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I I N T R O D U C T I O N  

In many large datasets, especially those arising from 
sample surveys, item nonresponse is often handled 
by imputat ion-- i .e . ,  missing data are filled in with 
plausible values, and the dataset is analyzed as if it 
were complete. Imputation is attractive because it 
allows standard complete-data methods of analysis 
to be used on the imputed dataset. The nominal 
inferences (confidence levels, P-values, etc.) that 
result from such an analysis may be seriously mis- 
leading, however, because uncertainty due to miss- 
ing data has not been taken into account (see, for 
example, chapter 3 of Little and Rubin, 1987). 

Multiple imputation (Rubin, 1987) provides a 
general framework for incorporating missing-data 
uncertainty into inference. Generating proper mul- 
tiple imputations is often a difficult task, however, 
as general-purpose algorithms are not widely avail- 
able (see, e.g., Rubin and Schafer, 1990). Moreover, 
managing even a small number of imputations may 
be computationally burdensome in statistical com- 
puting environments where the handling of miss- 
ing data is usually, at best, an afterthought. In 
large survey applications, the desire of practition- 
ers to produce quality variance estimates mat" be 
outweighed by the practical difficulties of generat- 
ing and managing a inultiply-imputed dataset. 

In this paper, we develop a "quick and dirty" 
analytic method that can be used to correct vari- 
ance estimates to account for missing data in special 
cases. Our method (1) can be used when there is 
a single variable subject to nonresponse, and when 
the complete-data estimator is a smooth flmction 
of linear statistics; (2) is similar in spirit to multi- 
ple imputation, but it requires only single imputa- 
tion of predictive means; (3) is based on asymptotic 
expansions of classical survey estimators and their 
variance estimates, a.nd can be thought of as a first- 
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Figure 1: Rectangular dataset, one variable subject 
to nonresponse. 

order approximation to what would be obtained 
from an infinite number of multiple imputations; 
and (4) is computationally attractive when missing 
data can be modeled with a single-parameter error 
distribution, e.g., Bernoulli or Poisson. 

We detail our assumptions in Section 2 and give 
a precise definition of mean imputation based on a 
generic parametric model for the missing data. Our 
basic results are presented in Section 3. In See- 
tion 4, we demonstrate the utility of our approach 
with an application to the Census Bureau's Post- 
Enumeration Survey. This paper represents a clar- 
ification and extension of earlier work by Schenker 
(1989), who considered the imputation of probabil- 
ities for a single Bernoulli variable subject to non- 
response. The relationship of this method to the 
results of Schenker (1989) is discussed in Section 3. 

2 S E T U P  A N D  A S S U M P T I O N S  

2.1 T h e  M i s s i n g - D a t a  P a t t e r n  

We will consider rectangular datasets with the sim- 
ple structure shown in Figure 1. Let Y denote 
a variable subject to nonresponse, and X denote 
other variables (X1, X2, . . . ,  Xp) that are assumed 
to be completely observed. In this paper, we deal 
only with the case of a real-valued Y, although ex- 
tensions of this method to multidimensional Y are 
possible. Partition Y as Y = (Yobs,Ymis), where 
Y oh, denotes the observed values and Ymis denotes 
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the missing values of Y. Let n denote the number 
of observational units (rows) in the dataset. 

2.2 T h e  C o m p l e t e - D a t a  E s t i m a t i o n  
P r o b l e m  

Let Q denote a scalar quantity to be estimated. We 
desire both an efficient point estimate for Q and 
a standard error that  includes missing-data uncer- 
tainty. Let (~ denote the complete-data point esti- 
mate for Q, i.e., the estimate that  we would use if 
no data  were missing. (~ is a function of both the 
observed and missing data, 

£2 - ( ? ( x ,  Yob , (1) 

Let U denote the complete-data variance estimate 
for ~), i.e., the estimate of V ( Q -  O) that  we would 
use if no data  were missing. U is also a function of 
both the observed and missing data, 

u = u ( x ,  Yob,, (2) 

We will only consider estimators Q that  are 
smooth functions of linear statistics. If wi denotes a 
weight (e.g.,  a survey weight) associated with row 
i of the dataset,  we require that  (~ be a function 
of weighted (by wi) sums of the columns of the 
dataset, 

-- g ( T x  , , . . . , T x  p , T y  ) (3) 

) = g w i X i l ,  • • . ,  w iX ip ,  wi}') 
i=1 i=1 i=1 

where Xij  denotes the ith element of the j t h  column 
of the dataset, Y/denotes the ith element (observed 
or missing) of the last colunm, and the function g 
is smooth. Typically, the estimand Q will be the 
same function g of the expectations of the linear 
statistics, 

Q = g ( E T x , , . . . ,  E T x p ,  E T y ) ,  (4) 

where the expectations are taken over repeated 
sampling of X and Y; hence (~ can be thought of as 
a method of moments estimate of Q. The form (3) 
includes many estimators typically used in survey 
practice, including means and proportions, subdo- 
main means, ratios of means, etc., but. does not 
include medians, variances, or correlations. 

