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SUMMARY 
Estimating regression coefficients requires var(y). 

One often assumes normal, binomial, or Poisson 
distribution for y to estimate its moments. Such a 
simple assumption on distribution is not correct for 
a complex data y such as the sample deaths obtained 
by Vital Statistics Division at National Center for 
Health Statistics, and therefore the variance should 
be adjusted, including the error arising not only 
from random death, but also from other sources such 
as sampling, classification, and weighting. This 
paper presents the variance of y obtained according 
to four sources: death, sampling, classification, and 
weighting, and obtain the regression coefficients 
using this result. The estimator of regression 
coefficients is approximately unbiased and has a 
special form of limiting variance. 

1. INTRODUCTION 
Dichotomous data set, consisted of an outcome 

variable, Y~h, and a p x 1 vector of covariate, X~jh, 
observed in the ith month, i = 1, ..., M, for the jth 
age-sex group, j = 1,..., J~, and for the hth cause or 
category, h = 1, ..., r~, arise often in the death rate 
analysis. To simplify the notation, we set J~ = J and 
rij = r without loss of generality. 

Typically, one may be interested in the pat tern of 
rate changes in the dependence of outcome on the 
covariates. For instance, death rates of outcome 
variables y's might depend on such covariates x's as 
age, sex and race for certain causes of deaths. 

In a generalized linear model, the independent 
observations on each independent subject can be 
linked to a variety of continuous or discrete outcome 
variables through a typical assumption of 
distribution. However, when dependent  observation 
y's are correlated, Liang and Zeger (1986) used a 
model corrected for time dependence in a 
longitudinal data. Thall and Vail (1990) presented 
a covariance model for overdispersed and correlated 
y's. This research further extends these results to a 
covariance model for complex data that  are sampled, 
classified, and weighted. We apply resulting 
covariance to regression model. 

1.1 POISSON DEATHS 
The occurrence of death may be distributed as 

Poisson or Binomial, and both distributions 

are approximated by normal distribution for a large 
number of occurrences. We assume that  D~ deaths 
occur among Pi people according to Poisson 
distribution. 

1.2 SAMPLE DESIGN 
A sample of d~ deaths is selected from all D~ 

deaths in the i-th month according to a certain 
sample design. Denote design variable by zik. It may 
be a simple random sample, or stratified simple 
random sample, or cluster sample, with or without 
replacement, or any other design used to take a 
sample from a well defined population Di. 

1.3 POSTCLASSIFICATION 
After a sample is taken, d~ sample deaths are 

postclassified into J age-sex groups and r causes, 
giving dijh deaths for the j th age-sex group, and died 
by cause h. Denote poststratification variable by 
Zijhk. 

1.4 WEIGHTING 
Sample data are often weighted to estimate 

population parameters.  Weighting takes place in 
various forms, and we denote the weight by w. The 
weighted death rate, Yijh, is the poststratified yearly 
death dish multiplied by appropriate weight wij , that  
is 

Yijh = (365/a i ) (Di /di )  (dijh/Pi)  = wij dijh 

where wij = (365 Di)/(a~ d i Pi), which is assumed to be 
known at this time. eh = 28 for February, 30 or 31 
for the rest of the months, Di/di is the sampling 
weight, and P~ is the population in the month i. 

1.5 OBJECTS 
We assume that  occurrences of deaths in each 

month are independent. Let Yi = (Yi11, ..., Y~jh, ..., 
Y~r)' be 1 x T vector (T = Jr) of the weighted death 
rates. The primary purpose of this paper is to 
present a tractable parametric form of the cov(yi) or 
Vi, tha t  accounts for four impacts: occurrence of 
deaths, sampling, classification, and weight. 

1.6 CORRELATION 
We can consider dependence among the ementary 

units in the same age-sex group for the persons of 
same age-sex group may likely have common cause 
of death for some typical diseases. 

