} + Clsyy 53 T ey

2 2 2
=Wy M (ChrSii + Opp(dy/DY* + S Tih nijh’]y

(1) Clyipn Yigmd)= W' 57 { CGic S By Cipad)
+ (dyD)? Clegak Cynih

= Wuzﬂiz{sﬁ(chh + nijhz) + (d/D)* oy, ).

Summing over the subscript k (1 = k < P) gives

variance-covariance matrix V; with V(y,) on the

diagonal and C(yy, yy,) on the off-diagonal:

(12) Vo= PVl + PiPrDCE i Yinw)

= Piwﬁz[“i(di/ Di)nijh+/"('i2{si2(0h2+nijh2) +(d/ Di)20h2}]
+ Pi(Pi'l)wijZ[:u'iz{sii(ohh+nijh2>+ dy/ Di)z Oy /]



13) C(yuh yﬁhy)= PiC(yﬁhk Vi)
+ PP-1)C(yynr Vi)
= P, w,'u’(d/D)’o,,
+ PP 1w (1, {Sy(ohh”+ 71, 75,) +(d/D)* O]

Using the notations (6) for ¢,? o,,, 0, and o,,» and
(7) for 52 and S;, and defining

Qy = Piwijz[:u‘i(di/ D)1 + pd/D} + 1S,
+ PP Dw,u,0(S;+(dy/D)?),

B, = P, wy? u(@/D)%+ P (P- Dw, ', [(@/D)?%6-S,(1-0)],
we can express

(14) V,= D+, UL

where D is diag(oym,) and U'=(m,, ..., ).

Denoting u,, = “ijh/(% ) and u, = Uy +o+ U,
V;; being nonsingular, Householder’s formula yields
(15) Vy'=D'-By1 + yu,) D' UU D,

Note that V;;becomes the variance-covariance matrix
of multinomial variables if o;; = 1 and B = - 1.

a; and B, reflect the impacts of death process,
sampling and weighting.

Considering only sampling and classification
variable for given death records, we can simplify the
multiplier oy = - By =w,® d; [1 + 8(d; - 1)] which
reflects impacts of weighting, sampling, and
correlation of members on the variance. Further if
8 = 0, or no correlation among members, o = - B; =
d; w*. The Vj can also be obtained by assuming
that the data are not weighted by setting wy = 1.
Other sample design can be easily reflected on the
variance, using the conditional argument.

Therefore it is essential to use correct variance in
the estimation of regression coefficients. When we
consider each yy, as function of ratio, dy/d, it is
somewhat more involved as both d, and d, are
random variables.

3. ESTIMATION EQUATIONS

3.1 NOTATIONS

Let yi = Gy v Yo v ¥’ (T = J1) of the
weighted death rates with mean m, = (my,,...,my,...,
my)’, and X; = (K5, -y Xy o Xip) be the px T
matrix of covariates, each xy, = (X1, oy Xinp ooy Xignp)-

We require that some link function g, linking each
mean my, = E(y;,) to p x 1 parameter vector p = (8,
or By, ooy B glmy,) = Nign = Xy B, where Ny 1s @
correct linear function. Denote predictor n;, =
Mty Migs +ooMi)™
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3.2 ESTIMATION

Often there is no probability distribution available
on the variables, especially complex survey data;
however, under mild assumptions, quasi-likelihood
function has similar properties as those of ordinary
log likelihood. @ We assume that y,,..,y, are
independent and (14) is correct variance.

Let S; =y, - m; with E(S) = 0, and V;be the Tx T
matrix of V(y). X; = ony/op = Xi;y,..., X ispx T
matrix, and the 4, = diag(dm,/on,)= diag(A) is Tx T
matrix. P; = dm/ap = A; X,

The entire set of data is expressed as y = (y,, ...,
Yis¥w) 18 @ 1 x A vector (A = MJr), and X = X, ...,
X, ..., Xy’ is p x A matrix of covariates, Sis A x 1
vector of (y - m), A is A x A matrix of diag(A), P = A
X. Vis A x A matrix of diag(V).

Following the quasi likelihood (McCullagh and
Nelder, 1983), the p estimating score equations for
regression parameters p are given as

M
(16) U(B)=Y. P/ Vi' 8, =0
i=1

B is defined to be the solution of equation (16). We

obtain the estimator B of p with sample data.
Approximate unbiasedness and asymptotic

Normality of B may be stated as follow:

Define H = MY%( ﬂ - B). H can be approximated by
It A where A = M2 U(f}) and T = {U(B)/ap}M
from Taylor expansion of U( B) around true B.
Under certain regularity conditions (Thall and

Vail, 1990), H is asymptotically Normal mean 0
and variance

amn CH) = T'' cov(A) T,

where cov(A) = M 3P V,'cov(y)V,? P, and
I'= M'Z(PTV,!P).

Thall and Vail (1990) use overdispersed Poisson
model, while current V uses the error model for
complex data. If we assume cov(y,) = V, (17) takes a
simple form C(H)= I''. When a link function is
specified, we can obtain the explicit form of V,.

Variance of B may be correctly estimated by
replacing cov(y) with S%S, 8%S, may be more
efficient then ‘71. when the model used for the
derivation of V, is not correct.

3.8 ITERATIVE METHOD

We begin with BO substantially close to B in
(18). The sequence of parameter estimates
generated by Newton-Raphson method with Fishers



Scoring is

(18) Br=p°+(BTO*H) (BT V1S,

The estimate B may be obtained by iterating until
it converges. The convergence criterion is to stop
the iteration at (r + 1) step when

MAx| (B - B7) /B7|< 1075,.

Provided that the eigenvalues of BTV !5 are
sufficiently large, the second term of (18) is
negligible. Then, we may take the first round

approximation Bl=ﬁ.