To stabilize the arguments of g in (3), we require 
that  maxiwi  = O(n-1) .  In surveys, this can be 
achieved by scaling the usual survey weights (the in- 
verse probabilities of selection) to sum to one. The 
weights are allowed to be functions of the observed 

data ( X ,  Yob,). For example, we allow (~ to be a 
poststratified estimator with poststrata  defined by 
categories of X. The weights may not, however, be 
functions of the missing data Ymis. 

We assume that  U has the form 

where 

T - ( T x , , . . . ,  Txp ,  T y ) T ,  (6) 

and where W is the classical unbiased variance es- 
t imate for T in a stratified pps cluster sample (see, 
e.g., Wolter, 1985). For example, the diagonal el- 
ement of W corresponding to the variance of Txk  
has the form 

1 ( )2 
E n s ( n s _ l )  ~ c n s E w i X i k - E w i X i k  

s i c,i 

where s indexes sampling strata,  c indexes clusters 
within strata, and i indexes sample units within 
clusters. This is a very common variance estimate 
in survey practice; it includes, as special cases, vari- 
ance estimates for simple random samples, strati- 
fied and cluster samples, unequal probability sam- 
ples (such as pps designs), and many multistage 
designs as well. The derivatives in (5) account for 
potential nonlinearity of g, a method known in sur- 
vey literature as Taylor linearization (e.g., Wolter, 
1985). 

2.3 R e g u l a r i t y  of  t h e  C o m p l e t e - D a t a  
P r o b l e m  

We nmst impose some regularity conditions on the 
complete-data problem. Assume an asymptotic se- 
quence in which 

U - 1 / 2 ( Q  - (~) ~-~ N(O, 1) (7) 

as n --~ oc. When the units in our dataset consti- 
tute a simple random sample from an infinite pop- 
ulation, (7) is easily verified by appealing to stan- 
dard central limit theorem arguments. Results such 
as (7) have also been demonstrated for finite pop- 
ulations and more complex sample designs under 
a variety of asymptotic conditions (Wolter, 1985). 
Even if such a result has not been formally demon- 
strated for a particular estimator or sample design, 
survey practitioners have still found that  appeal- 
ing to asymptotic nornlality often provides a useful 
first-order a pl)roximation for statistical inference. 
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2.4 T h e  M i s s i n g - D a t a  M o d e l  

In the situation of Figure 1, it is clear that  X pro- 
vides potentially useful information for predicting 
the missing values of Y. For example, if Y is con- 
tinuous, we might fit a normal regression model to 
the cases for which Y is observed, and use the fit- 
ted model to predicted Ymis. This approach im- 
plicitly assumes that  the conditional distribution of 
Y given X when Y is missing is the same as it is 
when Y is observed; this is appropriate if the nonre- 
sponse mechanism is ignorable, in the sense defined 
by Rubin (1976). Virtually all of the procedures 
commonly used to handle missing data  in surveys 
and elsewhere in statistical practice are based on an 
assumption of ignorability. The observed data, of 
course, give us no information to support  or contra- 
dict this assumption; such support  must come from 
a source external to the observed data. Other ap- 
proaches are possible, but every missing-data pro- 
cedure must be based on some assumption that  can- 
not be verified from (X, Yobs) alone. 

We assume that  one can correctly specify a 
probabili ty model for the missing data  Yrm, given 
(X, Yobs). A typical specification for this model will 
include unknown but estimable parameters,  which 
we call 0, as well as some further assumptions, 
which we call M, that  are completely untestable 
from (X, Yob,) (e.g., the assumption of ignorabil- 
ity). All of our inferences must assume that  M is 
correct. We shall suppress M in the notat ion from 
this point onward, with the understanding that  M 
is being conditioned on implicitly throughout.  