We assume a model for the correlation between 
the members within a age-sex category. For the 
k-th and k'-th units in the j-th age-sex group as 
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(3) 
_~n~9.+ (I-8) n ~ ,  

where 0 (0 < 0 <: i) is the correlation between 
these two members,  and this model has been used 
in other research (see Choi and McHugh, 1989). The 
first par t  is the probability tha t  both members fall in 
the same cell (h=h'), and the second par t  is the 
probability tha t  two members falls into two different 
cells (h~h'). 

In Section 2, we obtain the covariance V(y~) when 
multiplicative stages of errors are assumed. In 
Section 3, we present  the estimation of the 
parameter  f~ with covariance derived in Section 2. 

2. MULTIPLICATIVE ERROR MODEL 

2.1. ASSUMPTIONS 
Consider three stages labelled 2, 1, and 0. 

The bottom stage 0 is the occurrence of death (6~k = 
1 if the k-th person died among the Pi people in the 
month i, and = 0 otherwise (1 ~ k ~ Pi)). We assume 
tha t  6~k'S are independent  with Poisson mean 
~i = D/Pi .  

The stage 1 is sampling (zit = 1 if the k-th person 
who died is sampled and = 0 otherwise) and has 
error sit. A sample of di is obtained from D i. 

The top stage 2 is the classification (Zuh t = 1 if the 
k-th person who died and sampled, is classified into 
the j-th age-sex and cause h, and = 0 otherwise) and 
has error C~ht. A sampled di is classified into d~h'S. 

Let the variable YUh = k--1 Yi~ht, where 

Yijhk = Wij dijhk and dijhk = 6ik Zik Zijhk. 

d~ = E p~ d~ht. We consider the weights wi~'s 
k = l  

are fixed numbers,  and dijhk'S are the variables 
(1~ k ~ Pi). 

We adopt the symbols E, V, and C for expectation, 
variance, and covariance operator respectively. 

Conditioning on the sit and C~h~ we assume an 
error model at the stage 0 for the data  d: 

(4) E(dijhk/Sit Cijhk) = J[£i Sik Cijhk 
V(dijhk/Sik Cijhk) = /Xi Sik C~hk. 

We also assume that  dijht'S are conditionally 
' and ' are uncorrelated, and tha t  the sits CuhkS 

mutual ly  independent  with 

(5) E(Cijhk) = 3:ij2h = D~h/Di, E(%k) = di/Di, 
V(%h~) = Oh, V(%k) = S~ ~. 

and the marginal  E(dijh) = di Dijh/Di. 
Thall and Vail (1990) and Morton (1987) used 
somewhat  similar Poisson model for overdispersed 
data. Chiang (1967) obtained the variance based on 

non-multiplicative model. 
If the classification errors at the stage 2 behave 

according to adjusted mult inomial  with model (3), 
we may write its variance and covariance" 

(6) V(Cijhk)=CIh 2= nijh(1-nijh) , 
C(Cijhk Cijhk,)=CIhh =07r~jh(l-71;ijh) for h=h' and k,k' ,  
C(%hk C~h~)= Ohh '=" n~h huh' for h ,h '  and k=k', 
C(Cijhk Cijh~') = CIhh'= °0~ijh ~ijh' for  h , h ' a n d  k,k ' ,  

If the sample is taken by simple random sample 
without replacement, then we can write the variance 
and covariance of error at stage 1: 

(7) V(Sik ) = SiS= (Di/(Di-1))(di/Di)(1-(di/Di)) 
C(sit sit.) = Sii = - di(Di - di)/(Di 9 (Di-1)). 

However, the form of these variance and covariance 
depends on the sampling design actually used and 
type of variable. 