When V, is set equal to usual multinomial form
and wy = 1, existing GLIM software provides the
estimates of the parameter .

4, COMMENTS

More study has to be done to complete this
research. First the equation (17) has to be proved in
a form of theorem. Secondly we need to illustrate
this result with NCHS data as we have originally
planned.

The variance models used for the stage 1 and 2
can be replaced if necessary. Especially stage 1 of
sampling has to be changed when other sampling
design is used. The adjusted multinomial model for
stage 2 also needs to be changed if the classification
rule is different,

The regression coefficient is properly estimated
only through the correct form of covariance matrix.
Although data analysis at NCHS assumed a simple
distribution, this result can be used to reflect the
distribution of NCHS data better for statistical
inference. )
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APPENDIX 1

The subscripts 2, 1, and 0 under E, V, and C
symbolize the respective operation conditioning on
stage 2, 1, or 0.

(AL1) V(yy)= wy* Vdgw)
= w2 [EE,Vo(dyn) + EaViEo(dg) + VoEEg(dy)]
= wy' (BB, (u; sy Cynid + Eo Vil sy Cyd)

+ VB (uy sy cgndl
= w,” [By(u(dy/Deg)+ Eg(u’S e yi2)

+ V,(ui(di/ D],
= Wy [u(d/D)my+ " S E(Cy D) +1,7(d/DYPV ey ),
= w,’ [I'Li(di/Di)nijh+.u'i2{Si2(0h2+nﬁh2)+(di/Di)2 o2 M.

Letting D/(D;-1) ~ 1 for large D, in the definitions
shown in (7), we can write (Al.1) as

= w{u,(d/D)my, + w820, + 1, +(d/DY’o, ),

ij

(A12)  Cym Vi) = Wy® Cllimic Ay,
= w? [E,E, Cy(dyy dyn) + E; CHE(dy,) Eoldyp)}
+ Co{E\Eo(dyni) EEo(din}];
where the first term E,E, Cy(d;,, i)
= E,E,(0)
= 0;
the second term E,{C,[Ey(d) Eo(dy)l}
= B, Cylu i Sio M S Sa
= By [1® Cynk Cnne {E,(s;)-(d/D)* 1

2 2 .
=B, [y Cink Cijhk Oh 1=0;
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the third term C; (E,E(dy),E1Eo(dij)]
= C, [(d/Dwy Cishiw d/Dw Cyndy
= @/DY’* u’ Cleynk Cywds
= -y di/Di)z T g

Combining these three terms, we can write (A1.2) as
C(yUhk y'uh'k) = Wﬁz @y D1)2 :u'i2 Ohh
=- wij2 (wy di/Di)2 Toish Mg

(AL3) Cyne Yygni) = W' Cllyni dgm),
= widz [E.E, Co(dijhk dﬁh'k’) + EZCI[EO(dUhk)Eo(dﬁwk')]
+ C{E;Eo(dy 0 E Eqldypad};

the first term E,E; Cy(dy, dyn)

= BB, [Eo(dijhk dﬁh’k’) - ,U~i2 Sik Cijhk Si.k‘cijh’k’]

= EF,; [{E(0y 0pdsy Sy Cijnk Cigh™ Mi M1 Sik Sie Cyjnk c(jh’k’}
= EE, [C(0u0y) Sk Sy - Cijhk Cuh'k'];

=0;

the second term E,C, [Ey(dip) Eoldi)]

= Ey[E{Eo(d i), Eo(dipno)} - ma i EGi0EGu) S Cie]
= E,l{( Elsy S0 Cinie Cgped = 47 (A/D)? €y Cpnl]

= Mi2 Clsye sy E(cijhk cijh'k’)’

= u? Clsy 8 {CCy Sy + Ty Tgh,

= p;® Sy {Opw + Tigh gy

the third term C,[E;Eq(dj),Ei1Eo(djn]
= G, [[dy/DIu; €0 @/Dpy; i,

d/DY* w? Clegnwo Cinic)s

(; 4/D)* Gy

706

Combining these three terms, we can write (A1.3) as

C(yijhk yijh'k')=w'u2 [y (OpnriSii + Oppe(dy/ D)’ + S, T Tl

(A14)  C(ygn Yyn) = Wii* Cldgk digni),
= w'u'z{EZEl Coldipk Ay + By Ci[E(dyn) Eo(dij)]
+ G[E \Eo(dgd E\Eo(dinin]},

the first term E,E; Cy(djx dijni)

= E,E, [Eo(dijhk d'\jhk’) - f"’i2sikcijhksik’cijhk’]

= EE, [{E(®; 8u} sy, spe Cisnk Cignie~ Mi M Sik Siwe Cynkc Cine]
= E,E, [C(8y 8, sy g Ciink c‘\jhk']’

= 0;

the second term E; C,[Eq(dyy) Eo(dyy)]

= E; { E, [Eg(dynd, Eo( )] - 1 1 EGRE1) Cjar Cinst
= E; {Gu 1 EGsi 80 Cignc Gt - " (/D) iy Sy

= u” Clsy sy ECypy Cymo)s

2
= Sy Ohyp,

the third term C,[E,E(dy), E Eg(djy)]
= C,[(d/Dwy Cishio (dy/Dpuy cijhk’}:
= (d/DY* 1 Cleghio Cyn)-

Combining these three terms, we can write (Al1.4) as
C(.Yuhk ¥ ‘u'hk‘): Wu2 IJ~;2 { Clsy Sik’)E(cijhk cijhk’)
+ (d/D)* Clegn, Com},
= w1’ { S, Blegy, Cyne) + (d/DY? 04 ),
= wy® w” { Sy (Ot ) +(dy/DY* oy, 1,

= wy? 1? [0 mg (1o ) {S;+ (/DY + my,” S,