Let t~ denote an efficient estimate of 0 based 
on the observed data  (X, Yob,) under the assumed 
missing-data model. Also, let F denote an estimate 
of Y(O-O), also based on (X, Yobs). For example, 
may be a max imum likelihood (ML) estimate, and 
F may be the inverse of the observed or expected 
information matr ix  evaluated at t~. We will assume 
that  F = O(n -1) and that  

F - ~ / 2 ( O -  O) ~ N(O,I). (8) 

This implicitly assumes that  the lnissing-data 
model is sufficiently regular that  s tandard ML 
asymptotic theory (see, e.g., Cox and tIinkley 1974) 
applies, that  the fraction of missing information is 
bounded away from one, and that  the dimension of 
0 is fixed. We will assume further that  the missing- 
data  model imposes an uncorrelated (given 0) error 
structure on the missing-data values. More pre- 
cisely, let mis denote the set of indices i such that  
Y/is an element of Ymi,. Assume that  

v(Y, I x ,  o) -  y(e) 
Cov(yi, l x ,  Yob , e) = 0, i ¢ i' 

where Pi and a~ are smooth functions of 0 for all 
i E mis. 

These conditions on the missing-data model are 
not, in practice, overly restrictive. They are satis- 
fied by normal linear regression and analysis of vari- 
ance models, logistic regression, loglinear and other 
generalized linear models (GLIM's) as defined by 
McCullagh and Nelder (1989)--most  of the com- 
monly used statistical models that  are appropriate 
for predicting a univariate Y from multivariate X 
in a rectangular dataset.  

2.5 D e f i n i t i o n  o f  M e a n  I m p u t a t i o n  

The missing-data model, once it has been specified, 
is of great value in imputing Ymi,. Let p(0) denote 
the vector with elements tt/(0), i E mis; that  is, 

p(O) = E(Ymi, I X, Yob,, 0). 

If we were going to fill in the missing data  with one 
set of "best" values, we might choose p(0), the ML 
estimate of the mean of Ymis. We will refer to this 
technique as mean imputat ion,  because it replaces 
the missing data  values with their predicted means 
under the missing-data model. 1 

Mean imputat ion be can efficient for point esti- 
mation of Q; in fact, we demonstrate  below that  
(~(X, Yob~,#(O)) is a first-order approximation to 
the "best" estimate of Q. Mean imputat ion,  how- 
ever, can seriously distort inferences if the mean- 
imputed dataset is treated as a complete dataset 
in the computat ion of variance estimates. The 
complete-data variance estimate calculated from 
a mean-imputed dataset,  U(X, Yob~,p(O)), is typi- 
cally a downwardly biased estimate of the true vari- 
ance, i.e., 

EU(X,  , ( 0 ) )  < v ( o  - Q(x ,  Yo ,, ). 

Examples of how mean imputa t ion results in bi- 
ased variance estimates can be found in Section 3.4 
of Little and Rubin (1987). For this reason, mean 
imputat ion is rarely used in survey practice. Sur- 
vey practitioners typically use random imputat ion 
methods, such as the hot deck, which produce vari- 
ance estimates that  are less biased. Any method 

1Little and Rubin (1987) call this approach "imputing 
conditional means" to distinguish it from the method of im- 
puting thc unconditional or marginal mean (simply the av- 
erage of the values in ]Zobs) for every element of Ymis. In 
multivariate settings, imputing marginal means may intro- 
duce serious biases and can almost never be recommended. 
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that  substitutes a single number for each missing 
value and then treats the dataset as if it were com- 
plete, however, will tend to distort inferences. 

Multiple imputation (Rubin, 1987) addresses the 
shortcomings of single imputation, while still re- 
taining the convenience of imputation as a missing- 
data procedure. In multiple imputation, the miss- 
ing data Yrnis is replaced by m random draws from 
their predictive distribution. Using Bayesian nota- 
tion, we can write this distribution as 

P(Ymi~lYobs) 

= JP(Ym~,lYob,,O) P(OiYob~)dO, (9) 

which makes explicit the fact that  the nmltiple im- 
putations incorporate uncertainty about the param- 
eter 0 as well as uncertainty about the missing data 
Ymi~ given 0. Generating proper nmltiple impu- 
tations from a distribution such as (9) may be a 
complicated task, however, for which no algorithm 
is readily available. It would be desirable, if possi- 
ble, to have a "quick and dirty" method of measur- 
ing missing-data uncertainty without resorting to 
full-blown multiple imputation. We provide such a 
method, as we now describe. 