2.2 A VARIANCE-COVARIANCE MATRIX V i 
From the above assumptions, we present a 

variance-covariance matrix Vi or C(yi). The V i is a 
block diagonal matrix with J (r x r) submatrices Vii, 
..., V~, ..., V~j on the main diagonal, and zero for all 
elements for j ,  j'. The inverse of Vi is obtained by 
invert ing each submatr ix Vii .  Following the 
conditional variance and covariance (Appendix 1): 

(8) V(Yijhk) = wij2[/~i(di/Di)~jh 

+ ~£i2{ Si 2 ((jh 2 + ~ijh 2 ) + (di/Di) 2 oh2}], 

(9) C(yijhk, yijhS~) = Wij2(di/Di)2Ni2Ohh , 

= " Wij 2 (/Zi di/Di) 2 ~jh gijh'. 

(10) C(Yijhkyijh,k,) = Wij 2 ~£i 2 [C(Cijhk Cijh~,) 

{C(Sik Sik,)+(di/Di) 2} + C(Sik Sik') ~ijh 71;ijh'], 

= Wij 2 ~bi 2 [(Jhh'Sii + (Yhh'(di/Di) 2+ Sii ~ijh ~ijh'], 

(11) C(Yijhk Yijhk,)= Wij 2 ~U,i 2 { C(Sik Sik,)E(Cijhk Cijhk, ) 

+ (di/Di) 2 C(Cijhk Cijhk')}, 

= Wij2tZi2{Sii(Ohh + nijh 2) + (di/Di) 20hh }. 

Summing over the subscript k (1 ~ k ~ Pi) gives 
variance-covariance matr ix  Vii with V(Yijh) on the 
diagonal and C(ytj h Y0h') on the off-diagonal" 

(12) V(Yijh)= PiV(Yijhk) + Pi(Pi-1)C(Yijhk Yijhk') 
2 2 2 2 2 = Piwij [/xi(di/Di)~ijh+tzi {S i (O h +;71;ij h )+(di/Di)2(jh2}] 

+ Pi(Pi-1)wiT[tzi2{Sii(Ohh+nijh2)+ (di/Df Ohh }] 
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(13) C(yij a y~w)= PiC(Yijhk Yijh~) 

+ Pi(Pi" 1)C(Yijhk Yijm,') 

= Pi w~g~(~/D~)~O~h' 

+ Pi(Pi" 1)wj[p~{S,(ohh"+ ~hr~h.) +(di/Di) 20ha.}]. 

Using the notat ions (6) for oh ~, Ohh, Ohh., and Ohh. and 
(7) for si ~ and S~, and defining 

a~ = Piwij2[~i(di./Di){1 +/z idi /D i} +/zi2Si2], 

+ Vi(Pi- 1)wi~i~f) (Sii+ (di./Di) 2), 

[~ = Pi wij ~/Li2(di/Di) 2 + Pi(Pi" 1)wij2/~i2 [(d]Di)2O-Sii(1-0)], 

we can express 

(14) Vo= D + ~ o U U '  

where  D is diag(c~aOh) and U'=(a~, ..., ~z~). 

Denoting Uh ~; 2 = ijh/(~ ~h) and u, = u I +...+ Ur, 

V~ being nonsingular, Householder's formula yields 

= D -~ D-~ D'l. (15) V~ ~ -(~j/(1 + ~j u.) UU' 

Note tha t  V~ becomes the variance-covariance matr ix  
of mult inomial  variables if a~ = 1 and ~ = - 1. 
c~ and ~ reflect the  impacts of death  process, 
sampl ing and weighting. 

Considering only sampl ing and classification 
variable for given dea th  records, we can simplify the  
mult ipl ier  ~ = - ~ =w~ 2 d~ [1 + e(d U- 1)] which 
reflects impacts  of weighting, sampling, and 
correlation of members  on the variance. Fur the r  if 
O = 0, or no correlation among members,  a~ = - ~ = 
d~ wg~. The V~ can also be obtained by assuming  
tha t  the da ta  are not weighted by set t ing w~ = 1. 
Other  sample design can be easily reflected on the 
variance, us ing the conditional argument .  

Therefore it is essential  to use correct variance in 
the est imation of regression coefficients. When we 
consider each Yi~ as function of ratio, dUd~, it is 
somewhat  more involved as both di and d~h are 
random variables. 

3. ESTIMATION EQUATIONS 

3.1 NOTATIONS 
Let Yi = (Yi11, ..., Yijh, ..., Yiw)' (T = Jr) of the 

weighted death  ra tes  with mean rn~ = (mi~,...,m~h,... , 
miw)' , and X i. = (Xil . ..., x~h , ..., Xiw)' be the  p x T 
matr ix  of covariates, each x~j h = (X~hl, ..., Xijht,... , X~hp). 

We require tha t  some link function g, l inking each 
mean mij h = E(y~h) to p x 1 pa rame te r  vector [3 = (~0, 
'"' ~t, .", ~p-1)': g(m~h) = rl~h = X~h [3, where ~h is a 
correct linear function. Denote predictor rli = 
(T]ill ,  ...,T]ijh, . . . ,T]iT)' .  

3.2 ESTIMATION 
Often there  is no probabili ty dis tr ibut ion available 

on the  variables, especially complex survey data;  
however, under  mild assumptions,  quasi-likelihood 
function has similar propert ies  as those of ordinary 
log likelihood. We assume tha t  y , . . . ,y ,  are 
independent  and (14) is correct variance. 

Let Si = Yi- mi with E(Si) = 0, and Vi be the T x T 
matr ix  of V(Yi).  X i - 0T]ij/O ~ - (Xi11,... , XiT ) is p x T 
matrix, and the  5 i = diag(OmjO~l~)= diag(5i~) is T x T 
matrix.  Pi = 0m~/013 = Ai X~. 

The entire set of da ta  is expressed as y = (Yl, ..., 
Yi,...,YM)' is a 1 x A vector (A = MJr), and X = (X1, ..., 
~ ,  ..., XM)' is p x A matr ix  of covariates,  S is A x 1 
vector of (y - m), h is A x A matr ix  of diag(hi), P = a 
X. V is A x A matr ix  of diag(Vi). 

Following the quasi  likelihood (McCullagh and 
Nelder, 1983), the p es t imat ing  score equations for 
regression pa ramete r s  ~ are given as 

M 
(IG) PfVi = o 

i=i 

is defined to be the solution of equat ion (16). We 

obtain the es t imator  ~ of [3 with sample data. 
A p p r o x i m a t e  u n b i a s e d n e s s  and  a sympto t i c  

Normal i ty  of ~ may be s ta ted  as follow: 

Define H = M1/2( ~ - [3). H can be approximated by 

F 1 A where A = M ~2 U( ~ ) and F = -{0U([3)/0[~}/M 

from Taylor expansion of U ( ~ )  a round t rue  f~. 
Under  certain regular i ty  conditions (Thall and 
Vail, 1990), H is asymptotical ly Normal  mean  0 
and variance 

(17) C(H) = F 1 cov(A) F 1, 

where  cov(A) = M "1 Zi(Pi w Vilcov(yi)Vi 1 Pi) and 
F= M "1 ]~i(Pi w Vi "1 Pi). 

Thall  and Vail (1990) use overdispersed Poisson 
model, while cur ren t  V uses the error  model for 
complex data.  If we assume cov(yi) = Vi, (17) takes a 
simple form C(H)= F 1. When  a link function is 
specified, we can obtain the  explicit form of Vi. 

Variance of ~ may be correctly es t imated by 
replacing cov(y i) with SWiSi . SWiSi may be more 

efficient then V i when the model used for the 

derivation of Vi is not correct. 

3.3 ITERATIVE METHOD 

We begin with ~o substant ia l ly  close to ~ in 
(18). The sequence of p a r a m e t e r  es t imates  
genera ted  by Newton-Raphson method with Fishers  
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Scoring is 

13 =13°+ 

The estimate ~ may be obtained by iterating until  
it converges. The convergence criterion is to stop 
the  i t e r a t i o n  a t  (r + 1) s t ep  when  

(I - I B )/t3=1 . 
Provided that  the eigenvalues of ~3 TQ-I~ are 

sufficiently large, the second term of (18) is 
negligible. Then, we may take the first round 

approximation ~ = ~ .  
When V~ is set equal to usual multinomial form 

and w~ = 1, existing GLIM software provides the 
estimates of the parameter  [~. 