3 V A R I A N C E  E S T I M A T I O N  F R O M  
A M E A N - I M P U T E D  D A T A S E T  

3.1 A Bayes ian  I n t e r p r e t a t i o n  

The usual frequentist interpretation of (7) regards 
Q as fixed and Q and U as random. A Bayesian in- 
terpretion, however, regards Q and U as fixed (given 
complete data) and Q as random. Exploiting the 
latter interpretation, we will now regard Q and U 
as the approximate complete-data posterior mean 
and variance of Q, respectively, 

O - E ( Q I X ,  Y , , obs gmis ) 

U = V(Q ! X,  Yob~, Y,,~i~). (10) 

Under sufficient regularity, posterior means and 
variances behave as in (7) (e.g., Cox and ttinkley 
1974), and in large samples the difference between 
classical estimates and Bayesian estimates will be 
small. We will also exploit the Bayesian interpreta- 
tion of (8) and regard 0 and F as posterior moments 
of 0 given the observed data, 

= E(OIX, Yob~), 
F = V(OIX,~ob~).  (11) 

With complete data, our state of knowledge 
about Q is summarized by Q and U. With incom- 
plete data, however, inference should be based on 

the posterior moments given only the data actually 
observed, E(Q I X, Yob,) and V(Q I X,  Yob,). Note 
that  

E(Q I X,  Yob,) - E ( 0  I X, Yob,) 

and 

V(Q I X, Y o b , ) -  V ( Q I X ,  Yob,)+ E ( U I X ,  Yob,) 

where the moments on the right-hand side of these 
equations are being evaluated over the posterior dis- 
tribution P(Y, ni, I X,  Yob~), the same distribution 
as (9) from which multiple imputations would be 
drawn. To obtain approximate posterior moments 
of Q, then, we need only to approximate the mean 
and variance of (~ and the mean of U over the pos- 
terior distribution of Y,~i,. We now state, without 
proof, these approximations. 

3.2 A p p r o x i m a t i o n s  to  t h e  M o m e n t s  
of  Q a n d  U 

It can be shown that,  under the assumptions out- 
lined in Section 2, 

E ( Q I X Y  , obs)-- O( x,Yob,  tt(0))+R1 (12) 

where R1 is the mean of a random variable that  is 
Op(n-1). It can also be shown that  ( )2 

0g(T) ~ ~ ~y(0) 
v ( Q I x ,  Vob~ ) - OTy ~m~, 

O9(T) D.(o)TrD.(O) + R2 (13) 
+ OTv 

where 5 b is shorthand for the complete-data statistic 
T calculated with p(0) substituted for Ymis, where 

(0.~(0)) 
D,(O) - E wi O0 ' (14) 

iEmis 

and where R2 is the mean of a random variable that  
is Op(n-3/2). Finally, it call also be shown that 

E(U I X. )ob,) - U(X. Yob,. .(O)) 

+ OT~ }~ ~ ~(°) + R~ iEmis 
(15) 

where Ra is the mean of a random variable that  
is Op(n-~'). Proofs of these results follow from 
first-order Taylor expansions of the functions g and 
#i , i E mis. 
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3.3 P o i n t  E s t i m a t i o n  w i t h  I m p u t e d  M e a n s  

It follows from (12) that  the complete-data point 
estimate with means imputed for the missing values 
is a first-order approximation to the posterior mean, 

E(Q I X, Yob~) ,,~ Q(X, Yob~, p(O)). (16) 

In large samples, then, it is desirable to use 
(~(X, Yob,, p(O)), as it is an efficient estimate of Q. 
It is important  to note, however, that  this result 
assumes that  the complete-data point estimate is 
a smooth function of linear statistics. It does not 
hold for an arbitrary estimator (~; for example, it 
does not hold for a sample variance. In fact, the 
result (15) points out that  a mean-imputed sample 
variance is biased downward. 

An earlier version of this work (Schenker 1989) 
considered the special case of a Bernoulli Y. In sim- 
ple random samples, the variance estimate typically 
used for a Bernoulli Y is ]P(1-]~') /n,  where Y is the 
sample mean. In this special case the sample vari- 
ance is a smooth function of a linear statistic, and 
the result (12) does apply. In more general cases, 
however, a sample variance does not have this spe- 
cial form, and a correction such as the one in (15) 
is needed. 