4. COMMENTS 
More study has to be done to complete this 

research. First the equation (17) has to be proved in 
a form of theorem. Secondly we need to illustrate 
this result with NCHS data as we have originally 
planned. 

The variance models used for the stage 1 and 2 
can be replaced if necessary. Especially stage 1 of 
sampling has to be changed when other sampling 
design is used. The adjusted multinomial model for 
stage 2 also needs to be changed if the classification 
rule is different. 

The regression coefficient is properly estimated 
only through the correct form of covariance matrix. 
Although data analysis at NCHS assumed a simple 
distribution, this result can be used to reflect the 
distribution of NCHS data better for statistical 
inference. 
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APPENDIX 1 

The subscripts 2, 1, and 0 under E, V, and C 
symbolize the respective operation conditioning on 
stage 2, 1, or 0. 

(A1.1) V(Y~hk) = W~ 2 V(dijhk) 
= W~ 2 [E2E1V0(d~hk) + E2ViE0(d~jhk) + V2EiEo(dijhk)] 

= w~ 2 [E2Ea(~zi S~k %hk) + E2V~(~z~ S~k Ci~hk) 

+ V2EI(/.~ i Sik Cijhk)], 

= Wi3 9 [E2(P,i(di/Di)%hk)+ E2(gigSi2Cijhk 2) 

+ V2(gi(di/Di)Cijhk)], 

= w~ ~ [~i(di/Di)~h + ~zi2Si~E (%hk ~) + ~i~(di/Di)2V(%hk) ], 

= w~ ~ ~i(di/Di)~i~+~zi~{Si2(o~%~i~h~)+(di/Di) ~ oh 2 }]. 

Letting Di/(Dcl) - 1 for large D i in the definitions 
shown in (7), we can write (AI.1) as 

= w~2[/zi(di/Di)z~ijh + p, i2{Si2(Ohg+z~ijh2)+(di/Di)20h2}], 

(A1.2) C(Yijhk Yijh~) = W~ 2 C(dijhk dijh'k), 

= W~ 2 [E2E1C0(d~hk d~h~) + E2 Cl{E0(dijhk) Eo(diyk)} 

+ C~{EiEo(dijhk) EIEo(dijhk)}]; 

where the first term E2E 1 C0(dijhk dijh~) 

= E ~ E I ( 0 )  

=0; 

the second term E2{C~[Eo(d~hk) E0(dijh,k)]} 

= E~ C~[~zi %hk Sik, ~Zi C~h~ Sik] 

= E2 [gi ~ %hk C~h~ ~El(Sik2)-(di/Di) 2 }] 

= E~ [gi 2 Cijhk Cijh~ Oh 2] = 0; 
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the  th i rd  t e r m  C~ [E1Eo(~h~),E~Eo(d~h~)] 

= C 2 [(di. /Di)~i Cijhle(di/Di)~i Cijh'k], 

= (di/Di) ~ #i ~ C(%hk CUh~,), 

= "  (4L£ i di./Di) 2 7[qj h 7gijh', 

Combin ing  these  th ree  t e rms ,  we can wr i te  (A1.2) as 

C(Y~hk y~h'~) w~ ~ (d~/. D f  p~ = Ohh, ~ 

= " Wij 2 (,~£i di'/Di) 2 7~ijh 7~'5jh" 

(A1.3) C(Y~hk Y~hw) = W~ ~ C(dij"hk dijh~'), 

= w~ ~ [E2E1Co(dijhk dijh~') + E~Cl[Eo(d~hk)Eo(doh~e)] 

+ C2{E ~Eo(~hk)EiEo(d~hw)}]; 

the  first  t e r m  E~E 1 C0(dijhk dijh~,) 

= E~E~ [E0(dijhk dijhqd) - ~£i 2 Sik Cijhk Sikd3ijh,k '] 

= E~E~ [{E(5~ 6~,}S~S~k, C~hk Coh~,- ~i ~ S~k S~k, Cohk %hW] 

= E2E~ [C(6~6~,) sik Sik,- %hk %hW], 

= 0 ;  

the  second t e r m  E~C1 [Eo(d~h ~) Eo(dijhW)] 

= E~[E~{Eo(d~hk),Eo(d~h~')} " ~k P~k'E(Sik)E(Sik ') Cijhk Cijhq~'] 

= E~.[{(~i ~ E(s~ s~,) Cohk %hW}" ~*i ~ (d i /Df  %hk %hV] 

---- ~i  2 C(Sik Sik') E(Ci~hk Cijh~,), 

= ~ C(s~ s~,) (C(%h~ %.~,) + ~ .  n~h'}, 

= /£i 2 Sii {Ohh" + ~ jh  ~"ijh'}, 

the  th i rd  t e rm C2[E~Eo(di~hk),EiEo(dijh~,)] 

= C2 [ (d i /Di )~ i  Cijhk, (di/Di)/zi Ci~h~,], 

= ( ~ / D f  ~ C(%s~ c~s~,), 

= (/z i di/Di) :z CIhh,, 

Combin ing  these  th ree  t e rms ,  we can wr i te  (A1.3) as 

C(Y~hkyijh'k')=W~ ~ ~Zi ~ [Ohh'Sii + Ohh'(di/Di)~ + Sii ~i~h Ui~h']. 

(A1.4) C(Yuhk Yijhk') = Wij 2 C(duhk  dijhle), 

= w~{E~E1 Co(duh~ duhk,) + E~ Cl[Eo(duh k) Eo(di~ak,)] 

+ C~[E~Eo(@hk) E1Eo(d~jhk,)]}, 

the  first  t e r m  E2E 1 C0(dijhk diihk,) 

= E2E 1 [Eo(dij"hk dijhk,) - ~£i2SikCijhkSik~ijhk ,] 

= E~E1 [{E(6~ 6~,} S~k Sik, %hk %hk" ~i ~i Sik Sik' %hk %hk'] 

= E~E1 [C(6ik 6ik,) Sik ,ik' %hk %hk'], 

= 0; 

the  second t e r m  E2 Cl[Eo(diihk) Eo(dijhk,)] 

= E2 { E1 [Eo(diihk),Eo(dijhk')] " ~i/~i E(sik)E(sik ') Cijhk %hk'} 

= E2 {(~i ~i E(sik Sik,) %hk %hk'}" ~i 2 (di/Di) 2 Cijhk Cijhk' 

= ~i 2 C(Sik Sik,) E(C~hk %hk'), 

= ~{£i 2 Sii O'hh; 

the  th i rd  t e r m  C2[EIEo(d~hk),EiEo(dijhk,)] 

= C2[(di./Di)/£i Cijhl~ (di'/Di)/£i Cijhk,], 

= (d i /Df  t~i 2 C(%h~ %hk'). 

Combin ing  these  th ree  t e rms ,  we can wr i te  (A1.4) as 

C(Y~hk Y~hk,) = W~j 2 ~£i 2 { C(Sik Sik')E(Cijhk Cijhk') 

+ (di/Di) 2 C(Cijhk Cijhk')}, 

-- -- Wij 2 ~i 2 { Sii E(%hk %hk') + (di/Di) 2 Ohh }, 

= Wij 2 /£i 2 { Sii (Ohh+gijh2)+(di/Di) 20"hh }, 

2 Sii] = wij 2 ~/,i 2 [0 ~ijh(1-7~ijh){Sii+(di/Di) 2} + ~ijh ' 
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