3.4 C o r r e c t i o n s  to  t h e  M e a n - I m p u t e d  
V a r i a n c e  E s t i m a t e  

It follows from (13) and (15) that  a first-order ap- 
proximation to the posterior variance is 

V(Q l X, Yob~) ~ U(X , }obs , [ l (~ ) ) )+C1  +C2 ,  (17) 

where ( )2 
C1 -- 2 0g(~/%) E wy cry(0) (18) OTy 

iE rnis 

and ( )2 
Og(T) D.(o)TrD.(~i). (19) 

C2 -- cgTy 

In (17), U(X, Yobs,p(O)) is the "naive" estimate 
that  treats the mean-imputed dataset as complete 
data. The first correction term, C1, is a compo- 
nent of variance that  accounts for uncertainty in 
Ymis given the imputed means. The second correc- 
tion term, C2, is an additional component of vari- 
ance that  accounts for uncertainty in the imputed 
means, i.e., uncertainty due to the estimation of the 
parameters in the missing-data model. 

The term C1 is usually very simple to compute. 
For example, if the estimand Q is the population 
mean of Y and the missing values in Y are modeled 
by ordinary linear regression, then C1 has the form 

C1- 2 E W20"2' (20) 
iErnis 

where &2 is the estimated residual variance of the 
regression. If Y is a binary variable, and the missing 
values of Y are modeled as Bernoulli with means 7ri, 
i E mis (for example, by logistic regression), then 
C1 has the form 

C1 - 2 E w2 ~i (1 -- ~'i) (21) 
iEmis 

for estimating the mean of Y. 

When the elements of Ymi, are modeled with an 
error distribution that  has a single parameter (e.g., 
Bernoulli or Poisson), then the variances a~(0) can 
be expressed as functions of the means pi(O), and 
the term C1 can be computed from the mean- 
imputed dataset alone; no additional information 
is needed. When the error distribution has addi- 
tional parameters, estimates of these parameters 
need to be retained to calculate C1. For example, in 
the case of ordinary linear regression, the estimated 
residual variance &2 is needed. 

The second correction term, (72, is usually more 
difficult to compute because it involves the vari- 
ance of the parameters 0 of the missing-data model. 
When the fraction of missing'information is moder- 
ate, however, C2 accounts for only a small propor- 
tion of the total variance in (17) and can usually be 
ignored (Rubin and Schenker, 1986). 

4 A P P L I C A T I O N  T O  T H E  P E S  

The U.S. Census Bureau's Post-Enumeration Sur- 
vey (PES) at tempts  to measure errors of cover- 
age (undercounting and overcounting) in the 1990 
census. The P ES estimates population size by 
dual-system estimation, a technique analagous to 
capture-recapture estimation wildlife studies. A full 
description of the 1990 PES methodology is not 
yet available, but an overview of a similar survey 
is given by Diffendal (1988). 

Two overlapping samples of the population, de- 
noted by the letters P and E, provide estimates of 
the gross undercount and gross overcount, respec- 
tively. Ill the P-sample, the outcome of interest, 
YP, is a binary variable indicating whether a per- 
son was counted (YP = 1) or missed (YP = 0) in 
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the census. In the E-sample, the outcome of inter- 
est, y E ,  is a binary variable indicating whether a 
census person was erroneously included (yE  _ 1) 
or correctly included (yE _ 0) in the census. The 
dual-system estimate of the population size, DSE, 
can be written as 

DSE - (CEN - I)(1 - ~ , E ) ( ~ - P ) - I ,  (22) 

where 

CEN - total census count, 

I -  number of non-data-defined or im- 
puted persons in the census count, 

] ~ P -  P-sample weighted average of YP, 
and 

E _ E-sample weighted average of YE. 

From the standpoint of the PES, the quantities 
CEN and I are regarded as fixed. Hence, the esti- 
mate DSE has the form (3) required by the methods 
of this paper. 

Both of the binary outcome variables Y P and y E 
are subject to nonresponse. The missing data are 
modeled by means of hierarchical logistic regression 
models fit to the P and E-samples, and estimated 
probabilities of YP - 1 and y E  _ 1 fi'om these 
models are imputed to the dataset. Details of the 
logistic regression models and fitting procedure are 
given by Belin et. at., (1991). 

Because the missing data are modeled as 
Bernoulli random variables, the first variance cor- 
rection term, C1, has a form similar to (21), with 
the addition of derivatives to account for the non- 
linearity of DSE. The second correction term, C~, 
is more problematic because a variance estirnate r 
for the parameters of the missing-data model is not 
readily available. Because the fi'action of missing 
data in the PES is not large, it would probably not 
be unreasonable to ignore C2 in this case. As a safe- 
guard, however, we obtain a rough estimate of the 
component C2 by means of bootstrap resampling. 
Details of our calculations of C1 and C2 for the PES 
will be provided in a future article. 
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